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Abstract

There is significant progress in recognizing traditional

human activities from videos focusing on highly distinctive

actions involving discriminative body movements, body-

object and/or human-human interactions. Driver’s activi-

ties are different since they are executed by the same sub-

ject with similar body parts movements, resulting in subtle

changes. To address this, we propose a novel framework by

exploiting the spatiotemporal attention to model the subtle

changes. Our model is named Coarse Temporal Attention

Network (CTA-Net), in which coarse temporal branches are

introduced in a trainable glimpse network. The goal is to

allow the glimpse to capture high-level temporal relation-

ships, such as ‘during’, ‘before’ and ‘after’ by focusing on

a specific part of a video. These branches also respect the

topology of the temporal dynamics in the video, ensuring

that different branches learn meaningful spatial and tempo-

ral changes. The model then uses an innovative attention

mechanism to generate high-level action specific contextual

information for activity recognition by exploring the hid-

den states of an LSTM. The attention mechanism helps in

learning to decide the importance of each hidden state for

the recognition task by weighing them when constructing

the representation of the video. Our approach is evaluated

on four publicly accessible datasets and significantly out-

performs the state-of-the-art by a considerable margin with

only RGB video as input.

1. Introduction

Recognizing human/driver activities while driving is not

only a key ingredient for the development of Advanced

Driver Assistance System (ADAS) but also for the devel-

opment of many intelligent transportation systems. These

include autonomous driving [32, 23], driving safety moni-

toring [38, 21], Vehicle to Vehicle (V2V) and Vehicle to In-

frastructure (V2I) [47] systems, just to name a few. The rise

of automation and a growing interest in fully autonomous

vehicles encourage more non-driving or distractive behav-

iors of the driver. Therefore, understanding human drivers’

behavior is crucial for accurate prediction of Take-Over-

Request and surrounding vehicles’ activities, which result

in developing control strategies and human-like planning.

Moreover, understanding drivers’ behavior such as human

drivers’ interaction with each other, as well as with trans-

portation infrastructure provides significant insight into the

efficient design of V2V and V2I systems. Similarly, real-

time monitoring of drivers’ activities and body language

constitutes a safe driving profile for each driver. It is vital

for emerging vehicle/ride sharing industries and fleet man-

agement platforms.

Real-world driving scenarios are a multi-agent system in

which diverse participants interact with each other and with

infrastructures. Moreover, each driver has their own driv-

ing style and often depends on sophisticated multi-tasking

human intelligence, including the perception of traffic situa-

tions, reasoning surrounding road-users’ intentions, paying

attention to the potential hazards, planning ego-trajectory,

and finally executing the driving task. Therefore, it is a

complex problem involving a large diversity in daily driving

scenarios, driving behaviors, and different granularity of ac-

tivities, resulting in significant challenges in understanding

and representing driving behaviors. To address this, recent

research on recognizing fundamental fine-grained driver’s

actions such as eating, drinking, interacting with the vehi-

cle controls, and so on is only the first step [31, 5, 1, 8].

Driver behavior recognition is closely linked to the

broader field of human action recognition, which has

rapidly gained much attention due to the rise of deep learn-

ing [17, 18, 37, 53, 6, 11, 49]. These approaches are

data-intensive and are trained on large-scale video datasets,

usually originated from YouTube [6, 22], and consist of

highly discriminative actions often executed by different

subjects. Whereas, driving behavior commonly involves

various driving/non-driving activities executed by the same

driver with very similar body parts movements, resulting in

subtle changes. For example, talking vs texting using a mo-

bile phone, eating vs drinking, etc. in which many actions

have a similar upper-body pose and the only difference is

the object of interest. Furthermore, in such scenarios, only

the part of the body (e.g. upper-body) is visible, making

the problem even harder. Therefore, the above-mentioned
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conventional human action recognition models might not

be suitable for drivers’ activities.

Our work: Our CTA-Net uses visual attention in an innova-

tive way to capture both subtle spatiotemporal changes and

coarse temporal relationships. It attends visual cues spe-

cific to temporal segments to preserve the temporal ordering

in a given video and then a temporal attention mechanism,

which dictates how much to attend the current visual cues

conditioned on their temporal neighborhood contexts. It is

a recurrent model (an LSTM) in which a visual represen-

tation of a video frame is learned using a residual network

[14] (ResNet-50). The last convolutional block (CONV5) of

our model focuses on a segment of the input video, allow-

ing our novel attention to assign estimated importance to

each segment of the video by considering the knowledge

of the coarse temporal range. For example, such coarse

temporal range might indicate that the driver’s hand mov-

ing towards an object of interest (e.g. phone, bottle, etc.),

carrying out the required task (e.g. talking, drinking, etc.)

and then the hand moving away. Many different activities

exhibit the same spatiotemporal pattern of the hand moving

toward and moving away. However, the proposed coarse

temporal range, their temporal ordering, and the appearance

of a specific object(s) in a given activity would allow to dis-

criminate different activities. Moreover, our novel temporal

attention learns to attend the different parts of the hidden

states of the LSTM in discriminating fine-grained activities.

Our contributions: They can be summarized as: 1) a

driver activity recognition model is proposed with a residual

CNN-based glimpse sensor and a novel attention mecha-

nism; 2) our novel attention mechanism is designed to learn

how to emphasize the hidden states of an LSTM in an adap-

tive way; 3) to capture task-specific high-level features, a

spatial attention mechanism conditioned on coarse tempo-

ral segments is developed by introducing branches in the

last convolutional layer; and 4) extensive validation of the

proposed model on four datasets, obtaining state-of-the-art

results.

2. Related Work and Motivation

Traditional Human Activity Recognition: Recent surge

of deep learning has significantly influenced the advance-

ment in recognizing human activities from videos. Most

attempts in this genre are usually derived from the image-

based networks, which are used to extract features from

individual frames and extended them to perform temporal

integration by forming a fixed size descriptor using statis-

tical pooling such as max and average pooling [16, 13],

attentional pooling [11], rank pooling [9], context gating

[33] and high-dimensional feature encoding [12, 55]. How-

ever, an important visual cue representing the temporal

pattern is overlooked in such statistical pooling and high-

dimensional encoding. On the other hand, recurrent net-

works [5, 54], Temporal Convolutional Networks (TCN)

[25], and learning spatiotemporal features through 3D con-

volutions [49, 37, 6] are used to capture temporal depen-

dencies. Recurrent networks such as LSTMs are capable of

modeling long-term dependencies and thus, adapted in the

activity recognition problem. To the best of our knowledge,

no substantial improvements have been reported recently.

To learn long-term temporal dependencies, Hussein et

al. propose Timeception [17], which uses multi-scale tem-

poral convolutions to reduce the complexity of 3D convolu-

tions. In [53], Wang et al. present non-local operations as a

generic family of building blocks for capturing long-range

dependencies. Zhou et al. [59] introduce a Temporal Re-

lation Network (TRN) to learn and reason about temporal

dependencies between video frames at multiple time scales.

Similarly, Wang et al. [52] propose a Temporal Segment

Network (TSN) with a sparse temporal sampling strategy. A

Long-term Temporal Convolution (LTC) is proposed in [50]

to consider different temporal resolutions as a substitute to

bigger temporal windows. Another influential approach is

the use of 3D CNNs for action recognition. Carreira and

Zisserman [6] propose a model (I3D) that inflates 2D CNNs

pre-trained on images to 3D for video classification. Tran

et al. [49] describe a spatiotemporal convolution by factor-

izing the 3D convolutional filters into separate spatial and

temporal components to recognize actions.

Attention in Activity Recognition: Attention mechanism

in machine learning has drawn increasing interest in areas

such as video question answering [27], video captioning

[36, 44], and video recognition [11, 10, 3, 45, 42]. This

is influenced by human perception, which focuses selec-

tively on parts of the scene to acquire information at specific

places and times. This has been explored by Girdhar and

Ramanan [11] for action recognition by bottom-up and top-

down attention. Similarly, a recurrent mechanism is pro-

posed in [42], focusing selectively on the part of the video

frames, both spatially and temporally. Girdhar et al. [10]

propose an attention mechanism that learns to emphasize

hands and faces to discriminate an action. An LSTM-based

temporal attention mechanism is proposed by Baradel et al.

[3] to emphasize features representing hands. Song et al.

[44] propose an end-to-end spatial and temporal attention

to selectively focus on discriminative skeleton joints in each

frame and pays different levels of attention to the frames.

Driver Activity Recognition: Driver activities are a subset

of conventional human activities [31, 5, 1, 8, 30, 35, 7, 40].

It can be categorized into two sub-classes: 1) primary ma-

neuvering (e.g. passing, changing lanes, start, stop, etc.)

[35, 7, 40] and 2) secondary non-driving (e.g. eating, drink-

ing, talking, etc.) [31, 5, 1, 8, 30] activities. In this work,

we focus on secondary activities, which are crucial for safe

driving and take-over-request. Moreover, it will be more

frequent during the autonomous driving mode. Martin et al.
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(a) Glimpse Sensor

(b) Self-Attention layer in glimpse sensor

(c) LSTM and our novel temporal attention

Figure 1: The proposed CTA-Net consists of - a) Glimpse sensor: Given an input video v consisting T frames, the sensor

fg(.; θg) extracts feature xt of the tth frame, where t = 1 . . . T . b) Self-Attention: It captures important cues on activity-

specific spatial changes. c) Temporal Attention: The module fa(.; θa) uses the internal state ht of an LSTM fh(.; θh)
(unrolled) that takes as input xt and selectively focuses on the ht to infer activity.

[30] propose a method to combine multiple streams involv-

ing body pose and contextual information. Behera et al. [5]

advocate a multi-stream LSTM for recognizing driver’s ac-

tivities by combining high-level body pose and body-object

interaction with CNN features. A genetically weighted en-

semble approach is used in [1]. The VGG-16 [43] network

is modified by Baheti et al. [2] to reduce the number of

parameters for faster execution. Similarly, Li et al. [26]

propose a tactical behavior model that explores the egocen-

tric spatial-temporal interactions to understand how human

drives and interacts with road users.

Motivation: It is evident that the traditional activity recog-

nition models are developed to recognize highly distinc-

tive actions. Lately, attention mechanisms are brought in

to improve the recognition accuracy of these models. The

conventional models are adapted for drivers’ activity mon-

itoring by tweaking a few layers or simply evaluating the

target driving datasets. In this work, we move a step for-

ward by innovating within frame self-attention, between

frames coarse and fine-grained temporal attention to recog-

nize driver’s secondary activities. These activities are differ-

ent from the traditional human activities since they are exe-

cuted by the same subject resulting in subtle changes among

various activities. Our coarse temporal attention introduces

three branches to model high-level temporal relationships

(‘during’, ‘before’, and ‘after’) with the assumption is that

main action is performed in ‘during’ (e.g. drinking), ‘be-

fore’ focuses on pre-action event (e.g. take the bottle) and

‘after’ emphasizes on post-action episode (e.g. put the bot-

tle). The self-attention within each branch selectively fo-

cuses on capturing spatial changes. Finally, we introduce

a novel temporal attention by focusing on the distribution

of hidden states of an LSTM instead of image feature maps

[11] or hard attention involving the subject’s hands [3]. We

argue that our contribution includes not only the design of

the CTA-Net but also an empirical study on the role of at-

tention in improving accuracy.

3. Proposed End-to-End CTA-Net

3.1. Problem formulation

For video-based activity recognition, we are given N
training videos V = {vn|n = 1 . . . N} and the activity

label yn for each video vn. The aim is to find a function F
that predicts ŷ = F (v) that matches the actual activity y of a

given video v as much as possible. We learn F by minimiz-

ing the categorical cross-entropy Lv between the predicted

ŷn and the actual activity yn:

Lv = −

N∑

n=1

ynlog(ŷn),where ŷn = F (vn) (1)

3.2. Glimpse sensor

The CTA-Net is built around glimpse sensor for visual

attention [34] in which information in an image is adap-

tively selected via encoding regions progressively around a
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given location in the image. Inspired by this, our approach

encodes information in temporal locations within a video.

The proposed glimpse fg receives image It (t = 1 . . . T )

at time t from a video vn. It produces the glimpse feature

vector xt = fg(It, tc; θg) from It by limiting the temporal

bandwidth around t, where tc is the coarse temporal band-

width of the video vn and θg is the model parameter.

Our glimpse is implemented using ResNet-50 [14] (Fig.

1a). We modify this network by introducing two essen-

tial ingredients: 1) Coarse temporal bandwidth tc and 2)

Self-Attention layer (Fig. 1b). The tc aims to limit fg to

focus on certain temporal positions in vn. If it is limited

to a single frame (i.e. tc = 1) then the sensor complex-

ity will increase. To address this, we use coarse bandwidth

(tc = T/3). It allows fg to focus on different temporal parts

of a video, motivated by [4] that uses before, during and af-

ter to capture the temporal relationships in a video. More-

over, driver secondary activities often involve human-object

interactions (e.g. phones, car controls, etc.) and consist of

spatiotemporal dynamics such as: i) hand approaching to-

wards objects, ii) object manipulation, and iii) hand moving

away. This involves three distinctive sub-activities. Our ap-

proach explores it by introducing three branches involving

the last CONV5 block of ResNet-50 (Fig. 1a). The reason

is that CNNs learn features from general (e.g. color blobs,

Gabor filters, etc.) to more specific (e.g. shape, complex

structures, etc.) as we move from the input to output layer.

Thus, we share the parameters of lower layers (CONV1 to

CONV4) among frames to produce a generic representa-

tion that is then processed by the bandwidth-specific layers

(tc, where c = 1, 2, 3) to generate the required outputs.

Within each branch of fg (Fig. 1a), we also add an at-

tention map θp (Fig. 1b) to capture bandwidth-specific im-

portant cues focusing on spatial changes. The aim is to

model long-range, multi-level dependencies across image

regions and is complementary to the convolutions to cap-

ture the spatial structure within the image. Our model ex-

plicitly learns the relationships between features located at

ith and jth position in fg and is represented as p(f ig|f
j
g ; θp),

∀i i 6= j. It conveys how much to focus on the ith loca-

tion when synthesizing the jth position in fg . To achieve

this, we compute the attention map θp by adapting the self-

attention in SAGAN [58] where the query, the key and the

value are computed from feature map Res4f (Fig 1b) via

three separate 1 × 1 convolutions. The key multiplies with

the query and then use a softmax to create attention map

θp. The value is multiplied with θp to get the desired out-

put oc (c = 1, 2, 3). Afterwards for each frame at t, oc
is multiplied with a learnable scalar γ (initialized as zero)

and added back to the input as a residual connection, i.e.

ôc,t = oc∗γ+Res4ft. The feature map ôc,t passes through

the CONV5 block (Fig. 1a) to produce the desired glimpse

feature vector xt.

3.3. Temporal attention architecture

The temporal attention sub-module receives a sequence

of glimpse vector x = (x1, x2, . . . , xT ). The goal is to en-

code x using an internal state that summarizes information

extracted from the history of past observations. Such state

encodes the sequence knowledge and is instrumental in de-

ciding how to act. A common approach to model this state

is to use hidden units ht ∈ R
n of the recurrent network

and is updated over time as: ht = fh(ht−1, xt; θh), where

fh is a nonlinear function with parameter θh. It provides a

prediction at each time step t, and the sequence recognition

is generally carried out by considering prediction in the last

time step T based on the associated feature and the previous

context vector involving hidden states. This is an inherent

flaw in LSTM since the model uses recurrent connections

to maintain and communicate temporal information. There-

fore, researchers have recently explored temporal pooling

(e.g. sum, average, etc.) [42] and temporal attention for

dynamical pooling [56] as additional direct pathways for

referencing previously seen frames. Our temporal atten-

tion is inspired by [56] and focuses on only hidden states

of the LSTM. The novelty is to allow the model learns to

attend automatically the different parts of the hidden states

h at each step of the output generation. We achieve this

by introducing an attention-focused weighted summation

s = fa(at, ht; θa), where θa consists of learnable weight

matrices and biases to compute the attention-focused hid-

den state representation at at t.

at = ht+
T∑

t′=1

βt,t′ht′ ,where βt,t′ = σ(Wgψt,t′ +bg) (2)

ψt,t′ = tanh(Wψht +Wψ
′ht′ + bψ)

The element at is computed as a residual connection of hid-

den state representations ht of the input feature xt at time

t. The similarity map βt,t′ is computed from ψt,t′ using the

element-wise sigmoid function σ and capturing the similar-

ity between the LSTM’s hidden state responses ht and ht′ .
Basically, at dictates how much to attend the LSTM’s cur-

rent response conditioned on their neighborhood contexts.

Wψ and Wψ
′ are the weight matrices for the corresponding

hidden states ht and ht′ ; Wg is the weight matrix for their

nonlinear combination; bψ and bg are the bias vectors.

The sequence of attention-focused residual activation

A = (a1, a2, . . . , aT ) is then used to compute the activ-

ity probability as shown in Fig 1c. We achieve this by using

a simple approach of weighted summation:

s =
T∑

t=1

wtat, where wt =
exp(atWφ + bφ)∑T

t=1
exp(atWφ + bφ)

(3)

Here, wt provides the score (probability) for each attention-

focused residual activation at and is computed using weight
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(a) Drive&Act [31] (b) Distracted Driver V1 [1] (c) Distracted Driver V2 [8]

Figure 2: Examples from the datasets used to evaluate our model.

Wφ and bias bφ. Finally, the weighted summation s is

then used by a Softmax to estimate the activity prob-

ability of a given input video. The parameter θa =
{Wψ,Wψ

′ ,Wg,Wφ, bψ, bg, bφ} is learned during training.

3.4. Training

The parameter θ = {θg, θh, θa} of our model consists

of glimpse θg , LSTM network θh, and the temporal atten-

tion network θa. The glimpse fg is implemented with the

ResNet-50 [14] (Fig. 1a, Section 3.2), and initialized with

ImageNet’s pre-trained weights. We use the standard im-

plementation of fully-gated LSTM network fh [15] with

parameter θh. These are learned via end-to-end training.

We uniformly sample 12 frames from each video seg-

ment. The frames are resized to 224 × 224, and we use

the standard evaluation metric of the top-1 accuracy. Our

model is trained using the Adam optimizer [24] with an ini-

tial learning rate of 0.001, and parameters β1 = 0.9 and

β2 = 0.999. The learning rate is reduced by a factor of 0.1
after every 25 epochs. The experiments are performed on

an Ubuntu PC with an Intel Core i9 9820X CPU and a Titan

V GPU (12 GB). A batch size of 4 videos is used.

4. Experimental Results

4.1. Datasets and evaluation metric

We evaluate our model on three popular driving datasets:

1) Drive&Act [31], 2) Distracted Driver V1 [1], and 3) Dis-

tracted Driver V2 [8]. To the best of our knowledge, these

are only available video datasets for secondary driving ac-

tivity recognition (Fig. 2). We also further evaluate our

model using SBU Kinect Interaction [57] dataset consisting

of traditional human activities.

Drive&Act [31]: This is a large-scale video dataset (over

9.6 million frames) consisting of various driver activities.

Annotations are provided for 12 classes (full scene actions)

of top-level activities (e.g. eating and drinking), 34 cat-

egories (semantic actions) of fine-grained activities (e.g.

opening bottle, preparing food, etc.), and 372 classes (ob-

ject interactions) of atomic action unit involving triplet of

action, object, and location. There are 5 types of actions,

17 object classes and 14 location annotations. We follow

the same three splits based on the participant identity and

use the same train, test, and validation sets in each split as

those in [31]. Final result is the average over the three splits.

Distracted Driver V1 [1]: It contains 12977 train and 4331

test images from 31 drivers (22 male and 9 female) from 7

different countries. There are 10 activity classes (e.g. safe

driving, texting, etc.). It consists of videos of each subject,

but the frame-based evaluation is carried out in [1], subject-

wise video-based evaluation is done in [5]. We follow the

evaluation protocol in [5], which uses the videos of 22 par-

ticipants for training and the rest of the videos for testing.

Distracted Driver V2 [8]: This is a newer iteration of

dataset V1 [1], containing 14478 images from 44 drivers

(29 male and 15 female) using the same 10 activities. The

dataset is split into 12555 (36 drivers) training and 1923 (8

drivers) testing images, respectively. The dataset associated

approach [8] has used the frame-wise evaluation. In this

work, we are the first one to provide a video-based evalua-

tion. A total of 360 videos from 36 participants are used for

training and the rest of the videos are used for testing.

SBU Kinect Interaction [57]: The dataset is used to justify

our model’s wider applicability. It consists of 282 videos

with 8 different activity classes. It contains interactions be-

tween two subjects and is close to the driver’s secondary

activities involving human-objects and human-car interac-

tions. We follow the same train/test split in [57].

4.2. Results and comparative studies

We first compare the CTA-Net with the state-of-the-art

on Drive&Act dataset. An example of a 12 coarse activ-

ity video with a duration of 27 minutes is shown in Fig.

3. In this figure, we have also shown the class activation

map [41] representing the visual explanation of the clas-

sification decision of our model for various coarse scenar-

ios. The accuracy (%) of our model and state-of-the-art

approaches for recognizing 12 coarse and 34 fine-grained

activities is presented in Table 1. It is observed that the

CTA-Net outperforms in both validation and testing sets by

a significantly large margin. For example, in coarse activ-

ity, CTA-Net (62.82%) is 18.2% higher than the best model

(I3D Net [6]: 44.66) and 16.9% higher than the three-stream

[30] (35.45%) on the respective validation and test set. Sim-

ilarly, I3D Net is the best performer (Val: 69.57% and

Test: 63.64%) in recognizing fine-grained activities. Our
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Figure 3: Timeline of a video example from the Drive&Act dataset displaying 12 different coarse activities executed by a

subject. The duration of each activity is represented by the respective color bar. A visual explanation of the classification

decision is overlaid using the class activation map [41] representing salient regions of various activities over the video se-

quence. Scenarios are: (0) fasten seat belt (and get in vehicle); (1) hand over (turn on autonomous vehicle); (2) eat and drink;

(3) read newspaper; (4) put on sunglasses; (5) take off sunglasses; (6) put on jacket; (7) take off jacket; (8) read magazine;

(9) watch video (on vehicle display); (10) work (type on laptop); and (11) final task (get out of vehicle). Best view in color.

Model Fine-grained Coarse task Action Object Location All

Val Test Val Test Val Test Val Test Val Test Val Test

Pose [31] 53.17 44.36 37.18 32.96 57.62 47.74 51.45 41.72 53.31 52.64 9.18 7.07

Interior [31] 45.23 40.30 35.76 29.75 54.23 49.03 49.90 40.73 53.76 53.33 8.76 6.85

2-Stream [51] 53.76 45.39 39.37 34.81 57.86 48.83 52.72 42.79 53.99 54.73 10.31 7.11

3-Stream [30] 55.67 46.95 41.70 35.45 59.29 50.65 55.59 45.25 59.54 56.50 11.57 8.09

C3D [48] 49.54 43.41 - - - - - - - - - -

P3D Net [39] 55.04 45.32 - - - - - - - - - -

I3D Net [6] 69.57 63.64 44.66 31.80 62.81 56.07 61.81 56.15 47.70 51.12 15.56 12.12

CTA-Net 72.42 65.25 62.82 52.31 57.59 56.41 63.37 59.19 56.41 63.01 46.44 49.41

Table 1: Recognition results (Validation and Testing accuracy in %) of the fine-grained and coarse tasks, as well as Atomic

Action Units defined as {Action, Object, Location} triplets, and their combinations in Drive&Act dataset [31]. A total of 34

fine-grained, 12 coarse tasks. There are 5 actions, 17 object categories, 14 locations and 372 (All) possible combinations.

CTA-Net outperforms these by a margin of 2.85% (Val) and

1.61% (Test), respectively. It is seen that the margin of im-

provement in recognizing coarse activities (Val: 18.2% and

Test 16.9%) is significantly larger than those of fine-grained

ones. This suggests that our model can effectively capture

long-term dependencies. This is due to the introduction of

novel coarse temporal branches to model the ‘during’, ‘be-

fore’, and ‘after’ temporal relationships explicitly in videos.

Moreover, I3D Net is developed to recognize distinctive hu-

man activities and is used here to recognize the driver’s ac-

tivities involving subtle changes. This suggests that it might

not be suitable for such applications. The visual explanation

using class activation map [41] representing our coarse tem-

poral relationships in ‘reading magazine’ and ‘exiting vehi-

cle’ activities is shown in Fig. 4b and Fig. 4c, respectively.

More examples are included in the supplementary.

The confusion matrix using our CTA-Net is shown in Fig

4a for the coarse tasks in the Drive&Act dataset. It is clear

that the performance of activities ‘watching videos’ (class

9), ‘final task’ (class id 11, get out of vehicle), ‘take off

sunglasses’ (class 5) and ‘turn on AV feature’ (class 1) is

low. This is mainly due to the involvement of very little ac-

tion in ‘watching videos’ and ‘turn on AV feature’ activities

except pressing a button. Thus, watching a video is con-

fused with ‘turn on AV feature’. The ‘take off sunglasses’

activity is confused with ‘put on sunglasses’ and ‘turn on

AV feature’ since sunglasses is a small object representing

very little visual information. Moreover, the sunglasses are

kept in the holder close to the vehicle touch screen, con-

fusing with ‘turn on AV feature’. Similarly, ‘getting in’ is

confused with ‘getting out’ since there are no significant vi-

sual changes but, motion direction information would help

in discriminating such activities. The confusion matrix for

the fine-grained activities and the split-wise confusion ma-

trices of both coarse and fine-grained activities are included

in the supplementary material.

The accuracy of the Atomic Action Units {Action, Ob-

ject, Location} is provided in Table 1. Like in coarse and

fine-grained activities, the CTA-Net outperforms in each

triplet, as well as their unique 372 combinations (All in Ta-

ble 1). A notable performance of our model can be seen for

recognizing the above combinations. The best performer

is 15.56% (Val) and 12.12% (Test) by the I3D Net [6].

Whereas, the proposed approach is significantly better (Val:

46.44% and Test: 49.41%). This is mainly due to our self-

attention module (Fig. 1b), which explicitly learns the rela-

tionships between pixels located at the CONV4 output (Fig.

1a). It allows to capture the subtle changes within a video
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Distracted Driver V1 [1] Distracted Driver V2 [8]

Model ACC Model ACC

One-stream [5] 42.22 Incep. V3∗ [46] 90.07

Two-streams [5] 44.44 ResNet-50∗ [14] 81.70

Three-streams [5] 52.22 VGG-16∗ [43] 76.13

Four-streams [5] 37.78

CTA-Net 84.09 CTA-Net 92.50

Table 2: Recognition accuracy (%) of 10 different driver’s

activities using Distracted Driver datasets. ∗ These methods

are used for frame-wise evaluation.

frame to discriminate the unique combinations of action-

object-location. This suggests that our model is not only

suitable for recognizing long-term dependencies in videos,

but also appropriate in classifying atomic action units in-

volving action, location, objects and their distinct combina-

tions. This is due to the design, which considers both coarse

temporal attention to model high-level temporal dependen-

cies (glimpse in Section 3.2) and fine-grained temporal at-

tention for each frame by weighing them (Section 3.3) when

constructing the representation of an input video. The pro-

posed approach also performs better than the state-of-the-

art for individual atomic action units except in location and

action validation sets. For location, our accuracy (56.41%)

is not far from the best (59.54%) [30] that combines three

streams, whereas our approach uses only the RGB video

stream. For action, I3D Net [6] performed (62.81%) better

in the validation set, but in the testing set, ours is slightly

better. This could be due to the action consisting of atomic

verbs such as opening, closing, reaching for, etc. These are

very minimal duration and thus, inflated 2D convolution is

appropriate in capturing 3D spatiotemporal information re-

sulting in higher accuracy.

Table 2 presents our CTA-Net’s accuracy on Distracted

Driver V1 [1] and V2 [8] datasets. Both datasets consist

of the video sequence. The existing approaches use frame-

wise evaluation on V2 [8], and we are the first one to pro-

vide a video-based evaluation. The Multi-stream LSTM [5]

has used the video-based evaluation on V1 [1] and we fol-

lowed it to evaluate our CTA-Net. In [5], multiple streams

focusing on body pose and body-object interactions, and

CNN features are used by an LSTM to recognize various

activities, whereas we only focus on RGB video. The accu-

racy of our approach is significantly (84.09%) better. Sim-

ilarly, the accuracy of our model is 92.5% on V2 [8].

On the SBU Kinect dataset [57], our model significantly

outperforms (92.9%) the state-of-the-arts using RGB only

(72% [3], 75.5% [19]), as shown in Table 3. Moreover,

the accuracy is close to the existing approaches that use

multi-modal (RGB+Depth: 93.4% [28], RGB+Pose: 94.1%

[3]) and even better than the approach in [19], which uses

RGB+Depth (85.1%). However, such multi-modal infor-

Approaches Pose RGB Depth ACC

Raw Skeleton [57] X - - 49.7

Joint Feature [57] X - - 80.3

Raw Skeleton [20] X - - 79.4

Joint Feature [20] X - - 86.9

Co-occ. RNN [60] X - - 90.4

STA-LSTM [45] X - - 91.5

ST-LSTM [29] X - - 93.3

DSPM [28] - X X 93.4

Ijjina [19] X - - 82.2

Ijjina [19] - X X 85.1

Baradel [3] X - - 90.5

Baradel [3] X X - 94.1

Ijjina [19] - X - 75.5

Baradel [3] - X - 72.0

CTA-Net - X - 92.9

Table 3: CTA-Net’s accuracy (%) and its comparison to the

state-of-the-art using SBU Kinect Interaction dataset [57].

mation is not always available or requires additional devices

for data capture. This demonstrates that our CTA-Net is not

only suitable for recognizing driver’s activity but also ap-

propriate in classifying traditional human activities.

4.3. Ablation studies

We have conducted ablation studies to understand the

impact of the proposed high-level temporal relationships

(‘before’, ‘during’, and ‘after’), as well as our novel at-

tention mechanism (see Section 3.3) on the performance

of our model using individual split. The results are shown

in Table 4. It is evident that the performance of combined

high-level temporal relationships and attention mechanism

is significantly higher than the rest of the combinations.

Moreover, the average accuracy (fine-grained: Val 72.42%,

Test 65.41% and scenario: Val 62.82%, Test 52.31%) us-

ing ‘before’, ‘during’, and ‘after’ relationships is consid-

erably higher than without them (fine-grained: Val 52.9%,

Test 47.6% and coarse: Val 49.32%, Test 39.44%). This

justifies the inclusion of the proposed coarse temporal re-

lationships. Similarly, the performance is higher with the

inclusion of our attention mechanism than without it. This

vindicates the significance of the proposed attention mech-

anism in our model.

We have also provided our model’s accuracy using indi-

vidual split in Drive&Act (Table 5). There is not any sig-

nificant difference in accuracy among the splits, suggesting

the splits are balanced. We have also included additional

confusion matrices in the supplementary document.

5. Conclusion

In this paper, we have proposed a novel end-to-end net-

work (CTA-Net) for driver’s activity recognition and mon-
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(a) Confusion matrix (Coarse tasks)

(b) Reading: ‘before’, ‘during’, and ‘after’

(c) Exiting car: ‘before’, ‘during’, and ‘after’

Figure 4: a) Our CTA-Net’s confusion matrix showing 12 coarse tasks in the Drive&Act test set. A visual explanation of

decision using class activation map [41] representing our coarse temporal attention of ‘before’ (left), ‘during’ (middle), and

‘after’ (right) segment of an input video with b) reading activity and c) exiting the vehicle. Best view in color.

Annotation Split Without during, before and after With during, before and after

No Attention Attention No Attention Attention

Val Test Val Test Val Test Val Test

Fine-grained

0 56.05 52.35 51.71 53.76 50.36 44.74 76.97 71.43

1 49.71 39.41 50.59 45.07 48.82 41.50 72.94 67.94

2 55.30 43.67 56.41 43.98 53.75 38.07 67.34 56.85

Avg 53.69 45.14 52.90 47.60 50.98 41.44 72.42 65.41

Coarse scenarios

0 47.41 43.92 46.55 39.80 43.34 44.29 63.09 61.13

1 41.94 44.43 41.12 44.91 38.77 49.39 55.34 54.34

2 53.66 31.23 60.28 33.60 45.73 30.05 70.02 41.47

Avg 47.67 39.86 49.32 39.44 42.61 41.24 62.82 52.31

Table 4: Split-wise accuracy (%) of fine-grained and coarse scenario activities with and without temporal relationships

(‘before’, ‘during’, and ‘after’), as well as with and without our novel attention mechanism using Drive&Act dataset [31].

Split Fine-Grained Coarse Action Object Location All

Val Test Val Test Val Test Val Test Val Test Val Test

0 76.97 71.43 63.09 61.13 57.82 60.94 63.01 57.94 46.50 57.01 42.95 52.07

1 72.94 67.94 55.34 54.34 56.74 54.88 62.87 64.86 68.78 64.10 52.79 49.89

2 67.34 56.85 70.02 41.47 58.20 53.40 64.23 54.77 53.94 67.92 43.57 46.27

Avg 72.42 65.25 62.82 52.31 57.59 56.41 63.37 59.19 56.41 63.01 46.44 49.41

Table 5: Split-wise accuracy (%) of fine-grained, coarse activities and atomic action units using our model on Drive&Act.

itoring by employing an innovative attention mechanism.

The proposed attention generates a high-dimensional con-

textual feature encoding for activity recognition by learn-

ing to decide the importance of hidden states of an LSTM

that takes inputs from a learnable glimpse sensor. We have

shown that capturing coarse temporal relationships (‘be-

fore’, ‘during’, and ‘after’) via focusing certain segments

of videos and learning meaningful temporal and spatial

changes have a significant impact on the recognition accu-

racy. Our proposed architecture has notably outperformed

existing methods and obtains state-of-the-art accuracy on

four major publicly accessible datasets: Drive&Act, Dis-

tracted Driver V1, Distracted Driver V2, and SBU Kinect

Interaction. We have demonstrated that the proposed end-

to-end network is not only suitable for monitoring driver’s

activities but also applicable to traditional human activity

recognition problems. Finally, our model’s state-of-the-art

results on benchmarked datasets and ablation studies justify

the design of our approach. Future work will be to apply

the proposed technique for the development of the driving

assistance system.

Acknowledgements: This research was supported by the
UKIERI (CHARM) under grant DST UKIERI-2018-19-10.
The GPU is kindly donated by the NVIDIA Corporation.

1286



References

[1] Yehya Abouelnaga, Hesham M Eraqi, and Mohamed N

Moustafa. Real-time distracted driver posture classification.

arXiv preprint arXiv:1706.09498, 2017.

[2] Bhakti Baheti, Suhas Gajre, and Sanjay Talbar. Detection of

distracted driver using convolutional neural network. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, June 2018.

[3] Fabien Baradel, Christian Wolf, and Julien Mille. Human ac-

tivity recognition with pose-driven attention to rgb. In British

Machine Vision Conference, 2018.

[4] Ardhendu Behera, Anthony G Cohn, and David C Hogg.

Real-time activity recognition by discerning qualitative re-

lationships between randomly chosen visual features. In

BMVC 2014-Proceedings of the British Machine Vision Con-

ference 2014. British Machine Vision Association, BMVA,

2014.

[5] Ardhendu Behera, Alexander Keidel, and Bappaditya Deb-

nath. Context-driven multi-stream lstm (m-lstm) for recog-

nizing fine-grained activity of drivers. In German Confer-

ence on Pattern Recognition, pages 298–314. Springer, 2018.

[6] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6299–6308, 2017.

[7] Anup Doshi and Mohan M Trivedi. Tactical driver behav-

ior prediction and intent inference: A review. In 2011 14th

International IEEE Conference on Intelligent Transportation

Systems (ITSC), pages 1892–1897. IEEE, 2011.

[8] Hesham M Eraqi, Yehya Abouelnaga, Mohamed H Saad,

and Mohamed N Moustafa. Driver distraction identification

with an ensemble of convolutional neural networks. Journal

of Advanced Transportation, 2019, 2019.

[9] Basura Fernando, Efstratios Gavves, José Oramas, Amir
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