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Abstract

Foreground image retrieval is a challenging computer vi-

sion task. Given a background scene image with a bound-

ing box indicating a target location, the goal is to retrieve

a set of images of foreground objects from a given category,

which are semantically compatible with the background. We

formulate foreground retrieval as a self-supervised domain

adaptation task, where the source domain consists of fore-

ground images and the target domain of background im-

ages. Specifically, given pretrained object feature extrac-

tion networks that serve as teachers, we train a student

network to infer compatible foreground features from back-

ground images. Thus, foregrounds and backgrounds are ef-

fectively mapped into a common feature space, enabling re-

trieval of the foregrounds that are closest to the target back-

ground in that space. A notable feature of our approach

is that our training strategy does not require instance seg-

mentation, unlike current state-of-the-art methods. Thus,

our method may be applied to diverse foreground categories

and background scene types and enables us to retrieve the

foreground in a fine-grained manner, which is closer to the

requirements of real world applications.

1. Introduction

Foreground retrieval is the task of finding an image of a

suitable foreground object, for a given background scene.

Specifically, given a background image, a bounding box

that indicates the location of a foreground object, and its cat-

egory, the goal is to retrieve a set of images of foreground

objects, compatible with the background. In this task, the

focus is on retrieving a suitable foreground, rather than

on seamless compositing. Foreground retrieval can greatly

benefit a number of real-world applications. For graphics

design, manually searching for a suitable foreground object

is time-consuming, while an automatic foreground retrieval

system could enlarge the search space and suggest a gallery

of suitable candidates in real time. For interior design, fore-

ground retrieval could suggest suitable pieces of furniture

that best fit a user-provided image of a room.

Existing literature focuses on the general, coarse-

grained foreground retrieval setting, where the searching

space is very broad (different types of background scenes,

and foreground objects). In this setting, the focus is on

retrieval of foreground objects that are semantically com-

patible with the background, but not necessarily on match-

ing finer level features. For example, given a dining room

scene, existing methods [28, 29] are more likely to retrieve

a chair than a bed, but might not distinguish between differ-

ent chair poses or colors. Simply restricting the searching

space during training and inference fails to achieve good re-

sults (Section 2.1). This limits the ability of these methods

to cope with the foreground retrieval task within a specific

domain, which is the typical real-world scenario. For ex-

ample, when a user wants to see what his/her living room

would look like with a new sofa, the retrieved foreground

images should be of sofas with a compatible style and pose.

Therefore, we focus instead on a fine-grained foreground

retrieval task, meaning that the background scenes come

from a well-defined category, such as room interiors, and

the library of foreground images consists of semantically

relevant objects, such as various kinds of furniture. The goal

is then to decide which of the foreground images constitute

a good fit for the input background scene at the designated

location, and rank the retrieved candidates.

In the fine-grained setting described above, all of the can-

didate foregrounds are semantically relevant, and thus their

fitness level for a given background mainly depends on a va-

riety of fine-level features, rather than high-level semantics.

Furthermore, the importance of each feature varies depend-

ing on the purpose of the retrieval. For creating a realistic

composite, a compatible viewpoint might be more impor-

tant than for a shopping application. Thus, we are inter-

ested in designing an approach capable of considering these

finer-level features, and adjusting their relative weights, de-

pending on the target application.

To the best of our knowledge, there is no large scale

annotated dataset that can be used to train a fine-grained

foreground retrieval network directly. Constructing such a

dataset is a formidable task, as it would require assigning

a fitness annotation to a quadratically growing number of
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background and foreground pairs. Furthermore, fitness is

subjective, and as pointed out earlier, may be judged differ-

ently with a different application in mind.

On the other hand, extraction of features for classical

computer vision tasks has been studied for many years, re-

sulting in several very large scale datasets and highly suc-

cessful trained models. For example, CNNs, such as VGG

[22] and Resnet [7] excel at image classification, while

Faster-RCNN [19] and Yolo [18] excel at object detection.

MarrNet [27, 24] can extract 3D structure and viewpoint

from images of furniture, and DeepFashion [15, 4] is able

to identify the category, key points and style of clothes.

Our premise in this work is that given sufficient back-

ground context, it is possible to extract the features nec-

essary for predicting the compatibility of a candidate fore-

ground object. Consider, for example, an image of a bed-

room, from which the bed has been removed. A human

observer is easily able to predict the category and the pose

of the missing item, and in many cases its color or style,

as well. Similarly, a model trained to extract a set of rel-

evant foreground features from a background should prove

effective for foreground retrieval.

Therefore, we formulate foreground retrieval as a self-

supervised domain adaptation task, where the source do-

main consists of images of foreground objects, while the

target domain consists of background scene images, and

solve it using teacher-student learning. Specifically, we use

pretrained networks that extract features from foreground

images as teachers, and train a student network to retrieve

such features from the background images.

The above approach is generic and applicable to differ-

ent fine-grained foreground retrieval scenarios, such as in-

terior design, landscape architecture, and urban design. It

offers users the flexibility to decide which features are rele-

vant and assign them different weights. The approach only

requires two types of pretrained networks: a detection net-

work for preparing the training data and a task-related fea-

ture extraction teacher networks for the foreground. In our

experiments, we focus on retrieval of furniture for indoor

scenes and use Faster-RCNN [19] for detection. As the

teacher networks, we use MarrNet [27, 24] to extract fur-

niture category, viewpoint, and shape, and VGG [22] to ex-

tract style features. Using a new fine-grained foreground

retrieval training and evaluation dataset, we show that our

method achieves much better results compared to the cur-

rent state-of-the-art.

2. Related Work

2.1. Foreground Image Search

Lalonde et al. [12] were the first to pose the problem

of inserting a new object into a photograph as a context-

sensitive object retrieval task. Given an image of the back-

ground and a location, a large library is searched for objects

of the desired class that match the surrounding background

in terms of camera pose, lighting, resolution, etc. Their ap-

proach makes use of a set of heuristic functions to estimate

the desired attributes, and requires a rough 3D representa-

tion of the background scene, as well as relevant annotations

for the objects in the library.

The power of deep neural networks has enabled ap-

proaches with more modest requirements. Tan et al. [25]

focus on the human instance composition task. Their ap-

proach predicts suitable locations for adding humans into

an image, and retrieves suitable images of humans to insert

in these locations. The retrieval is based on matching the

local context of the intended location to those of the can-

didate humans. The matching is done using deep feature

representations extracted by a pre-trained network.

Zhao et al. [28] propose a self-supervised learning sys-

tem that utilizes triplet loss [20] to select suitable candi-

dates. They use instance segmentation to crop out fore-

ground objects, and construct background images by mask-

ing the foreground objects’ bounding boxes. Using back-

ground images and pairs of foreground images, they train a

triplet network to map the backgrounds and the foregrounds

to a common space, where the embedding of the “positive”

(original) foreground is closer to that of the background

than the embedding of the “negative” (non-original) fore-

ground. Once trained, this network is used to rank candi-

date foregrounds by the distance from their embedding to

that of the background.

The above approach has the advantage of using a self-

supervised learning framework, where the positive and the

negative examples are generated automatically. However, it

requires accurate instance segmentation of the foreground

objects. This is a crucial requirement, as without accurate

foreground masks, the network might simply learn to match

parts of the background surrounding the foreground. State-

of-the-art instance segmentation methods, such as Mask-

RCNN [6] are not able to produce sufficiently accurate

masks for images in the wild, and tend to miss parts of the

foreground, while including parts of the background. Al-

though there are a few datasets with instance segmentation,

for foreground categories such as furniture, many of the im-

ages have a narrow field-of-view, depicting foreground ob-

jects without sufficient surrounding background context.

Another disadvantage of their triplet-based training is

that it only uses the original foregrounds as the positive ex-

amples, while all other foregrounds are considered nega-

tive. This is a very restrictive assumption, since in prac-

tice the original foreground can often be replaced with one

from another background, without harming realism. Zhao

et al. [28] thus must resort to heuristic methods for increas-

ing the number of positive examples.

Rather than using handcrafted heuristics, Zhao et al. [29]
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Figure 1: A high-level diagram depicting our approach. Left: A pretrained object detection network is used to identify

foreground objects in scene images si, resulting in compatible background-foreground pairs (f(si), b(si)). Middle: Av-

erage task-related features Tj(f(si)), j ∈ 1, . . . ,K, are extracted from an augmented set of foreground images gj(f(si))
using pretrained teacher networks Tj . Right: A student network S is trained to predict the foreground features Tj(f(si)),
conditioned on an augmented set of masked backgrounds gt(b(si)).

first train a discriminator to assess the compatibility of

background-foreground pairs, and then use this discrimina-

tor to generate positive and negative examples for training

a two-branch embedding network using triple loss. Since

the foreground embedding branch of their network is pre-

trained, their method may also be considered as a form

of teacher-student learning. It should be noted that Zhao

et al. [29] apply their approach to the unconstrained fore-

ground object (UFO) search task, where the method selects

a suitable object category on its own, rather than getting the

category as input. However, both the constrained and the

unconstrained foreground retrieval variants of their method

still rely on instance segmentation to obtain accurate fore-

ground masks for the training.

2.2. Teacher­Student Learning for Unsupervised
Domain Adaptation

Li et al. [13] propose the idea of teacher-student (T/S)

learning for unsupervised domain adaptation in the con-

text of speech recognition. Given a well-trained “teacher”

model for a source domain, a “student” model can be trained

for a target domain, provided that parallel (i.e., paired) un-

labeled data is available. For example, a model pretrained

to recognize the speech of an adult may be used to train

a model for recognizing the speech of a child, provided

synchronized untranscribed sequences of both speakers, by

minimizing the KL-divergence between the outputs of the

two models. The T/S learning approach was later improved

by Meng et al. [16], who use adversarial training to ensure

that the deep features extracted by the student network, i.e.,

the latent embedding, is domain invariant.

The applicability of T/S learning is restricted by the

strong requirement for paired data. However, in our setting,

a natural pairing of data arises by extracting the background

and the foreground components from the same image. Thus,

treating the background and the foreground images as two

domains, T/S learning may be used to learn a joint embed-

ding and use it to retrieve a suitable foreground for a given

background image.

3. Proposed Approach

As explained earlier, our premise in this work is that

the compatibility of a foreground object to a background

scene may be assessed by inferring a set of task-related

foreground features from the surrounding context in the

background image. Thus, suitable foreground images may

be retrieved from a library by comparing their features to

those inferred from the input background. Furthermore,

the models for inferring these features may be trained us-

ing teacher-student learning, where the teachers are models

pretrained for extracting the desired features from images

of foreground objects.

Our approach is depicted in Fig. 1. Formally, given an

image of a scene si, let f(si) denote the region of the image,

occupied by a foreground object. For example, if si is an

image of a living room, f(si) might be a rectangular region

containing a sofa. The remainder of the image contains the

background context, which we denote as b(si).
Let {ei1, . . . , eiK} denote a set of features, relevant to

the foreground retrieval task, which may be extracted from

the foreground image using a set of pretrained teacher net-

works Tj , i.e.:

eij = Tj(f(si)) for j = 1, . . . ,K. (1)

Our goal is to train a set of student networks Sj that are

able to extract the same features from the corresponding

background images, i.e.:

eij = Sj(b(si)) for j = 1, . . . ,K, ∀si. (2)
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In other words, the student networks Sj learn to compute

the same feature embedding for background images b(si)
as the pretrained teacher networks do for the corresponding

foreground objects f(si).
Having trained the student networks, given a background

b(si), we can retrieve a suitable foreground f(sk) by match-

ing the feature embeddings:

k∗ = argmin
k

∑

j

~wjDj(Sj(b(si)), Tj(f(sk))). (3)

Here, Dj is a distance metric for the j-th feature, whose

exact form depends on the feature at hand. For example,

distance between viewpoints may be defined using the Ge-

ometric Structure Aware Loss [23], while abstract deep fea-

tures may be compared using the cosine distance between

their latent space vectors. The distances are weighted using

weights ~wj , which are determined based on the purpose of

the retrieval task, or set automatically to default values, as

described in Section 3.2.

In practice, we train a single student network S to predict

the output of all teacher networks simultaneously, i.e.:

S(b(si)) = {Tj(f(si))|j = 1, . . . ,K}, ∀si, (4)

since multiple task learning usually boosts the performance

of each sub task, as was indeed observed in our experiments.

3.1. Robust Feature Extraction

We use augmentation in order to make our approach less

sensitive to small changes in the input. Specifically, in or-

der to extract more consistent features, during the training

process, we apply to each foreground f(si) a set of aug-

mentations that are not supposed to affect the feature that

each teacher network is supposed to extract. For example,

changing object color or lighting should not affect the ex-

tracted orientation, while rotation or translation of the full

image should not affect the object style. Thus, to extract

consistent features we take the mean feature extracted from

a set of such augmentations:

T̂k(f(si)) =
1

n

n∑

l=1

Tk(g
l
k(f(si))) (5)

Here n is total number of augmentation per image (n = 15
in all our experiments). A similar set of augmentations is

performed on each input to the student network.

3.2. Automatic Default Weights

While our method allows users to adjust the weights of

different features according to the intended purpose of re-

trieval, a good set of default weights enables the method to

function even without requiring the user to fine-tune them.

Let d
j
i,k = Dj(Sj(b(si)), Tj(f(sk))) denote the dis-

tance between the j-th feature of the background b(si) and

the foreground f(sk). The total distance between b(si) and

f(sk) is a linear combination of the feature distances:

di,k =
∑

j

~wjd
j
i,k (6)

where ~wj is the weight of feature j with ~wj > 0,
∑

j ~wj =
1. We seek a set of weights ~wj that make the original fore-

ground f(si) to be closer to b(si) than any other foreground

(di,i < di,k), by minimizing a hinge loss

L(i, k) = max(0,
∑

j

~wj(d
j
i,i − d

j
i,k) +m), (7)

where m is a positive margin to encourage a gap between

the positive and negative sample. This optimization prob-

lem can be solved by a single fully-connected layer, with a

softmax activation applied to its weights ~w, to ensure that

~w is a transition vector (~wj > 0,
∑

j ~wj = 1), as in [5].

Since a single layer network may suffer from bad initializa-

tion [2], in practice we use a linear network with e layers

and a softmax activation on its weights, and the weights ~w

are obtained as the product of the learned layer weights

~w = wMe−1Me−2...M2M1 (8)

where Mi are the transition matrices of the first e−1 layers,

and w is the transition vector of the last layer.

We use e = 3, m = 0.1 and train one network per ob-

ject category. For each scene si, we randomly pick 1000

foregrounds f(sk) from the same category as negative ex-

amples and calculate d
j
i,k. To make sure the distance of

each feature dj are in similar scale, we normalize their pop-

ulation mean to 0 and variance to 1. We perform hard ex-

ample mining by removing easy pairs, where the candidate

k is worse than the original foreground i for all features j

(d
j
i,i − d

j
i,k < 0 ∀j), or where the candidate is better than

the original foreground for all features (d
j
i,i−d

j
i,k > 0 ∀j).

4. Dataset and Training

To the best of our knowledge, there is no dataset that

contains enough semantically similar objects with bound-

ing box annotations, while including a significant amount of

surrounding background context (wide field of view). Thus,

we constructed our own dataset. Below we describe our

dataset construction procedure, feature extraction using the

teacher networks, and the training of the student network.

4.1. Dataset construction

Scene images. We harvested a variety of indoor scene im-

ages from the web, conditioned on keywords, such as ‘bed-

room’, ‘dining room’, ‘interior’, ‘living room’ and ‘office’.

Low resolution images (under 300× 300) were filtered out.

To further filter out irrelevant images, we used VGG [22]
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pretrained on Place365 [30] to infer the scene type. Only

images whose predicted scene category are among the top

30 categories were retained. The breakdown by category is

reported in the supplementary material.

To extract foreground object images from these scene

images, we use Faster-RCNN [19] trained on OpenImage

data set [11] to generate bounding boxes for candidate fore-

ground objects. We filter out boxes that do not belong to

‘furniture’ subcategory, as well as ones that are too large

(width or height is larger than 0.6 of the image dimensions).

Each remaining box is extended to a square shape, and used

to crop a foreground image, which we resize to 256× 256.

Background images are resized to 256 × 192 by blur mir-

ror padding [9]. In total, we obtain 16.7K unique scene

images, and 31K foreground images. The dataset is split

into training (85%), testing (10%) and validation (5%) sets.

Horizontal flipping is used to augment the data.

Additional foreground images. To further enrich our

foreground image set, we harvest additional images via

Google image search using the keywords ‘bed’, ‘bookcase’,

‘chair’, ‘desk’, ‘nightstand’, ‘sofa’, ‘table’, and ‘wardrobe’.

Most of these images have a plain (white) background. We

use the same object detection network as before to obtain

the category label and filter out images where no furniture

is detected, or containing multiple furniture items. Images

are resized to 256 × 256 with zero padding. In total, we

obtain 40K additional images. Horizontal flipping is used

to augment the data. More statistics about the dataset can

be found in the supplementary.

4.2. Foreground Feature Extraction

In our approach, the pretrained foreground feature ex-

traction networks (teacher networks) may be chosen de-

pending on the task. In this work we focus on retrieval

of furniture for interior scenes, and we choose MarrNet

[27, 24] to extract viewpoint (azimuth and elevation) and

shape as geometric features, and VGG [22] to extract style

features (color and texture).

Geometric Features. MarrNet [27, 24] is composed of

two sub-networks. Net1 attempts to estimate the surface

normal, depth map and silhouette of an input object. Based

on this output, Net2 uses an encoder-decoder structure to

recover the 3D shape, azimuth and elevation of the object.

We use the Net2 encoder output (latent space) to represent

shape, and the final azimuth and elevation vector from the

Net2 decoder to represent azimuth and elevation. Standard

color augmentation [10] is used to obtain robust features, as

explained in Section 3.1.

Style Features. Although a dataset with furniture style

annotations exists [1], the annotations there are noisy, since

they are based on metadata, and many of the images appear

(a) image (b) sal. map (c) sal. mask (d) inst. mask

Figure 2: Given a foreground object image (a), we use

Grad-GAM [21] to compute the saliency map (b) for the

highest activation in the last layer of VGG (within the furni-

ture category of WordNet [17], in this case ‘sofa’). A binary

mask (c) is obtained by thresholding with the saliency map’s

median. Note that the mask in (c) covers the foreground ob-

ject almost as effectively as an instance segmentation mask

produced by Mask-RCNN (d). Additional saliency mask

examples may be found in the supplementary.

to have a synthetic look. Thus, we chose to make use of

generic style feature extraction, rather than training a model

specifically to extract furniture style.

Style transfer between images has been extensively stud-

ied [3, 8, 31]. Although the notion of style in images mostly

captures texture and color, and only partially coincides with

the notion of style in furniture, our experiments show that

these features are nevertheless useful for furniture retrieval.

Specifically, as suggested by Huang and Belongie [8], we

use the channel-wise means and the variances of deep fea-

ture maps to encode style. The feature maps are extracted

by VGG [22], as is commonly done in image style transfer.

When extracting the style features of a foreground object,

we aim to avoid any influence of the local surrounding back-

ground. This is achieved by extracting a salience map for

the predicted category [21], obtaining a binary foreground

mask by thresholding, and extracting the style features only

within the mask area, as demonstrated in Fig. 2. This

method for obtaining the mask is applicable to more cat-

egories than instance segmentation, without requiring extra

supervision. Two style vectors are extracted, corresponding

to the channel-wise means and variances of the last convo-

lutional layer of VGG. Augmentation for robustness (Sec-

tion 3.1) is performed via rotations from -15 to +15 degrees,

where empty space is filled with gray color.

Abstract feature normalization. Since shape, style

mean, and standard deviation representation are vectors ex-

tracted from hidden layers of different networks, each fea-

ture may have different statistics. Thus, we estimate the

population mean and variance of each feature in our train-

ing set, and use them to shift and scale the features.

4.3. Student Network

Our goal is to train a student network capable of pre-

dicting the foreground features described above from a
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background image with a foreground bounding box. We

initialize the student network to VGG [22] pretrained on

Place365 [30], and replace its fully connected layers with

a collection of modules, each producing one kind of fore-

ground features (see Fig. 1). Thus, feeding a background

image through this network produces a background embed-

ding. The intended foreground location is specified via a

binary mask of the same dimensions as the background im-

age, and this mask is fed into a separate branch, whose re-

sults are concatenated with those of the VGG branch and

then merged. The merged feature map is then given to sev-

eral different modules that predict each foreground feature

separately. Each module consists of two fully connected

layers. Additional architectural details may be found in the

supplementary. The entire network is trained end-to-end.

Loss Function. Geometric structure-aware loss [23] is

used for azimuth and elevation, while cosine distance is

used for the shape and style features. The full loss is

a weighted combination with weights [azimuth, elevation,

shape, style mean, style std] = [1, 1, 0.6, 1, 1]. The weights

were chosen to scale the loss terms into a similar scale.

5. Experiments

To evaluate the effectiveness of our approach for fine-

grained foreground retrieval, we compare our model with

the current state-of-the-art in foreground retrieval (given a

background, retrieve suitable foregrounds) [29], referred to

as UFO (Unconstrained Foreground Object search), and a

standard baseline in fine-grained retrieval (given an object,

retrieve similar objects) [26], referred to as SD (Selective

Descriptor).

Neither UFO, nor SD, were designed for fine-grained

foreground retrieval (given a background, retrieve fore-

grounds based on fine-grained compatibility). Thus, for

a fair comparison, we modify them as described in 5.1

and 5.2. To the best of our knowledge, there is no ex-

isting dataset that could be used for evaluation of fine-

grained foreground retrieval. We thus construct an evalu-

ation dataset for this task, and annotate it using Amazon

Mechanical Turk, as described in Section 5.3.

5.1. Retraining UFO for fine­grained retrieval

The UFO model [29] is originally trained for coarse-

grained foreground retrieval, and requires instance segmen-

tation to be trained. Thus, we considered training it using

the MS COCO dataset, which comes with instance segmen-

tation, and has several furniture categories, namely ‘chair’,

‘couch’, and ‘bed’. However, as explained in Section 2.1,

most images in MS COCO have a narrow field-of-view, and

do not contain sufficient surrounding background around

the foreground objects, making them ill-suited for fore-

ground retrieval. Therefore, we retrain the UFO model [29]

using our dataset (Section 4.1), where images have ade-

quately wide field-of-view, using Mask-RCNN pretrained

on MS COCO to provide instance segmentation of the fore-

ground objects.

To ensure that the extracted foregrounds are of reason-

able quality (e.g., not overly cropped or fragmented), we fil-

ter out those extracted foregrounds for which Mask-RCNN

could not detect an object of the correct foreground cate-

gory. Having resized the background images to 224× 224,

we also discard foregrounds whose bounding boxes are too

large (> 150), or too small (< 30).

For a fair comparison, we also retrain our model using

the bounding boxes generated by Mask-RCNN. Thus, our

model is trained using exactly the same training data as

UFO, with the difference that we use easily obtained bound-

ing boxes, rather than expensive instance segmentation. Ex-

ample retrieval results by both methods are shown in Fig. 3.

These results qualitatively show that the foreground objects

retrieved by our method exhibit poses and styles that appear

more compatible with the background. For example, nearly

all chairs retrieved by our method are office chairs facing

to the left, while UFO retrieved many right-facing and non-

office chairs. Our quantitative comparison in Section 5.4

confirms these observations.

5.2. Adapting SD for foreground retrieval

SD [26] is a standard baseline for fine-grained image re-

trieval, however, it does not support our foreground retrieval

setting (given background, retrieve foreground). Therefore,

we compare with SD in two different alternative settings:

(i) SD-FG: given the original foreground object, selective

descriptor aggregation [26] is used to retrieve similar fore-

grounds. This task is much easier than our foreground re-

trieval setting, which does not have the benefit of access

to the original foreground. Thus, the SD-FG performance

may be considered as an upper bound for the foreground re-

trieval task. (ii) SD-BG: given only the background as input

(as in our setting), selective descriptor aggregation is used

to retrieve foreground objects whose background is similar

to the input. Notice that this method can only search among

foreground candidates with known background. Quantita-

tive comparisons for SD-FG and SD-BG are shown in Sec-

tion 5.4 and the supplementary, respectively.

5.3. Evaluation dataset

An existing foreground retrieval evaluation dataset, from

Zhao et al. [28], is composed of semantically different cat-

egories, such as ‘bottle’,‘dog’, and‘plant’. For each back-

ground, there is a set of foreground objects, annotated as ei-

ther good or bad (binary label). The only furniture category

represented in this dataset is ‘chair’, the labeling appears to

consider viewpoint, but not style, and the foreground resolu-

tion is low. Thus, this dataset is not suitable for fine-grained
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Figure 3: Foreground retrieval results for our method and for UFO [29], after training on our dataset, annotated using Mask-

RCNN, as described in Section 5.1. The images on the left are query backgrounds with the location of the foreground

indicated by the black square. To the right of each query we show the top 10 results retrieved by each of the two methods.

retrieval, necessitating the creation of a new evaluation set.

For each of the three furniture categories that were used

to train the UFO model (bed, chair, and couch), we ran-

domly select five background images from our validation

set, and ask AMT workers to annotate a number of candi-

date foreground object images according to their compati-

bility to the background.

In order to ensure a manageable number of foregrounds

to be annotated by each worker, while at the same time en-

suring the set of foregrounds contains enough suitable can-

didates, we first perform a pre-screening stage. We first ran-

domly select 100 foregrounds for each of the 15 query back-

grounds, and recruit a small number of expert AMT workers

to annotate them, such that each foreground is annotated at

least three times. Based on these pre-screening annotations,

the top 30 foregrounds are chosen for each background. In

our experience, the foregrounds selected in this manner ex-

hibit a mixture of fitness levels.

In the next, main stage, for each background, workers

are first shown a preview screen with thumbnails of the 30

candidates, so that they can preview them and calibrate their

expectations. Next, they are presented with 30 screens, each

showing the background alongside a single foreground can-

didate. The workers are asked to assign each candidate one

out of four fitness scores:

3 – “can crop out foreground and paste it directly”

2 – “foreground fits after minor adjustment”

1 – “foreground fits after major adjustment”

0 – “foreground does not fit at all”

We also include the original foreground as a positive indica-

tor, i.e., the annotations of workers that assign the original

foreground a low score are discarded. Note that the original

foregrounds are only used to evaluate workers, they are not

part of our evaluation set, and are not used for evaluating

different algorithms.

Each foreground is annotated at least 8 times (without

counting the annotations from the pre-screening stage). The

mean score is used to represent how well each foreground is

perceived to fit the query background. The rankings of the

foregrounds for all 15 backgrounds are shown in supple-

mentary. It may be seen that the ranking induced by these

scores is plausible, with the top few candidates matching the

background well in terms of pose and style, while clearly

unrelated candidates receive much lower scores.

5.4. Quantitative Evaluation

Mean Average Precision (mAP) and Normalized Dis-

counted Cumulative Gain (nDCG) are commonly used met-

rics for comparing rankings [14]. mAP requires binary la-

bels (either good or bad), thus we set a threshold of 2 to con-

vert mean fitness scores to binary labels. nDCG requires a

label with several fitness levels, and we choose k = 5, i.e.,

consider only the top 5 scores in the ranking. The results

using both metrics are reported in Tables 1 and 2.

Note that UFO [29] performs better when trained on our

dataset, compared to training on MS COCO, indicating that

our training set is better suited for fine-grained foreground

retrieval. Nevertheless, our method outperforms UFO by a

large margin. Furthermore, the results are comparable or
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Figure 4: Foreground retrieval results for other furniture categories using our model trained on our dataset annotated by

Faster-RCNN [19] pretrained on OpenImage dataset [11], as described in Section 4.1.

Bed Chair Couch Overall

UFO: trained on MS-COCO 0.373 0.471 0.262 0.369

UFO: trained on our dataset 0.395 0.508 0.288 0.397

SD: SD-FG 0.457 0.641 0.340 0.479

Ours: no augmentation 0.354 0.407 0.299 0.353

Ours: with uniform weights 0.529 0.567 0.398 0.498

Ours: full 0.542 0.574 0.384 0.500

Table 1: Comparison with UFO and SD-FG in terms of

Mean Average Precision, using a score threshold of 2.

Bed Chair Couch Overall

UFO: trained on MS-COCO 0.76 0.683 0.744 0.729

UFO: trained on our dataset 0.744 0.722 0.763 0.743

SD: SD-FG 0.795 0.810 0.785 0.797

Ours: no augmentation 0.740 0.671 0.739 0.716

Ours: with uniform weights 0.816 0.768 0.765 0.783

Ours: full 0.848 0.777 0.764 0.797

Table 2: Comparison with UFO and SD-FG in terms of

Normalized Discounted Cumulative Gain, k = 5.

better than those achieved using SD-FG, despite the fact

that SD-FG is provided with the original foreground, while

our method is only provided with the target background.

The comparison with SD-BG is not included in these ta-

bles, since it is only applicable to a subset of the evaluation

set: 13 foregrounds with known background (instead of 30)

for each background image. The results of a comparison

with SD-BG on this subset is included in the supplementary,

where it may be seen that our method outperforms SD-BG

by a large margin.

We also include in the comparison two ablated variants

of our method: the “no augmentation” variant does not per-

form the augmentation described in Section 3.1, and the

“uniform weights” variant assigns equal weights to all fea-

tures, instead of using the weights obtained as described in

Section 3.2. In most categories (and overall) the full method

performs better than its two ablated variants. More quanti-

tative results, as well as additional ablations, can be found

in the supplementary.

5.5. Additional Results

Since training our model only requires easily obtained

bounding box annotations, we are able to leverage large

existing object detection datasets, such as the OpenImage

dataset [11] with 27 furniture categories. This enables train-

ing our model to retrieve objects from many different cat-

egories. As an example, Fig. 4 shows retrieval results for

the categories ‘coffee table’, ‘nightstand’, and ‘shelf’. Our

method may also be used without requiring the foreground

category as input. In this scenario, the retrieval process is

unchanged, but the set of candidate objects is no longer

filtered to contain only objects of the specified category.

The supplementary video demonstrates that our method per-

forms in a satisfactory manner in this scenario as well.

6. Conclusions

In contrast to existing foreground retrieval methods that

focus on matching the high-level semantics between a back-

ground and a foreground object, we address the problem

of fine-grained foreground retrieval that aims to select the

most compatible foreground from a set of semantically sim-

ilar objects. Our method may be applied to diverse fore-

ground categories and background scene types, since it does

not require instance segmentation, unlike current state-of-

the-art methods. Instead, we leverage large scale datasets

and pretrained models for object detection to construct a

large training dataset for the fine-grained foreground re-

trieval task. Casting the problem as one of domain adapta-

tion, we propose to apply teacher-student learning to train a

model to predict foreground features relevant to the retrieval

task from images of background scenes. Our approach

allows selecting a set of meaningful features to be used

for retrieval, and assigning these features task-dependent

weights. Experiments demonstrate that our method is able

to perform better fine-grained furniture retrieval for indoor

scenes than the existing state-of-the-art.
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