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Abstract

Automatic character generation is an appealing solution

for typeface design, especially for Chinese fonts with over

3700 most commonly-used characters. This task is par-

ticularly challenging for handwritten characters with thin

strokes which are error-prone during deformation. To han-

dle the generation of thin strokes, we introduce an auxil-

iary branch for stroke refinement. The auxiliary branch is

trained to generate the bold version of target characters

which are then fed to the dominating branch to guide the

stroke refinement. The two branches are jointly trained in

a collaborative fashion. In addition, for practical use, it

is desirable to train the character synthesis model with a

small set of manually designed characters. Taking advan-

tage of content-reuse phenomenon in Chinese characters,

we further propose an online zoom-augmentation strategy

to reduce the dependency on large size training sets. The

proposed model is trained end-to-end and can be added on

top of any method for font synthesis. Experimental results

on handwritten font synthesis have shown that the proposed

method significantly outperforms the state-of-the-art meth-

ods under practical setting, i.e. with only 750 paired train-

ing samples.

1. Introduction

The Chinese language consists of more than 8000 char-

acters, among which about 3700 are frequently used. De-

signing a new Chinese font involves considerable tedious

manual efforts. Given an initial set of manually designed

samples, it is desirable to automatically complete the rest,

i.e. Chinese font synthesis. Inspired by the recent progress

of neural style transfer [6, 9, 10, 21, 25, 31], several stud-

ies have recently attempted to model font synthesis as an

image-to-image translation problem [7, 23, 29].

Unlike neural style transfer, font transfer is low fault-
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Figure 1. Collaborative stroke refinement handles the thin issue.

Handwritten characters usually have various stroke weights. Thin

strokes have lower fault tolerance in synthesis, leading to distor-

tions. Collaborate stroke refinement adopts collaborative train-

ing. An auxiliary branch is introduced to capture various stroke

weights, guiding the dominating branch to solve the thin issue.

tolerant because any misplacement of strokes may change

the semantics of the characters [7]. So far, two main streams

of approaches have been explored. One addresses the prob-

lem with bottleneck CNN structures [15, 16, 7, 18, 13] and

the other proposes to disentangle representation of charac-

ters into content and style [22, 23, 29]. While promising

results have been shown in font synthesis, most existing

methods require an impracticable initial set of large size to

train a model. For example, [15, 16, 7, 18] require 3000

paired characters for training supervision. Several recent

methods [12, 23, 13] investigated learning with fewer paired

characters by introducing more domain knowledge. How-

ever, they heavily depend on extra labels or pre-trained aux-

iliary networks to integrate the prior knowledge of radical-

reuse or stroke-continuity. For example, hard codes of char-

acter structures are required in [23], and handmade stroke
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Table 1. Comparison of our method with existing CNN-based Chinese font synthesis methods.

Methods Pre-training set
Training size

for target
Extra information

Rewrite [15]

None 3000

None

AEGN [18]

HAN [7]

zi2zi [16]
Hundreds of fonts

(each involving 3000 samples)
3000

EMD [29]

SA-VAE [23] 1000 133-bit structure code for each character

DCFont [12]
20 fonts

(each involving 2000 samples) 755
A feature reconstruction network

pretrained on 100 fonts

SCFont [13]
25 fonts

(each involving 6000 samples) 775
Human corrected stoke trajectories

for all 25× 6000 samples

Ours
15 fonts

(each involving 3000 samples) 750 None

priors are needed in [13]. These extra labels or auxiliary

pretrained modules require either expensive human labor or

extremely large font library so it will be better if they can be

implemented implicitly and automatically. Table 1 provides

a comparative summary of the above methods.

Most of the above methods focused on printed font syn-

thesis. Compared with printed typeface synthesis, hand-

written font synthesis can be much more challenging. First,

handwritten characters are usually associated with thin ir-

regular strokes of little information. These thin strokes are

prone to be missing or broken during deformation due to

enormous blank pixels in font images (see Fig. 1). To solve

the thin stroke issue, we thus propose collaborative stroke

refinement. We design an auxiliary branch to synthesize

thicker strokes, which are further used to guide the dominat-

ing branch to maintain stroke completeness. This is similar

to the collaborative training strategy in that the dominating

branch can get refinement with various stroke weights from

the auxiliary branch, while the backward gradient from the

dominating branch passes more accurate skeleton informa-

tion to the auxiliary branch.

“radical”
reusing

“single-element”
reusing

……

Figure 2. Online zoom-augmentation exploits the content-reuse

phenomenon. A same radical can exist in various characters at

various locations. Our method models the variety of locations

and sizes from elementary characters without manually decom-

position, significantly reducing the required quantity of training

samples.

Furthermore, for practical use, the font synthesis method

needs to generate thousands of characters based on only a

few manually designed characters (see Fig. 2). To solve this

issue, we exploit the content-reuse phenomenon in Chinese

characters, i.e., the same radicals (elementary components)

may present in various characters at various locations. On-

line zoom-augmentation is proposed to help the model to

learn this phenomenon and to decouple the unseen charac-

ters into already learned parts. This significantly reduces

the required size of training sets. And unlike SA-VAE [23],

which requires additional radical embedding, it implicitly

mimics the mapping between radicals at different positions.

In addition, to make the networks easily capture the defor-

mation from source to target, we further apply adaptive pre-

deformation, which learns the size and scale to standardize

characters. This allows the proposed networks to focus on

learning high-level style deformation.

Combining the above techniques, we proposed an end-

to-end trainable model to generate high-quality charac-

ters. We validate the effectiveness of the proposed method

on several Chinese fonts including both handwritten and

printed fonts. Experimental results have shown that 1) the

proposed method is able to generate high quality characters

with only a minimal set of 750 training samples on target

fonts without explicitly using any extra prior knowledge; 2)

Under the similar experimental settings and without human

priors, the proposed method significantly outperforms the

other state-of-the-art Chinese font generation methods.

The main contributions are summarized as follows.

• We propose an end-to-end trainable model to synthe-

size handwritten Chinese fonts under a practical set-

ting of only 750 training samples;

• We propose collaborative stroke refinement, handling

the thin stroke issue; online zoom-augmentation, en-

abling learning with fewer training samples; and adap-
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tive pre-deformation, standardizing and aligning the

characters;

• Experiments have shown that our method outperforms

several state-of-the-arts in terms of visual effects,

Mean Square Error (MSE) metric, and user metric.

2. Related Work

Most image-to-image translation tasks such as art-style

transfer [8, 14], coloring [3, 28], super-resolution [17], de-

hazing [1] have achieved progressive improvement since

the raise of CNNs. Recently, several works model font

glyph synthesis as a supervised image-to-image translation

task mapping the character from one typeface to another by

CNN analogous to an encoder/decoder backbone [15, 16, 2,

22, 7, 12, 18, 5, 27, 13]. Specially, generative adversarial

networks (GANs) [11, 19, 20] are widely adopted to obtain

promising results. Differently, EMD [29] and SA-VAE [23]

are proposed to disentangle the style/content representation

of Chinese fonts for a more flexible transfer.

Preserving the content consistency with as small train-

ing set as possible is important in font synthesis task. Re-

cently, “From A to Z” [24], MC-GAN [2] and [22] per-

form pretty well in synthesizing ornamented glyphs from a

few examples. However, the generation of Chinese char-

acters is very different from the English alphabet no mat-

ter in complexity or considerations. For Chinese font gen-

eration, the requirements of content accuracy and trainset

size are more stringent, so the related works usually have

more complex frameworks. To synthesize multiple fonts,

zi2zi [16] utilized a one-hot category embedding, but it re-

quires a very large font library during both pretraining and

finetuning process. EMD [29] is the first model to achieve

good performance on new Chinese font transfer with a few

samples, but it does work poorly on handwritten fonts.

To further reduce the amount of training data, some re-

cent works explored integrating more domain knowledge

into CNN. SA-VAE [23] embedded 133-bits coding denot-

ing the structure/content-reuse knowledge of inputs, which

must rely on the extra labeling related to structure and con-

tent beforehand. In addition, it leverages a pre-trained Chi-

nese character recognition network [26, 30] to provide the

content label. Similarly, DCFont [12] employs a pre-trained

100-class font-classifier to provide a better style representa-

tion. SCFont [13] proposes a two-stage method to learn the

skeleton and stroke style separately, which requires expen-

sive annotations of stroke priors on all characters for each

font and limits its practical use. In addition, DM-Font [4]

explores the compositionality of Korean characters with 68

components, but is hard to be generalized on Chinese fonts

which contain far more sub-glyphs.

3. Methodology

Given a source character, handwritten Chinese font gen-

eration aims to generate the same character in the target

style. Let C = {ci}
m
i=0 be a set of m images for stan-

dardized Chinese characters, where each element ci rep-

resents a single Chinese character. Let the source set

X = {xi = dsource(ci)|ci ∈ C}i and the target set

Y = {yi = dtarget(ci)|ci ∈ C}i be two training image sets

representing the characters C in two styles, where dsource(·)
and dtarget(·) denote the deformation function in the source

and target styles, respectively. The model is trained with

the source-target pairs, X and Y . At testing phase, given

an input image, x = dsource(c), the model outputs a syn-

thesis image, y = dtarget(c). Since that we are blind to

both deformation functions, the key of this task is to learn a

mapping from dsource(·) to dtarget(·) based on training sets

X and Y . Here we use deep neural networks to learn the

mapping from dsource(·) to dtarget(·). To make it practical,

we want the size of the training set m as small as possible.

Fig. 3 shows the proposed networks, including a coarse

generator to generate low resolution feature maps and a col-

laborative stroke refinement to generate the final results.

3.1. Collaborative Stroke Refinement

The proposed collaborative stroke refinement, based on

multi-task learning and collaborative training strategy, in-

cludes dominating branch and auxiliary branch, with a re-

finement module connecting the two branches. The auxil-

iary branch learns stroke deformations between the source

x and a bold target b(y), where b(·) is a bolding function;

the refinement module merges information from the auxil-

iary branch to the dominating branch; and finally, the dom-

inating branch learns the stroke deformation between the

source x and the original target y with auxiliary informa-

tion from the refinement module. The two branches and the

refinement module are trained simultaneously.

Auxiliary branch. The auxiliary branch synthesizes ˆb(y)
to approximate the bold target b(y) based on the source x.

The bold target is obtained from original target by applying

the morphological dilation operation:

b(y) = y ⊕ e = {z|(ê)z ∩ y 6= ∅},

where e is the structuring element, ∗̂ denotes reflecting all

elements of ∗ about the origin of this set, (∗)z denotes trans-

lating the origin of ∗ to point z. The synthesis ˆb(y) has bold

strokes and are robust to potential distortion. Since hand-

written fonts’ strokes are usually highly connected, simply

using dilation may cause overlapping of strokes; see Fig.

4. Instead of using ˆb(y) as the final synthesis, we use it as

auxiliary information and output to the refinement module.

Refinement module. Refinement module merges informa-

tion from the auxiliary branch to the dominating branch.
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Figure 3. Schematic of proposed model including coarse generator and collaborative stroke refinement. In coarse generator, the source

image x is transformed to a feature map after adaptive pre-deformation and online zoom-augmentation. In collaborative stroke refinement,

auxiliary branch generates ˆb(y), which uses b(y) as ground-truth. Simultaneously, dominating branch generates ŷ guided by the desired

target y. In refinement module, ˆb(y) is eroded by max-pooling into various stroke versions b−1( ˆb(y)) and b−1(b−1( ˆb(y))) and their feature

maps flow to dominating branch as compensation. Besides, skip-connections are used between encoder and decoders in coarse generator,

dominating branch and auxiliary branch.

Figure 4. Dilation may cause the strokes overlapping issue.

To allow the dominating branch to capture various stroke

weights, we aim to make ˆb(y) thinner; however, directly

using the erosion operation, i.e. the inverse of dilation,

blocks the end-to-end training due to it is not differen-

tiable. To overcome this, we use max-pooling to mimic

erosion, which is differentiable. We use max-pooling

twice to produce two stroke-weight syntheses, b−1( ˆb(y))

and b−1(b−1( ˆb(y))), where b−1(·) denotes the max-pooling

with kernel size 2, stride 2 and zero padding. We input these

two syntheses, b−1( ˆb(y)) and b−1(b−1( ˆb(y))), to the convo-

lution layers separately and obtain feature maps that reflect

the same style with various stroke weights.

Dominating branch. The dominating branch collects aux-

iliary information from the refinement module and pro-

duces the final synthesis. The network structure is based

on HAN with a generator and a hierarchical discrimina-

tor [7] (a discriminator to distinguish not only between the

generated image and ground truth, but also between their

feature maps, obtained from the first few layers before the

output layer, and the feature maps of ground truth by con-

ducting the same convolution), making the model converge

faster and the results more smooth. The input of the gen-

erator is the output feature maps of the coarse generator.

We process it with a convolution layer and then concatenate

it with b−1( ˆb(y)), which is the auxiliary information from

the refinement module. We next process the concatena-

tion with another convolution layer and concatenate it with

b−1(b−1( ˆb(y))). Twice concatenations allow the dominat-

ing branch to be aware of various stroke weights. We put the

concatenation to the CNN to reconstruct the final synthesis

ŷ. The discriminator tries to distinguish ŷ and its feature

maps from the ground truth y and y’s feature maps. The

dominating branch fuses auxiliary information from the re-

finement module, making the synthesis robust to distortion

and missing strokes.

The above three parts are trained simultaneously. The

auxiliary branch generates ˆb(y) to approximate the skele-

ton of bold target; the refinement module extracts features

from various stroke-weight syntheses and passes them to the

dominating branch; the dominating branch finally merges

the auxiliary information from the refinement module and

produces the final syntheses. It pushes the networks to

learn the deformation from one style to another with var-

ious stroke weights and handles the thin-stroke issue.

Meanwhile, in the back-propagation process, the gradi-

ent of dominating branch flows to auxiliary branch through

refinement module because of the differentiability of max-

pooling. The gradient from dominating branch passes the

information of thin stroke skeleton to auxiliary branch,

which alleviates the stroke overlapping issue illustrated in

Fig. 4. This multi-branch design follows a similar favor of

multi-task learning and collaborative training. By replac-

ing the erosion operation by max-pooling, the information

flowing through both of two branches in the forward and

backward process makes them compensate each other; we

thus call it collaborative stroke refinement.
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Figure 5. An example of “basic unit” and its corresponding most

probable 11 typical zoom-augmented results.

3.2. Online Zoom­Augmentation

For Chinese, a radical may present in various characters

at various locations, i.e. content-reuse (Fig. 2). A standard-

ized character c can be modeled as

c =
∑

ℓ

dℓ(bℓ), (1)

where bℓ is an elementary character, and dℓ(·) is the defor-

mation function associated with each elementary character.

The shape of an arbitrary character c could have huge varia-

tions and it is thus hard to learn deformation directly based

on c; on the other hand, the shapes of the elementary char-

acter bℓ are limited and it is thus much easier to learn de-

formation directly based on bℓ. The functionality of online

zoom-augmentation is to explore this decomposition (1)

adaptively. It has two main advantages: (i) it leverages the

repetitiveness of radicals in Chinese characters and guides

the networks to learn elementary structures of Chinese char-

acters, leading to a significant reduction of the training size;

and (ii) it guides the networks to learn characters at a vari-

ety of locations and sizes, making the networks robust. To

our best knowledge, no CNN-based method leverages this

prior knowledge except SA-VAE [23]. However, SA-VAE

explicitly models this as a pre-labeling 133-bits embedding.

Instead, we carefully select 750 training samples as bℓ; see

details in Section 4.1.

We further use various positions and scales to train

the element-wise deformation operator dℓ(·). Specifically,

when a paired image x, y is fed into the model, we zoom

the centered character region to change the aspect ratio.

We then translate the zoomed character region horizontally

or vertically. Assuming the ratio of each character region

is h : w, the zoomed result with h
2 : w will be verti-

cally translated in the image (mostly translated to the up-

per/middle/bottom position), while the zoomed result with

h : w
2 will be horizontally translated (mostly translated to

the left/middle/right position). Additionally, the zoomed re-

sult with h
2 : w

2 is translated to any possible position. The

detail is illustrated in Fig. 5. Essentially, dℓ(·) captures

the mapping between bℓ and radicals of arbitrary character.

Augmented training samples guide the networks to learn a

variety of location patterns.

3.3. Adaptive Pre­deformation

The overall task is to learn a mapping from x =
dsource(c) to y = dtarget(c) for arbitrary character c. In Sec-

tion 3.2, we decompose the character c. We can further de-

compose the deformations, dsource(·) and dtarget(·), to ease

the learning process. The main intuition is that some basic

deformations, such as resize and rescale, are easy to learn.

We can use a separate component to focus on learning those

basic deformations and the main networks can then focus on

learning complicated deformations. Mathematically, a gen-

eral deformation function can be decomposed as

d(·) = dcomplex(drescale(dresize(·))).

The functionality of adaptive pre-deformation is to learn

drescale(·) and dresize(·), so that the main networks can fo-

cus on learning dcomplex(·).
All paired xi, yi from the selected small dataset SD con-

struct the source image set X and the target image set Y .

We calculate the average character-region proportion r1 and

average character’s height-width ration r2 for Y . First we

find the minimum character bounding box bi of each yi, the

height and width of bi is respectively hi and wi. So,

r1 =
1

N

N∑

i

hi · wi

S × S
, r2 =

1

N

N∑

i

hi

wi

;

where N = 750 and S is the image size. According to the

above two statistics, we then pre-deformed each xi to align

its character region with yi. The deformed result x̂i is:

x̂i = drescale(dresize(x
i)),

where dresize(·) and drescale(·) denote the size-deformation

and scale-deformation, respectively. The character skele-

ton of xi is then roughly aligned with yi. Here by pre-

deformation, the skeleton of source character is roughly

aligned with the corresponding target character, which re-

duces the transfer-difficulty. Specifically, the model does

not fit the size and can focus on learning stroke distortions.

3.4. Losses

Our model has 4 loss terms for optimization, which are

divided into 2 groups, L1
pixel+L1

cGAN and L2
pixel+L2

cGAN.

L1
pixel(G1) = E(x,y)[−y · (log(ŷ))− (1− y) · log(1− ŷ)],

L1
cGAN(G1, D1) =E(x,y)[logD1(x, y)]+

E(x,G1(x))[1− logD1(x,G1(x)],
(2)

where y is the character with target font, (x, y) is pair-wise

samples, x ∼ psource domain(x) and y ∼ ptarget domain(y).

3886



Source MSE

EMD 0.1006

HAN 0.0876

Ours 0.0645

Target

EMD 0.0736

HAN 0.0648

Ours 0.0601

Target

EMD 0.1399

HAN 0.1027

Ours 0.1007
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Figure 6. Performance of transferring Fang Song font (source) to other fonts (target) including printed (1st row) and handwritten fonts (2-

3 rows). Characters in red boxes are failure samples. Both qualitative results and quantitative evaluation (MSE) show the best performance

by our model.

D1 is the discriminator 1. G1 includes the entire network.

L2
pixel(G2) = E(x,b(y))[−b(y) · (log( ˆb(y)))

−(1− b(y)) · log(1− ˆb(y))],

L2
cGAN(G2, D2) =E(x,b(y))[logD2(x, b(y))]+

E(x,G2(x))[1− logD2(x,G2(x)],
(3)

where b(y) is the bold version character of target font.

D2 is the discriminator 2. G2 only contains the auxil-

iary branch. The whole network is jointly optimized by

L1
pixel + L1

cGAN + L2
pixel + L2

cGAN. Note that all x, y and

b(y) here are augmented by dℓ(·) and pre-deformation func-

tion dresize(·), drescale(·). We just write this for simplicity.

4. Experiments

We conduct extensive experiments to validate the pro-

posed method and compare it with two state-of-the-art

methods, HAN [7] and EMD [29]. These methods are cho-

sen because they do not rely on extra human-annotated in-

formation and support a fair comparison. We also select

HAN as our backbone, and more results on other backbones

are displayed in Section 4.4.

4.1. Training Sample Selection

For Chinese characters, “compound” characters appear

as obvious layout structure (e.g. left-right, top-bottom, sur-

rounding, left-middle-right or top-middle-bottom), while

“single-element” characters cannot be structural decom-

posed. Both radicals and “single-element” characters are

known as basic units to construct all characters (see Fig.

8). Many compound Chinese characters share the same

basic units in themselves, which means despite over 8000

characters in the Chinese language, there are only rather

limited basic units (including 150 radicals and about 450

“single-element” characters). Based on this prior knowl-

edge, a small set of characters are selected as training sam-

ples. We select 450 “single-element” characters and 150×2

compound characters covering all 150 radicals, to create a

small dataset SD totally including 750 training samples.

Our method can benefit from a pretraining process to fur-

ther enhance its performance. This is implemented by con-

catenating a category embedding to the encoded character

embedding in coarse generator, just like zi2zi[16]. We pre-

train our model on 3000 commonly-used characters for 15

fonts, and then finetune the model by 750 samples on tar-

get font. This enables the model to observe more character

skeletons and also speeds up the convergence.
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Source

EMD 750

HAN 750

Ours 750

EMD 1550

HAN 1550

Ours 1550

EMD 2550

HAN 2550

Ours 2550

Target

Figure 7. Performance comparison on three handwritten font with increasing size of training set. The comparison between Ours 750 and

HAN 2550 demonstrates that our method achieves the equal even better performance with much less training set.

土 承水 top-bottom文成
你他作估伏
湖游潮渐瀚

字 宝 宁 宅 安
莫 蒸 蓄 葺 薯
国 围 圃 圈 园

left-right

left-middle-

right

top-middle-

bottom

single-

element

surrounding

Figure 8. Examples of “compound” and “single-element” charac-

ters. Some radicals are marked in red.

4.2. Comparison with Baseline Methods

As mentioned earlier, two state-of-the-art methods of

Chinese font synthesis we compared with are HAN and

EMD. HAN [7] is especially proposed for handwritten

fonts. It proposes a hierarchical adversarial discriminator

to improve the performance. Experiments show it relies

on about 2500 paired training samples to achieve a good

performance; EMD [29] achieves style transfer from a few

samples by disentangling the style/content representation of

fonts, while it relies on a large font library for training and

performs poorly on handwritten fonts.

Performance on Small Dataset SD. Fig. 6 shows the

comparison of our method with HAN and EMD under the

selected small dataset SD. For EMD, for fair compari-

son, we pretrain the model with totally the same dataset

as our model and then finetune it with SD. For HAN, we

directly train it on SD as it is not designed for pretrain-

ing. We choose both printed-style and handwritten-style

fonts to fairly demonstrate the performance. Results show

that our model slightly outperforms baseline methods on

printed-style fonts (1st row) since printed-style fonts are al-

ways featured with regular structure and wide strokes, so

the model takes no advantages of collaborative stroke re-

finement. However, our method achieves impressive results

on handwritten fonts featuring thin strokes (2nd row) or ir-

regular structure (3rd rows). Compared with baselines, our

model generates more details without missing or overlapped

strokes. For baselines, we can barely recognize some of

their synthesized characters, where defections happen.

Performance on Different Training-set Size. We change

the size of training set to 1550 and 2550 by randomly

adding samples to SD. As shown in Fig. 7, our model

gets smoother results if given more training samples. Im-

provement is more obvious on handwritten styles because

the generated printed fonts have already been perfect on

750 training characters. For baselines, their results on 2550

training samples still cannot exceed ours on 750 characters.

Besides MSE, to rationally measure the fidelity of syn-

thesized characters, we conduct a user study. 100 volun-

teers are invited to subjectively rate the synthesized char-

acters from score 1 to 5, where 1 is the worst and 5 is

the best. As shown in Fig. 9, the ratings of all meth-

ods are improved with more training samples. However,

when the size is larger than 1550, the rising trend of our

method stops and the score begins to float up and down.

Thus we conclude that 1550 training samples have com-

pletely covered radicals/single-element characters with dif-

ferent shapes so that more training samples will not bring
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Figure 9. In the user study, our method reaches close subjective

score with a much smaller training set compared with baselines.

improvement. Additionally, according to the user study,

when the size of the training set is 750, our method achieves

equal even higher subjective score compared with HAN

trained by 2550 paired characters.

4.3. Ablation Study

Effect of Adaptive Pre-deformation We conduct experi-

ments on removing adaptive pre-deformation or not. As

shown in the second row of Fig. 10, some strokes are

missing if the model is trained without pre-deformation.

When absolute locations of a certain stroke are seriously

discrepant between the source character and the target, the

network may be confused about whether this stroke should

be abandoned or be mapped to another position. The adap-

tive pre-deformation roughly aligns the strokes, relieving

the model of learning the mapping of stroke location.

Effect of Online Zoom-Augmentation The results after re-

moving the online zoom-augmentation technique are shown

in the third row of Fig. 10. The generated strokes are so dis-

ordered that we even cannot recognize the characters. With-

out zoom-augmentation, the model is actually trained with

only 750 paired samples, which leads to serious over-fitting.

Zoom-augmentation induces the model implicitly to learn

the shape and location diversity. Besides, it also models

common structure information by these vertically or hori-

zontally translated characters. So our method can recon-

struct correct topological structures of characters.

Effect of Stroke Refinement We disconnect the data flow

from refinement module to dominating branch to analyze

the effect of stroke refinement module. Comparison results

in Fig. 10 show that characters generated with stroke re-

finement strategy have more continuous structures, while

those without stroke refinement present seriously deviant

and even broken strokes, especially on cursive handwritten

fonts (Font 1 and Font 2). These phenomena prove the ef-

fectiveness of stroke refinement.

Effect of Pre-training We omit the pretraining process and

train the model on target font from scratch. Though only

750 paired characters are used, the results are still competi-

tive with few missing strokes. This proves that online zoom-

Font1 Font2 Font3

source

(a)
(b)
(c)
(d)
(e)
all

target

Figure 10. Ablation analysis without adaptive pre-deformation (a),

online zoom-augmentation (b), stroke refinement (c), pre-training

(d) and GAN-related losses (e).

Font1 Font2 Font3

source

result
target

Figure 11. Results of Korean fonts prove that our method can be

transplanted to other languages with content reuse phenomenon.

Font1 Font2 Font3

source

zi2zi
ours

target

Figure 12. Results of Chinese fonts by regular zi2zi (2nd row) and

our model with zi2zi backbone (3rd row).

augmentation helps handle the problem of limited data.

Effect of GAN We remove the influence of two discrimina-

tors by setting GAN-related loss terms, Eq. 2 and Eq. 3, to

zero. The results in Fig. 10 generally are a little blurry.

4.4. Extension Study

Portability on Language We conduct experiments on Ko-

rean fonts, which also have thin stroke issues. Fig. 11 shows

that the syntheses are impressively similar to the targets,

validating our model can be applied to generation tasks on

fonts of other languages with handwriting style and content

reuse phenomenon.

Portability on Backbone Our method is a common frame-

work for any elementary font generation model. We simply

change the backbone from HAN to zi2zi and also see re-

markable improvement (see Fig. 12).

5. Conclusions

We propose an end-to-end model to synthesize hand-

written Chinese fonts with only 750 training samples. The

model includes three main novelties: collaborative stroke

refinement, handling the thin stroke issue; online zoom-

augmentation, exploiting the content-reuse phenomenon;

and adaptive pre-deformation, standardizing and aligning

the characters. We perceptually and quantitatively evalu-

ate our model and the experimental results validate the its

effectiveness.
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