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Abstract
Applying curriculum learning requires both a range of

difficulty in data and a method for determining the difficulty

of examples. In many tasks, however, satisfying these re-

quirements can be a formidable challenge.

In this paper, we contend that histopathology image clas-

sification is a compelling use case for curriculum learning.

Based on the nature of histopathology images, a range of

difficulty inherently exists among examples, and, since med-

ical datasets are often labeled by multiple annotators, an-

notator agreement can be used as a natural proxy for the

difficulty of a given example. Hence, we propose a simple

curriculum learning method that trains on progressively-

harder images as determined by annotator agreement.

We evaluate our hypothesis on the challenging and

clinically-important task of colorectal polyp classification.

Whereas vanilla training achieves an AUC of 83.7% for this

task, a model trained with our proposed curriculum learn-

ing approach achieves an AUC of 88.2%, an improvement

of 4.5%. Our work aims to inspire researchers to think more

creatively and rigorously when choosing contexts for apply-

ing curriculum learning.

1. Introduction
Curriculum learning [1] is an elegant idea inspired by

human learning that proposes that neural networks should

be trained on examples in a specified order based on dif-

ficulty (typically easy to hard), as opposed to the random

ordering that is currently common in practice. As such, cur-

riculum learning requires both that there exists some range

of difficulty among training examples and that we define a

method for ranking examples. In most cases, however, it is

unclear whether a range of difficulty exists among the ex-

amples, and even when a range of difficulty exists, an ideal

ranking function is rarely available. In this paper, we try to

answer the question: are there tasks with domain-specific

properties that are naturally appropriate for addressing these

challenges of curriculum learning?

Figure 1: Our proposed curriculum learning by annotator

agreement scheme for training a colorectal polyp classi-

fier. The classifier first trains on easy images. Progressively

harder images are gradually added in subsequent stages.

Interest in using deep learning to analyze histopathology

images (stained tissues and cells that are typically manu-

ally examined under a microscope) has increased in recent

years, with neural networks achieving pathologist-level per-

formance on a variety of tasks [2–8]. In this paper, we pro-

pose that histopathology image analysis is a suitable sce-

nario for curriculum learning for two reasons. First, due to

the nature of histopathology images, we know that a range

of difficulty in examples exists for many tasks. Second,

medical image datasets typically have annotations from

multiple clinicians—these annotations can be leveraged as

a natural proxy for ranking example difficulty. Specifically,

our paper makes the following contributions:
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1. We contend that histopathology image classification is

a natural scenario for applying curriculum learning, and

we propose a curriculum learning approach that lever-

ages annotator agreement as a proxy for difficulty.

2. We evaluate our proposed approach on a colorectal

polyp classification dataset, for which a baseline model

achieved an AUC of 83.7% and our best single-stage

baseline achieved an AUC of 84.6%. When trained

with curriculum learning, our model’s AUC improves to

88.2%, outperforming the average pathologist annotator

on our test set in terms of Cohen’s κ [9].

The rest of our paper is outlined as follows. §2 analyzes

the challenges of curriculum learning and presents our intu-

itions on why histopathology image classification is a suit-

able context for curriculum learning. §3 describes our task

and dataset. §4 presents the main results of our proposed

curriculum learning approach. §5 compares the value of an-

notator agreement with two previously-proposed methods

of scoring difficulty. §6 shows how the increase in AUC

from curriculum learning translates to improvements in per-

formance relative to pathologist performance. §7 discusses

the implications of our work. §8 puts our study in the con-

text of prior work on curriculum learning for medical imag-

ing and concludes our paper.

2. Curriculum Learning Intuitions

Curriculum learning. One of the earliest works demon-

strating the benefit of curriculum learning [1] posits that

learning occurs better when examples are not randomly

presented but instead organized in a meaningful order that

gradually shows more concepts and complexity. Although

the intuition behind this approach seems obvious in the con-

text of human and animal learning, it is often unclear how

to best apply this strategy for training neural networks.

As such, a diverse set of approaches has been explored

in this area of research. These approaches generally first

score examples by difficulty and then train models using a

schedule based on example difficulty, where easier exam-

ples are typically seen first and harder examples are seen

later. For instance, Bengio et al.’s original work [1] ex-

plored a noising-based curriculum for shape detection and a

vocabulary-size based task for language modeling. As pop-

ular recent examples, Weinshall et al. [10] use the confi-

dence of a pre-trained classifier as an estimator for diffi-

culty; Korbar et al. [11] use a schedule with self-defined

easy and hard examples for learning of audio-visual tem-

poral synchronization; Ganesh and Corso [12] propose to

incrementally learn labels instead of learning difficult ex-

amples; and various teacher-student frameworks have been

proposed in the context of curriculum learning [13, 14].

Challenges of curriculum learning. Despite the appeal of

teaching machines to learn like humans, curriculum learn-

ing has been seen by some [10] as mostly remaining in the

fringes of machine learning research. Based on the strate-

gies of prior work, we broadly see two central challenges

that arise when applying curriculum learning.

First, curriculum learning assumes that a range of easy

and hard examples exists. Although it could be argued that

this is a true statement for any given dataset for at least some

definition of easy and hard, the distribution of example dif-

ficulties likely varies based on the nature of the task and the

dataset. Since the added value of curriculum learning comes

from utilizing the varying degrees of difficulty in a task,

tasks with a smaller range of example difficulty are less

conducive to effective curriculum learning. Empirically,

Weinshall et al., present some evidence related to this claim,

showing that curriculum learning had a larger improvement

compared with regular training when applied to tasks that

were more difficult and likely included challenging exam-

ples (e.g., distinguishing small mammals in CIFAR-100),

than when applied to tasks that were easier and did not have

examples that were difficult to classify (e.g., discriminating

between 5 well-separated classes in CIFAR-100) [10].

Second, a curriculum learning approach must somehow

categorize examples as easy or hard. Prior work has tried

to address this challenge in many ways, including trying

to discover inherent patterns in the data [10], using hand-

picked heuristics [15], and creating custom training pro-

gressions [11]. Though sometimes effective, these methods

can be difficult to implement, and it is often unclear whether

an approach that works on one dataset will also work on an-

other. Indeed, scoring images by difficulty is often the core

problem addressed in many curriculum learning papers.

Our intuitions. We contend that histopathology image

classification is an important task that naturally addresses

the challenges above—and could benefit from curriculum

learning—based on the following two observations:

• A range of example difficulty exists in many

histopathology image classification tasks. We believe

this to be true for several domain-specific reasons. (1)

Because pathological disease develops over time, there

is a progression from normal tissue to diseased tissue.

Since many diseases are classified into discrete classes,

there must be some points in this progression that lie

on the margins of two classes and are therefore hard to

diagnose. (2) Pathology residents learn to read images

by first studying classic examples of diseases and then

learning to diagnose more-challenging cases over time,

implying that human instructors acknowledge some no-

tion of easy and hard examples [16]. (3) Inter-annotator

agreement is moderate or low on many disease classifica-

tion tasks [7, 17], suggesting that some images are hard

to classify. Knowing that a curriculum exists is the first

step to applying curriculum learning.
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• Image-level annotator agreement can be leveraged

as a proxy for example difficulty. As medical image

datasets are commonly annotated by several trained clin-

icians, we can leverage the extent of agreement for each

image as a proxy for the difficulty of that image. By

definition, images with high agreement are easy to clas-

sify, as everyone agrees on them, and images with lower

agreement are harder to classify. If these human notions

of difficulty translate to a helpful curriculum for training

neural networks, then many tasks with annotator agree-

ment data already contain a curriculum that can be used

to improve model performance. [17–29].

3. Histopathology Dataset 1

In this paper, we focus on the task of colorectal polyp

classification, a challenging and clinically-important task in

pathology. As shown in Table 1, our dataset contains 3,152

images in total, each annotated with a binary label of either

hyperplastic polyp (HP) or sessile serrated adenoma (SSA).

Colorectal polyp classification task. Colonoscopy is a

common screening program in the United States [30], and

so classification of colorectal polyps (growths inside the

colon lining that can lead to colonic cancer if left untreated)

is one of the highest-volume tasks in pathology. Our task

focuses on the clinically-important binary distinction be-

tween hyperplastic polyps (HPs) and sessile serrated ade-

nomas (SSAs), a challenging problem [31–35]. Pathologi-

cally, SSAs are characterized by broad-based crypts, often

with complex structure and heavy serration [36].

Data collection and annotation. For our data collection,

we scanned 328 Formalin Fixed Paraffin-Embedded (FFPE)

whole-slide images of colorectal polyps, which were origi-

nally diagnosed as either hyperplastic polyps (HPs) or ses-

sile serrated adenomas (SSAs), from patients at our tertiary

medical institution. From these 328 whole-slide images, we

then extracted 3,152 patches (image portions of size 224

× 224 pixels) representing diagnostically-relevant regions

of interest for HPs or SSAs. The seven practicing board-

certified gastrointestinal pathologists at our tertiary institu-

tion then independently labeled each of the 3,152 images in

our dataset as either HP or SSA.

Train-test split and gold-standard labels. Images were

split randomly by whole-slide such that images from the

same whole-slide either all went into the training set or all

went into the testing set. As shown in Table 1, we used a

training set of 2,175 images (∼70% of images) and a testing

set of 977 images (∼30% of images). In our testing set, we

use the majority vote of labels as the gold-standard label, a

common choice in the literature [18, 23–29, 37, 38].

1We plan to make our dataset and annotations publicly available to fa-

cilitate further research.

Train Test Total

HP 1,545 617 2,162

SSA 630 360 990

Total 2,175 977 3,152

Table 1: Number of images in our dataset.

A1 A2 A3 A4 A5 A6 A7

A1 - 65.7 90.1 82.0 71.5 90.7 63.6

A2 - - 64.2 76.0 76.1 65.8 60.8

A3 - - - 80.1 69.3 90.8 62.3

A4 - - - - 79.9 81.9 64.1

A5 - - - - - 70.7 61.5

A6 - - - - - - 62.9

A7 - - - - - - -

Table 2: Pairwise annotator agreement (%) for our seven

annotators (indexed as A1, A2, A3, A4, A5, A6, and A7).

Figure 2: Distribution of class labels for each annotator.

Figure 3: Distribution of annotator agreement levels for im-

ages in our dataset.
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Figure 4: Example images for each level of annotator agreement.

Dataset Statistics. To help readers get a better sense of

our dataset, in Tables 1 and 2 and in Figures 2 and 3, we

show several analyses of our dataset. To summarize, our

dataset contains 2,162 images with a gold-standard label of

HP and 990 images with a gold-standard label of SSA, with

64.5% of images having at 6/7 or 7/7 annotator agreement

and 35.5% of images with annotator agreement of 4/7 or

5/7. Figure 4 shows examples for each level of agreement.

On average, each pair of pathologists had an average agree-

ment of 72.9%, and each pathologist agreed with the ma-

jority vote 83.2% of the time, indicating that our task has

non-neglible disagreement, even among pathologist anno-

tators who all specialize in gastroenterology.

4. Curriculum learning: annotator agreement

We propose a curriculum learning framework that lever-

ages annotator agreement to rank images by difficulty.

Specifically, we define images with high annotator agree-

ment to be easy and images with low annotator agreement

to be hard. For our dataset, which was labeled by seven

annotators, we partition our images into four discrete lev-

els of difficulty: very easy (7/7 agreement among anno-

tators), easy (6/7 agreement among annotators), hard (5/7

agreement among annotators), and very hard (4/7 agree-

ment among annotators). An overview schematic of this

setup can be seen in Figure 1. For our training schedule, we

train our network on progressively harder images in four

stages:

• Stage 1: Very easy images only

• Stage 2: Very easy + easy images

• Stage 3: Very easy + easy + hard images

• Stage 4: Very easy + easy + hard + very hard images

At each stage, we make sure to include images from the pre-

vious stages to prevent catastrophic forgetting [39]. Though

our current model uses four levels of difficulty and four

stages of training, our general framework could be used in

any scenario where annotator agreement data is available.

Experimental Setup. For our model, we use ResNet-

18, a common choice for classifying histopathology im-

ages. Specifically, we follow the DeepSlide repository [7]

for histopathology image classification, training our model

for 50 epochs (well past convergence) using stochastic data

augmentation with the Adam optimizer [40], initial learning

rate of 1× 10−3, and learning rate decay factor of 0.91.

For more-robust evaluation, for each model we consider

the five highest AUCs on the test set, which are evaluated at

every epoch. We report the mean and standard deviation of

these values calculated over 20 different random seeds.

Baselines. Our primary baseline is the vanilla-training

model where all training images are given a label deter-

mined by the majority vote of annotator labels, a common

gold-standard in the literature [18, 23–29, 37, 38]. We also

explore variations of single-stage training in which only

certain images, selected based on annotator agreement, are

used for training. For all experiments, our test set is fixed

and contains images from all levels of difficulty, although

stratified analyses are also presented.

As shown in the first block of Table 3, our vanilla base-

line that uses all images achieves an AUC of 83.7%. In-

terestingly, the network trained on only very easy and easy

images achieved an overall AUC of 84.6%, an almost 1%

improvement over the vanilla baseline. As shown by the

performances on the test set when stratified by difficulty,

this network trained on very easy and easy images does bet-

ter on very easy and easy images in the test set while doing

worse on hard and very hard images, leading to a higher

overall AUC because there are more very easy and easy im-

ages than hard and very hard image in the testing set.

Annotator agreement-based curriculum learning. The

second block of Table 3 shows the results of our proposed
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AUC (%) on test set stratified by annotator agreement

Stage Very Easy Easy Hard Very Hard Overall ∆
+

Single-Stage Training

Vanilla Baseline: All Images - 93.8 ± 0.5 88.7 ± 1.3 76.2 ± 0.9 60.7 ± 2.1 83.7 ± 1.0 -

Very Easy Images Only - 94.8 ± 0.8 87.7 ± 1.1 61.7 ± 1.9 56.2 ± 1.6 80.2 ± 1.1

Easy Images Only - 93.7 ± 0.9 88.6 ± 0.7 73.8 ± 1.8 56.4 ± 1.7 82.7 ± 0.8

Very Easy + Easy Images - 96.1 ± 0.6 90.2 ± 1.2 72.1 ± 1.7 58.0 ± 1.9 84.6 ± 0.8 *

Very Easy + Easy + Hard Images - 94.7 ± 0.8 88.8 ± 1.2 76.0 ± 1.3 60.2 ± 1.9 84.2 ± 0.8

Curriculum Learning - Annotator Agreement (Ours)

Very easy images 1 94.8 ± 0.8 87.7 ± 1.1 61.7 ± 1.9 56.2 ± 1.6 80.2 ± 1.1

then (very easy + easy) 2 96.2 ± 0.6 91.3 ± 1.1 74.1 ± 1.4 58.8 ± 2.2 85.5 ± 0.9 ***

then (very easy + easy + hard) 3 96.7 ± 0.5 94.3 ± 0.5 78.9 ± 1.2 64.2 ± 2.0 88.2 ± 0.6 ***

then (very easy + easy + hard + very hard) 4 96.1 ± 0.6 93.2 ± 1.2 78.3 ± 1.6 64.5 ± 1.4 87.1 ± 0.9 ***

ANTI-Curriculum Learning - Annotator Agreement

Very hard images 1 66.2 ± 4.5 60.9 ± 4.3 60.5 ± 4.2 55.8 ± 2.4 59.6 ± 3.2

then (very hard + hard) 2 71.5 ± 4.5 67.6 ± 5.9 65.3 ± 2.6 56.3 ± 3.4 65.7 ± 4.5

then (very hard + hard + easy) 3 89.6 ± 1.5 86.3 ± 1.1 73.2 ± 3.8 60.0 ± 2.7 80.0 ± 1.1

then (very hard + hard + easy + very easy ) 4 93.7 ± 0.8 88.3 ± 1.1 76.8 ± 1.4 61.3 ± 1.5 83.6 ± 0.7

Curriculum Learning - Direct Annotation

Very easy images 1 90.8 ± 1.6 88.6 ± 1.3 74.7 ± 3.2 60.1 ± 1.8 82.5 ± 1.3

then (very easy + easy) 2 93.0 ± 0.8 88.3 ± 0.6 77.1 ± 1.5 60.2 ± 1.5 83.3 ± 0.5

then (very easy + easy + hard) 3 93.4 ± 0.7 88.4 ± 0.8 77.1 ± 1.0 59.9 ± 2.0 83.5 ± 0.7

then (very easy + easy + hard + very hard ) 4 93.2 ± 0.8 88.1 ± 1.0 77.3 ± 1.4 60.6 ± 2.2 83.3 ± 0.6

Curriculum Learning - Control (Random)

Very easy images 1 89.8 ± 1.2 88.7 ± 0.9 68.9 ± 2.4 57.8 ± 1.8 80.3 ± 1.2

then (very easy + easy) 2 92.1 ± 0.8 88.2 ± 0.9 76.2 ± 1.4 59.4 ± 1.5 82.6 ± 0.5

then (very easy + easy + hard) 3 93.2 ± 0.6 89.2 ± 0.8 76.3 ± 1.3 58.7 ± 1.6 83.4 ± 0.6

then (very easy + easy + hard + very hard ) 4 93.6 ± 0.7 89.2 ± 1.4 76.8 ± 1.6 59.8 ± 2.4 83.7 ± 0.9

Table 3: Histopathology image classification model trained using a curriculum learning framework outperforms single-stage

training baselines by an AUC of 3.6–4.5%. Image difficulty is determined by annotator agreement in four discrete categories:

very easy (7/7 annotator agreement), easy (6/7 agreement), hard (5/7 agreement), and very hard (4/7 agreement). ∆+

indicates the level of statistical significance in improvement over the vanilla baseline of training with all images: * indicates

p ≤ 0.05; *** indicates p ≤ 0.001. Means and standard deviations shown are for 20 random seeds.

curriculum learning scheme at each stage of training. In

this curriculum learning scheme, the model already outper-

forms all single-stage models at the second stage, achieving

an AUC of 85.5%, and at the third stage, achieves an AUC

of 88.2%, the highest of any model we train. Moreover, this

model also achieved the highest performance when strati-

fied by very easy, easy, and hard images in the test set, out-

performing earlier stages that trained only on very easy and

easy examples. These results suggest that training on harder

images in a curriculum framework not only improves per-

formance on hard images, but also improves performance

on easy images, a finding consistent with Korbar et al. [11].

Perhaps strikingly, model performance actually de-

creases in the fourth stage of training that includes very hard

examples, as performance on very hard images in the test

set increases but performance on other images in the test

set decreases. One explanation for this slight dip in perfor-

mance is that very hard images, which have only 4/7 pathol-

ogist agreement, could be too challenging to analyze accu-

rately (even for expert humans), so their features might not

be beneficial for training machine learning models either.

In terms of statistical significance, our curriculum learn-

ing model at the second, third, and fourth stages outper-

forms the vanilla-training model with p ≤ 0.001, based on

a two-sample t-test for means.

Anti-curriculum learning. To further validate that the im-

provement in model performance is indeed a result of the

intentionally selected images at each stage, we train a model

using an anti-curriculum scheme, which reverses the learn-

ing schedule (i.e., the model first trains on hard images and

then trains on progressively easier images). As shown in

the third block in Table 3, no models trained using the anti-

curriculum framework outperform the vanilla baseline.

Visualization. For a qualitative examination of how the

model changes throughout training, we compute GradCAM
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Figure 5: GradCAM visualization of images where curricu-

lum learning was successful (top) and unsuccessful (bot-

tom). Regions of interest are highlighted in yellow. For

successful images, pathologists marked Stage 3 (our best-

performing model) as the best representation of the area that

they would look at to make a diagnosis. For unsuccessful

images, pathologists marked Stage 1 as the best.

heatmaps [41] to visualize the model’s predictions at each

of the four stages of curriculum learning. In Figure 5, we

show examples of SSA images where curriculum learning

was both successful and unsuccessful, as subjectively ex-

amined by our pathologists. In the successful examples, the

model seemed to focus on broad-based crypts (a defining

characteristic of SSAs) more heavily in Stage 3 of curricu-

lum training, our best-performing model. In the unsuccess-

ful examples, on the other hand, the model seemed to focus

on broad-based crypts more heavily in earlier stages.

Other curriculum baselines. As a further baseline, we also

asked a pathologist to directly score the difficulty of each

image on a scale from 1-4, with 1 as very easy to classify

and 4 as very hard to classify. We also ran a four-stage

experiment using this difficulty measure, as shown in the

fourth block of Table 3, but find that curriculum learning

here does not improve performance, possibly because the

manual difficulty scores from a single pathologist are too

subjective. Moreover, we tested a control curriculum with

the same training scheme as the annotator agreement exper-

iment, except images in each stage were selected randomly

(fifth block of Table 3). As expected, this control curricu-

lum performed about the same as our vanilla baseline.

5. Annotator agreement vs model confidence

This section compares various proxies for difficulty in

terms of their usefulness for curriculum learning. Whereas

our model so far has used annotator agreement as a proxy

for example difficulty, prior work has proposed that the out-

put confidence of a machine learning classifier can also be

a proxy for example difficulty [10, 42]. First, we perform

a sanity check to see whether classifier output confidence

correlates with annotator agreement. As we might expect,

they do—predicted confidence distributions of a model pre-

trained on ImageNet and fine-tuned on our dataset ap-

peared substantially different for different levels of anno-

tator agreement (Figure 8 in the Supplementary Materials).

We conduct a simple ablation study to compare annota-

tor agreement and model output confidence as proxies for

image difficulty in curriculum learning. For simplicity, we

use a two-step curriculum learning scheme—where train-

ing is done in one stage containing only easy images and

a following stage containing a mixture of easy and hard

images—and use a single-step pacing schedule [42].

We evaluate the following three proxies for difficulty:

1. Self-taught scoring, where the classifier with randomly

initialized weights is pre-trained on our dataset, and out-

put confidences are used to sort examples by difficulty.

2. Transfer learning, where a classifier pre-trained on Im-

ageNet is fine-tuned on our dataset, and output confi-

dences are used to sort examples by difficulty.

3. Coarse annotator agreement, a simplified version of

our curriculum learning scheme above, where images

are divided into two categories of either easy (6/7 or 7/7

agreement) or hard (4/7 or 5/7 agreement), instead of the

four categories used in §4.

The self-taught scoring and transfer learning proxies assign

each image with a confidence score: images with confi-

dence score greater than a threshold τ are classified as easy

and images with confidence score less than τ are classified

as hard. We choose τ such that the proportion of easy and

hard images was the same as the natural distribution of easy

and hard images from coarse annotator agreement. Then,

a new classifier is trained in two stages: (1) easy images

only, and (2) easy images and hard images combined at var-

ious ratios. Our coarse annotator agreement method in this

section follows this same training scheme of two stages.

Figure 6 shows the results for the various ratios of hard

images we used in the second stage of training. Without

making any general claims, we see that on our dataset, an-

notator agreement appears to be a more useful proxy for

difficulty than model output confidence. One possible ex-

planation for this result is that although the transfer learning

and self-taught scoring approaches work (marginally, in our

case), much of the information provided by the pre-trained

classifier is shared with the resulting classifier (i.e., much of
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Figure 6: Performance of curriculum learning models that

use proxies of transfer learning [42], self-taught scoring

[42], and annotator agreement (ours). For all tested ratios

of hard images in the second stage of training, curriculum

learning by annotator agreement outperforms transfer learn-

ing and self-taught scoring.

the added value of the pre-trained classifier can already be

discovered by the resulting classifier), whereas using anno-

tator agreement as a proxy provides new information about

difficulty that the model would not have had access to oth-

erwise. Moreover, we find that including a greater propor-

tion of easy images than hard images in the second stage

of training is important for preventing catastrophic forget-

ting, a finding consistent with prior work [10, 11, 42]. Us-

ing only hard images in the second stage was especially

problematic for the self-taught scoring and transfer learn-

ing models, possibly because the images most challenging

for these proxy models to learn will also be challenging for

the learner model to optimize.

6. Comparison with Pathologist Performance

For more context on the significance of the improvement

that curriculum learning brings to model performance, in

this section, we compare the performance of our models

with that of pathologists. Specifically, we frame the pre-

dictions of each model as the annotations of an additional

pathologist, and we compare these predictions with the an-

notations of actual pathologists in terms of Cohen’s κ [9], a

common measure of inter-annotator agreement.

For our models, we select the best-performing curricu-

lum learning model (Stage 3) and compare it with the

vanilla-baseline model that was trained on all images in a

single stage. As our models output a continuous distribution

of probabilities for HP and SSA, we evaluate each model

at several different confidence thresholds (a lower threshold

results in higher recall, whereas a higher threshold results in

higher precision). For average pathologist performance, we

compute the Cohen’s κ between all pairs of pathologists,

and for each of the seven pathologists we show the mean
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0.2

0.3

0.4

0.5

0.6
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h
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Pathologist Average
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Figure 7: Performance in terms of Cohen’s κ [9] of our

curriculum-learning and baseline models compared with

that of pathologists annotators. The x-axis shows different

confidence thresholds for our models, and the y-axis dis-

plays the average agreement with each pathologist in terms

of Cohen’s κ. The 4.5% improvement in AUC (Table 3) of

the curriculum-learning model compared with the baseline

model translated to an .089 improvement in Cohen’s κ, al-

lowing the curriculum-learning model to achieve agreement

on par with the pathologist mean.

Cohen’s κ of all six pairs involving that pathologist.

Figure 7 shows these results comparing our models with

both individual pathologists and the average of all pathol-

ogists. We see that there is a wide range of Cohen’s κ for

individual pathologists—the mean of our pathologists’ Co-

hen’s κ scores was 0.450, which is in the moderate range of

0.41-0.60 [43] (a similar study found a Cohen’s κ of 0.380

found among four pathologists [35]). Our curriculum learn-

ing model (AUC = 88.2%) outperforms the pathologist av-

erage for multiple thresholds and the baseline model (AUC

= 83.7%) for all thresholds. In particular, adding a cur-

riculum schedule increases performance from the baseline’s

maximum κ = 0.384 to the curriculum learning model’s

maximum κ = 0.473, the difference needed to outperform

the pathologists’ average (κ = 0.450).

7. Discussion

Human and machine notions of difficulty. Our study has

presented a transparent analysis of the requirements of cur-

riculum learning, proposing that histopathology image anal-

ysis tasks present a range of difficulty among examples and

that readily-available annotator agreement can be used as a

natural proxy for ranking images. Experimentally, we found

that using this natural proxy as a curriculum to train classi-

fiers can yield significant performance improvements.

Some prior work has demonstrated that what makes an

image difficult for neural networks to classify might not al-

ways match what makes it difficult for human annotators,
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an observation that recent work on adversarial examples

takes advantage of [44]. Our study explores a converse

idea for histopathology image classification, finding that

machine notions of difficulty do correlate with human an-

notator agreement and contending that annotator agreement

can be a useful proxy for facilitating curriculum learning.

Implications on medical image analysis. Our work also

has implications for how labels are used in the histopathol-

ogy image analysis and medical image analysis domains.

Much prior work in these domains has used majority vot-

ing or senior pathologist resolution to resolve labels, only

retaining a single label for each image without distinguish-

ing between images with high annotator and low annota-

tor agreement. Our method could instead leverage the an-

notation agreement for curriculum learning. In Table 4 in

the supplementary materials section, we list past work for

which multiple annotator agreement levels appears to be

available and therefore our method could be applicable (al-

though most are private datasets).

Certainly, not every scenario in medical imaging is ideal

for applying curriculum learning. For instance, both pathol-

ogists and deep learning models have achieved high perfor-

mance in distinguishing high-grade lung cancers and nor-

mal tissue, which is considered a relatively easy task that is

less likely to exhibit a range of difficulty among examples.

Another negative example could be detecting bone frac-

tures: since bone fractures are typically caused by instan-

taneous traumatic events, there is no progression of disease

development, so we are less certain that a range of example

difficulty exists. Potential scenarios conducive to curricu-

lum learning by annotator agreement should ideally involve

a progression of disease development and be challenging

problems where even specialized pathologists might dis-

agree. In particular, we believe that cancer datasets can ben-

efit from curriculum learning because of the inherent natural

progression of cancers (i.e., cancer develops over time and

is not sudden). This could include tasks such as distinguish-

ing among subtypes of lung adenocarcinoma or assessing

tumor proliferation in breast cancer tissue samples.

Limitations. Though we intentionally addressed a com-

mon, clinically-important, and diagnostically-challenging

problem of colorectal polyp classification for empirical

evaluation—the best dataset that we were able to collect and

annotate with multiple annotators at this time—our study

nonetheless only uses a single dataset. As such, although

our approach seems effective in its current form, we con-

sider our results as an invitation for further exploration in

this direction rather than a validation of curriculum learn-

ing for all histopathology classification tasks.

Furthermore, our dataset contained annotations from

seven pathologist annotators, allowing us to categorize im-

ages into four discrete levels of difficulty. For medical im-

age datasets that have fewer annotators and therefore fewer

categorized levels of annotation difficulty, we suspect that

the benefits of our approach could be slightly diminished.

For example, our coarse annotator agreement method in

§5, which only used two levels of annotator agreement,

achieved a smaller performance improvement (1.5%) than

our four-level annotator agreement method (4.5%). More-

over, our dataset size is modest in the medical imaging do-

main, and so whether these curriculum methods work for

other dataset sizes is still relatively unexplored. We believe,

however, that our curriculum learning methodology might

still be worth exploring for these datasets with fewer an-

notators, as even small improvements in performance are

important given the high cost of data annotation and the im-

portance of accuracy toward patient outcomes.

8. Further Related Work and Conclusions

Although we argue that histopathology imaging is a

promising context for curriculum learning, we are not the

first to explore curriculum learning in the medical imaging

domains. Oksuz et al. [45] used curriculum learning for

artifact detection by first training on heavily-corrupted im-

ages and then introducing less-corrupted images, thereby

improving performance on borderline cases. Maicas et al.

[46] used a meta-training approach called teacher-student

curriculum learning to improve breast screening classifi-

cation on a weakly-labeled dataset. Moreover, Jesson et

al. [47] used adaptive curriculum sampling to better detect

lung nodules in extreme class-imbalance scenarios, and Ok-

suz et al. [45] applied a curriculum based on disease severity

levels in radiology reports (e.g., mild, moderate, severe).

These prior studies have demonstrated empirical evalua-

tion of curriculum learning and helped inspire our work, but

their methods tend to be complicated and use inductive bi-

ases specific to certain datasets. For instance, the approach

of Oksuz et al. [45] only applies to artifact detection, the

approach of Jesson et al. [47] is specific to segmentation

tasks, and disease-severity information from radiology re-

ports used in Oksuz et al. [45] might not exist for many

datasets and can be challenging to parse. Our method, on

the other hand, is easy to implement, presents no modifi-

cations to network architecture, and only requires annotator

agreement data, which is often readily available.

Based on a thoughtful analysis of the assumptions in

curriculum learning, we have presented a simple yet effec-

tive curriculum learning framework which leverages easily-

obtained annotator agreement data. In histopathology im-

age analysis, where data collection and annotation can be

especially costly, it is important to combine the natural

properties of classification tasks with the most-appropriate

inductive biases. We aim to have provided a well-motivated

argument for more intentional application of curriculum

learning to readers from both computer vision and medical

imaging analysis backgrounds.
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