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Abstract

Deep neural networks are powerful, massively param-

eterized machine learning models that have been shown

to perform well in supervised learning tasks. However,

very large amounts of labeled data are usually needed to

train deep neural networks. Several semi-supervised learn-

ing approaches have been proposed to train neural net-

works using smaller amounts of labeled data with a large

amount of unlabeled data. The performance of these semi-

supervised methods significantly degrades as the size of la-

beled data decreases. We introduce Mutual-information-

based Unsupervised & Semi-supervised Concurrent LEarn-

ing (MUSCLE), a hybrid learning approach that uses mu-

tual information to combine both unsupervised and semi-

supervised learning. MUSCLE can be used as a stand-

alone training scheme for neural networks, and can also be

incorporated into other learning approaches. We show that

the proposed hybrid model outperforms state of the art on

several standard benchmarks, including CIFAR-10, CIFAR-

100, and Mini-Imagenet. Furthermore, the performance

gain consistently increases with the reduction in the amount

of labeled data, as well as in the presence of bias. We also

show that MUSCLE has the potential to boost the classifi-

cation performance when used in the fine-tuning phase for

a model pre-trained only on unlabeled data.

1. Introduction

Over the past decade, Deep Neural Networks (DNN)

have been extensively employed and studied in various ma-

chine learning domains [10, 1]. DNNs have become the

standard backbone for solving virtually all computer vision

problems, such as image classification [26, 41, 19], object

detection [35, 15, 37], image segmentation [48, 5, 6], and

human motion prediction [45, 17]. However, due to their

massive capacities, DNNs are infamous for requiring large

amounts of labeled data.

Figure 1: The Training Structure of MUSCLE

In the traditional supervised learning paradigm, large

amounts of labeled data are essential for training well-

performing models. To address this limitation, few-shot

adaptation [14, 46, 42], has been studied. In this approach,

using a handful of labeled data samples, a model that has

been trained on a similar domain can be adapted to a new

domain without compromising the performance on its orig-

inal domain. While few-shot adaptation is an effective ap-

proach, the similarity between the original domain and the

novel domains, and the generality of the source model –

which requires a large amount of training data in the orig-

inal domain – are crucial for its success. The commonly

used evaluation protocols for few-shot adaptation use class-

based splits of a single dataset (i.e. same domain) to cre-

ate the original and novel domains [32, 46, 36, 3]. Semi-

supervised learning (SSL) has been introduced [27, 44, 43]

to leverage the massive amounts of available unlabeled data,

instead of solely relying on labeled data.

Without loss of generality, SSL can generally be catego-

rized into methods that use consistency loss [27, 44, 39, 31]

and methods that use pseudo labeling [13, 29, 40, 11]. Al-

though these two approaches are orthogonal, combining
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them was shown to achieve better performance than each

one of them individually [23, 43]. In both approaches,

knowledge about the task is learned from labeled samples

and transferred to unlabeled samples. In the case of pseudo

labeling, unlabeled samples are explicitly labeled (using

hard or soft labels), and assigned labels are used to pro-

vide supervisory signal in subsequent learning iterations. In

the case of consistency loss, the label assignment or feature

representation of unlabeled data is forced to be consistent

across different models trained simultaneously or different

variations of each sample. Despite their success, both ap-

proaches share two main weaknesses: (1) If the amount of

labeled data significantly drops, i.e. knowledge about the

task becomes too limited, they can either fall into degen-

erate solutions or fail to assign labels with high confidence

to much of the unlabeled portion of the training data, and

(2) Bias in the labeled portion can have a significantly neg-

ative impact on the models’ performances. This is indeed

a problem in all machine learning techniques. However, it

can be immensely magnified when few labeled samples are

available.

On the other hand, unsupervised learning (USL) tech-

niques extract knowledge from the data without using any

labels. Therefore, it is reasonable to assume that combin-

ing unsupervised and semi-supervised learning brings to-

gether the best of the two approaches. Some existing stud-

ies attempted at combining USL with Supervised Learning

(SL). In such studies, USL can be used as a pre-training

step, where the model trained via USL is either fine-tuned

[21, 24] or frozen during the SL training [24]. Furthermore,

in [12], which trains the network layer by layer, USL is used

to train the layers and SL is used to learn the connection

weights between layers. In these scenarios, the performance

of the final SL model may only have a limited increment or

even a drop compared to the same model trained directly

on the labeled data. This is due to the possible contradic-

tion between the USL’s and the SL’s training objectives, and

hence, the lack of synergy between their two models during

training.

In this paper, we show that concurrently using an

USL objective along with a SSL model achieves bet-

ter performance. We introduce Mutual-information-based

Unsupervised & Semi-supervised Concurrent LEarning

(MUSCLE). MUSCLE naturally involves an USL objec-

tive, which maximizes the mutual information between the

predictions of variants of the same sample, from the very

beginning of the training process. On one hand, when the

amount of labeled data is limited, MUSCLE uses the USL

objective to gain knowledge about the task. On the other

hand, when there is ample labeled data, MUSCLE relies on

its SSL objective, while the USL objective can work as a

regularization term. MUSCLE can be used as a stand-alone

SSL method, and can also be added to an existing SSL ap-

proach. We show that combining MUSCLE with three of

the leading SSL approaches [43, 44, 23] consistently im-

proves the performance on all evaluated benchmarks. Fur-

thermore, the performance gain achieved by MUSCLE con-

sistently increases as the amount of labeled data decreases.

We also show that MUSCLE makes the SSL model less sen-

sitive to data bias. Moreover, we show that MUSCLE can be

useful in fine-tuning a model pre-trained only on unlabeled

data. We provide a thorough discussion about the reasons

for such combination to work, and ablation studies on dif-

ferent design parameters to better explain the inner working

of the model.

2. Related Work

As mentioned in Section 1, there are two main ap-

proaches for semi-supervised learning based on either con-

sistency loss or pseudo labeling.

Consistency Loss has been well studied and included in

many SSL techniques [27, 44, 39, 31]. The basic form of

the consistency loss can be expressed as:

LConsist =
1

N

N
∑

i=1

lc(fθ(xi), fθ′(x′
i)) (1)

where fθ is a classification function, x′
i is a variant of the

input sample xi, and lc is a measure of divergence between

fθ(xi) and fθ′(x′
i), such as L1 or L2 distance [39, 44],

Jensen-Shannon divergence [34], and KL-divergence. The

source of the variation between x′
i and xi can be data aug-

mentation [43, 47], different network parameters [27, 44],

or the randomness inside the network, e.g. dropout [20] or

noise [31]. The basic idea of the consistency loss is that,

in the absence of a ground truth label for an input sample

xi, the model ensures that variations of the same sample are

consistently predicted. However, consistency loss must be

accompanied with a supervised learning loss. Otherwise,

we will end up with the trivial solution in which fθ(xi) and

fθ′(x′
i) take one value for all classes.

Pseudo Labeling, on the other hand, explicitly assigns

labels to unlabeled data, such that the pseudo-labeled data

can be used to train regular supervised learning methods,

e.g. using cross entropy loss. In [4], for example, K nearest

neighbors (K-NN) was used to assign labels to unlabeled

samples based on their proximity to labeled samples. Then,

SL, using cross entropy loss, was applied repeatedly to up-

date the model and refine the labels until convergence. Such

hard labeling approach provides a performance gain com-

pared to using only supervised learning on the labeled data

as it makes use of the unlabeled data. However, the gain

can be limited due to the poor accuracy of the hard-assigned

pseudo labels. Soft labeling [23] assigns confidence weights

to the pseudo labels to reduce the negative impact of incor-

rect pseudo labels.
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Completely unsupervised methods have also been sug-

gested for classification tasks without using any labeled

data [22, 24, 21, 12]. Dundar et al. [12] proposed using the

k-means clustering algorithm for learning the layers and the

connections between layers. Mutual information has also

been used in [21, 24] for unsupervised classification.

3. Preliminaries

In this section, we explain the three leading SSL tech-

niques, which are used as baseline for our proposed method.

Beyond the basic idea of the consistency loss, the Π-Model

and Temporal Ensembling [27] showed the effectiveness of

updating the network parameters via Exponential Moving

Average (EMA). The Mean-Teacher (MT) model [44] ex-

tended this idea by deploying two networks: the “student”

and the “teacher” networks, both of which have the exact

same architecture. In each training iteration, the gradient

only back-propagates through the student network, and the

parameters in the teacher network are updated by EMA, as

shown in Equation 2

θ′t = (1− µ) ∗ θ′s + µ ∗ θt (2)

where θ′t is the updated teacher parameters, θt is the pre-

vious teacher parameters, θ′s is the updated student param-

eters, and µ is the EMA factor. The divergence between

the outputs of the teacher and the student networks is min-

imized by minimizing the Mean Square Error (MSE) be-

tween the predictions of the two networks over training

samples, as shown in Equation 3

LMT =
1

N

N
∑

i

MSE(fteacher(xi), fstudent(xi)). (3)

Label Propagation: Label propagation is a popular

pseudo labeling technique, in which labels propagate from

labeled samples to unlabeled samples in their proximity.

In [11], label propagation was studied in the context of few

shot learning. In [23, 18], label propagation was applied

on SSL. Label propagation with diffusion [23] deploys a

nearest-neighbor graph, which is represented using an affin-

ity matrix. At each iteration, K unlabeled samples are se-

lected based on their proximity to other samples and are as-

signed pseudo labels with confidence weights, in a process

called diffusion prediction. We refer the reader to [23] for

more details.

FixMatch: FixMatch [43] combines the consistency loss

and pseudo labeling in one training strategy. As the train-

ing process progresses, the entropy of the prediction for

unlabeled data decreases. Once the prediction probabil-

ity of a given sample for a certain class exceeds a thresh-

old τ , FixMatch uses that most probable class to pseudo-

label the sample. Consistency loss is applied by minimiz-

ing the cross entropy between the assigned pseudo label

and the prediction of a hard-augmented variant of the sam-

ple. The concept of hard augmentation is a critical compo-

nent of FixMatch. Two different augmentation techniques

are employed [7]: CTAugment [2], which learns the best

augmentation from data, and RandAugment [8], in which

the augmentation is randomly selected from a pool. Fix-

Match applies EMA to update the network parameters. Its

initial learning rate is small compared to other state of the

art methods [44, 23]. As a result, FixMatch requires 220

training iterations to achieve its good performance, which

is much larger than other methods.

4. Proposed Semi-supervised Learning Method

In SSL, the training dataset X is divided into two parts:

Xl for the labeled data, where Yl represents its labels, and

Xu for the unlabeled data. The task is to learn features from

X = Xu ∪Xl leveraging Yl. The key part of MUSCLE is

involving USL from the very beginning so that we can ex-

tract meaningful features from Xu. In this section, we will

first introduce the concept of MUSCLE, and then discuss its

properties, functionality, and key aspects.

4.1. The Objective of MUSCLE

MUSCLE literally comes from the idea of training USL

with semi-supervised or supervised Learning using Mu-

tual Information (MI) [28] maximization, which has been

proved to be useful in both representation learning and USL

tasks [22, 21, 24]. Similar to [24], MUSCLE applies the

Mutual Information Loss (MIL) to the network’s likelihood

prediction as shown in Equation 4

lu = I(fθ(xα), fθ(xβ)) (4)

where fθ is the classification function, and xα and xβ are

the augmented data of x through transformation functions

A(x) and B(x), respectively. The MI is calculated as shown

in Equation 5 [28, 24]

I(z, z′) = I(P ) =

C
∑

c=1

C
∑

c′=1

Pcc′ ln
Pcc′

PcPc′
(5)

where

P =
Q+QT

2
, Q =

1

n

N
∑

i=1

fθ(xi)× fθ(x
′
i)

T (6)

where C is the number of classes, P is a C × C symmetric

matrix, Pcc′ is the value at the cth row and c′th column of

P , Pc and Pc′ are the summations over the cth row and the

c′th column, respectively. The total loss function becomes

LMUSCLE = ls − αlu (7)

where ls can be any supervised loss from either real or

pseudo labels, lu is the MI between different outputs with
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the same base sample x, and α is the factor of the MIL.

From Equation 7, we can see that the loss is minimized

when the MIL term αlu is maximized. One of MUSCLE’s

advantages is that it could be combined with other existing

SSL models or losses to mitigate their weakness instead of

merely replacing them. For example, since pseudo labeling

methods provide pseudo labels for supervised classification,

they can be used with MUSCLE under the ls loss term. Any

consistency loss lc can be also added to Equation 7 as:

L = LMUSCLE + βlc = ls − αlu + βlc (8)

In this work, we use Label Propagation (LP) [23], the Mean

Teacher model (MT) [44], and FixMatch [43] as base meth-

ods to highlight the advantage of combining other SSL tech-

niques with MUSCLE.

4.2. Properties Of MUSCLE

Avoiding the Trivial Solutions: The reason that consis-

tency loss does not have the capability of learning meaning-

ful features from Xu without the prior knowledge generated

by Xl and Yl is that the network can simply output the same

prediction for all classes of the input data, e.g. [1, 0, . . . , 0].
In such a case, the consistency loss is zero but the solution

is obviously meaningless. However, when maximizing the

MI, this trivial solution is avoided. MI (Equation 5) can be

expended to:

I(z, z′) = H(z)−H(z|z′) (9)

where H(z) is the entropy of z, or in other words, how

much information z contains, and H(z|z′) is the condi-

tional entropy of z given z′. Therefore, when maximizing

the MI, the trivial solution is avoided because H(z) is max-

imized when the average prediction for each class across

the batch is the same. Thus, producing a fixed prediction

for all samples should not maximize H(z) with one excep-

tion: such fixed prediction has the same value for all classes,

e.g. [0.1, 0.1, . . . , 0.1], which is avoided using H(z|z′).
The necessary condition for minimizing H(z|z′) is when

the samples’ likelihood in z reach one-hot. Exceptions such

as [0.1, 0.1, . . . , 0.1] increase H(z|z′) and should not ex-

ist in the optimal solution. Furthermore, the ls term in the

MUSCLE also acts as a stabilizer to MIL because ls di-

rectly leads labeled data to meaningful predictions, and in-

directly affects the unlabeled data since images within the

same class are correlated with each other. The usage of

maximizing the MI is also discussed in [24].

Incorporating MUSCLE into Other Approaches: By

taking a closer look at the MI, we can see that maximiz-

ing the MI behaves similar to other SSL approaches with

the ability of directly classifying unlabeled data Xu. It is

easy to see that Maximizing the MI is an indirect method

of doing pseudo-labeling since the prediction likelihood z

will converge to one-hot for minimizing the second term in

Equation 9, H(z|z′). According to Equation 1, consistency

loss attempts to minimize the differences between two dif-

ferent predictions based on the same input data xu without

knowing its label y. For example, using the Euclidean Dis-

tance

d(z, z′) =
√

∑

(zi − z′i)
2 , (10)

the distance between z and z′ reaches its minimum value of

zero if and only if z = z′. Using MI, both z and z′ should

converge to a one-hot vector. Furthermore, since z and z′

are the predictions based on the same base sample x us-

ing similar or same network architectures and parameters,

z and z′ generally yield the same one-hot prediction due to

the invariance behavior typical of DNNs. Therefore, in a

sense maximizing the MI is equivalent to minimizing the

consistency loss. The reason that MUSCLE can be com-

bined with different SSL approaches is that they share com-

mon optimization goals. Thus, they can help each other for

achieving those goals instead of competing with each other

for different objectives.

4.3. Batch Composition

The batch for each training iteration can be expressed

as: [xu1, . . . , xuI , xl1, . . . , xlJ ], where xui and xlj indi-

cate unlabeled and labeled data samples, respectively. Each

batch contains I unlabeled data and J labeled data with

the ratio of r = I
J

. The ratio r is a critical parameter for

MUSCLE, because MI attempts to predict each sample as

one-hot while maintaining the predictions as a uniform dis-

tribution over the batch. Since we are randomly drawing

data from the dataset, if the dataset itself is nearly balanced,

then the selected data for each batch should also follow a

uniform distribution over the classes. If we include J la-

beled data [xli, . . . , xlJ ] in a training batch of size B, where

the predictions zlj∀j already converged to correct one-hot

vectors based on the supervised learning term, we are re-

vealing J
B

of correct answers to the MI term to learn the re-

maining samples in that batch. Therefore, r represents the

balance of the batch’s difficulty for MIL. A good r can pre-

vent the batch from being overly ”easy” or overly ”hard”.

Section 5 includes an ablation study on the selection of r.

4.4. Data Augmentation

The effectiveness of the data augmentation in SSL has

been well studied [31, 47, 43]. Often, only one augmen-

tation function is used, which can be light augmentation

[44, 23] or hard augmentation [24]. In [43], it was shown

that using both light and hard augmentations into the con-

sistency loss can have a much better result because it creates

a larger divergence for the consistency loss to achieve better

generalization. We also adopt the concept of two types of

augmentation where the easy one is the classical augmenta-

tion used in [44] and the hard one is either the augmentation
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Dataset CIFAR10

Num of Labeled Images 1000 (2%) 500 (1%) 250 (0.5%)† 100 (0.2%)†

Supervised Learning 59.97± 0.87 51.08± 1.02 45.74± 1.92 32.55± 2.02
Label Propagation [23] 77.98± 0.88 67.60± 1.80 59.55± 2.58 35.78± 3.98

Mean-Teacher [44] 80.90± 0.51 72.55± 2.64 61.26± 1.96 39.56± 1.73
LP+MT [23] 83.07± 0.70 75.98± 2.44 64.19± 1.95 41.62± 3.50

MUSCLE 85.46± 0.85 79.01± 0.99 70.37± 1.98 52.79± 4.81
MUSCLE+MT 86.42± 0.27 82.02± 0.22 75.86± 3.2 59.57± 4.53

MUSCLE+MT+LP 86.71± 0.36 83.36± 0.43 76.46± 3.05 59.03± 3.17

Table 1: Comparison with the SOTA methods on CIFAR-10 with 13-Layer CNN. Average accuracy and standard deviation
are reported. The percentage of the labeled data, w.r.t the entire training dataset, is listed following the number of labels.
†Baseline results were generated by us.

Dataset CIFAR-100

Num of Labeled Images 10000 (20%) 4000 (8%) 2500 (5%)† 500 (1%)† 100 (0.2%)†

Supervised Learning 59.33± 0.49 44.57± 0.11 36.69± 0.70 16.02± 0.53 5.74± 0.64
Label Propagation [23] 61.57± 1.88 53.8± 0.76 48.84± 0.38 17.49± 1.01 4.94± 0.42

Mean-Teacher [44] 63.92± 0.51 54.64± 0.49 47.28± 0.82 20.45± 0.61 6.84± 0.89
LP+MT [23] 64.08± 0.47 56.27± 0.20 51.14± 0.44 21.40± 0.68 5.66± 0.84

MUSCLE+MT 66.07± 0.19 59.31± 0.45 54.53± 0.35 29.86± 0.85 11.01± 0.85

MUSCLE+MT+LP 64.79± 0.25 57.66± 0.62 52.48± 0.46 28.27± 0.73 10.51± 0.43

Table 2: Comparison with SOTA methods on CIFAR-100 with 13-Layer CNN. Average accuracy and standard deviation are
reported. The percentage of the labeled data, w.r.t the entire training dataset, is listed following the number of labels.
†Baseline results were generated by us.

used in [24] without sobel processing or the RandAugment

[8].

5. Experimental Evaluation

We first present the benchmark datasets used for the SSL

evaluation, followed by the network structure and hyper-

parameters settings. Then, we present a comparison be-

tween MUSCLE and the state-of-the-art methods. We also

introduce a set of ablation studies on several key factors of

MUSCLE. Finally, we include experiments to demonstrate

an explanation for MUSCLE’s main strengths.

5.1. Benchmarks Dataset

We conducted experiments on CIFAR-10 [25], CIFAR-

100 [25], and Mini-Imagenet [46]. We put a special empha-

sis on the performance when the amount of labeled data is

significantly reduced to showcase MUSCLE’s clear advan-

tage in data-starved scenarios. For example, for CIFAR-10,

while experiments in [44] used a minimum of 1000 labeled

data samples, and in [23] used a minimum of 500 labeled

data samples, in our experiments we included evaluations

on only 250 and 100 labeled data samples.

CIFAR-10 and CIFAR-100: Both CIFAR10 and CI-

FAR100 contain 60K of 32 × 32 RGB images, from 10

and 100 classes, respectively. In both datasets, all classes

have the same number of samples, 1

6
of which is dedicated

for testing and the rest is for training. For CIFAR-10, we

randomly selected 100, 50, 25, and 10 samples from each

class to form the labeled dataset. For CIFAR-100, we ran-

domly selected 100, 40, 25, 5, and 1 images from each class

to form the labeled dataset. We use the rest of the training

data as unlabeled samples.

Mini-Imagenet: Mini-Imagenet [46] is a subset of Ima-

geNet [9] that contains 60K 84×84 3-channel images from

100 classes. However, different from normal classification

datasets, it is split into 60-20-20 classes, where 60 classes

are for training, 20 classes for validating, and 20 classes for

testing. To evaluate SSL on this dataset, we followed the ap-

proach used in [23]. For each class, we randomly assigned

500 images to training and 100 images to testing. In total,

we used 50K images for training and 10K images for test-

ing. Then, we randomly selected 100, 40, and 25 images

from each class to form the labeled samples, and use the

rest of the training data as unlabeled samples.

5.2. Training

We implemented our method in PyTorch [33] and used

the public implementations of LP [23] and the MT [44].
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Dataset Mini-ImageNet

Top 1 Accuracy Top 5 Accuracy

Num of Labeled Images 10000 (20%) 4000 (8%) 2500 (5%)† 10000 (20%) 4000 (8%) 2500 (5%)†

Supervised Learning 39.63± 0.53 25.62± 0.36 19.01± 0.71 61.39± 0.46 44.26± 0.45 35.48± 0.73
Label Propagation [23] 45.47± 0.47 29.71± 0.69 22.41± 0.62 69.46± 0.31 52.74± 0.49 43.13± 1.01

Mean-Teacher [44] 44.82± 0.51 28.23± 0.23 22.34± 0.52 69.38± 0.95 51.94± 0.42 44.61± 0.78
LP+MT [23] 45.92± 0.37 28.67± 0.41 23.38± 0.35 70.99± 0.56 52.26± 0.63 45.67± 0.86

MUSCLE 45.86± 0.06 34.90± 0.47 28.95± 0.45 71.26± 0.10 60.81± 0.21 54.45± 0.83
MUSCLE+MT 49.47± 0.30 38.26± 0.15 32.56± 0.12 72.94± 0.29 63.35± 0.21 56.58± 0.29

MUSCLE+MT+LP 47.30± 1.12 37.35± 0.25 30.86± 0.53 71.06± 0.64 63.84± 0.53 56.79± 0.48

Table 3: Comparison with the SOTA Methods on Mini-Imagenet with Resnet18. Average accuracy and standard deviation
are reported. The percentage of the labeled data, w.r.t the entire training dataset, is listed following the number of labels.
†Baseline results were generated by us.

Dataset CIFAR-10 CIFAR-100

Num of Labeled Images 500 (1%) 250 (0.5%) 100 (0.2%) 10000 (20%) 4000 (8%) 2500 (5%) 500 (1%)

Hyper-Parameter Setting 1

Fixmatch [43] 84.12± 0.55 81.96± 0.75 73.98± 1.46 53.35± 0.72 45.37± 0.56 41.02± 0.31 21.02± 0.84
MUSCLE+FixMatch 84.59± 0.61 82.63± 0.78 76.06± 1.81 54.97± 0.24 47.71± 0.71 43.54± 0.33 23.73± 1.67

Hyper-Parameter Setting 2

Fixmatch [43] 90.53± 0.62 89.51± 0.71 81.62± 1.12 68.28± 0.19 62.28± 0.13 58.19± 0.31 32.52± 0.65
MUSCLE+FixMatch 90.91± 0.37 90.25± 0.39 83.51± 1.77 68.51± 0.23 62.66± 0.18 58.53± 0.49 33.94± 0.72

Table 4: Comparison with the FixMatch model on CIFAR10 and CIFAR100 datasets with 13-Layer CNN network. Two

hyper-parameter settings (Section 5.2) are used. Average accuracy and standard deviation are reported. The percentage of

the labeled data, w.r.t the entire training dataset, is listed following the number of labels. All results are generated by us.

SGD [38] was used to optimize all the models. We also im-

plemented the loss function of FixMatch [43] for combining

MUSCLE with FixMatch.

For CIFAR-10 and CIFAR-100, we used the 13-Layer

CNN network that was used in [44, 23]. For Mini-Imagenet,

we trained a Resnet18 network for the feature extractor. In

a mini-batch, similar to [24], we performed hard augmen-

tation on each image three times such that for each original

image, a single weakly augmented version can be paired

with three hardly augmented versions. This can increase

the generality and improve the training stability.

When we compare MUSCLE with MT [44] and LP [23],

we used the hyper-parameters in these methods. The net-

work was trained over 180 epochs and the initial learn-

ing rate for MUSCLE was 0.05 for all datasets. A Cosine

Learning Rate decay [30] was used to adjust the learning

rate where the learning rate reaches 0 at the 210th epoch.

In each training batch, there are 128 images in total, includ-

ing 64 labeled images. The ratio r (Section4.3) equals to 1.

We followed the baselines’ batch compositions and learning

rate when MUSCLE is not involved.

Upon comparing MUSCLE with FixMatch [43], we no-

ticed that FixMatch was trained on a TPU for 220 iterations

with a total batch size of 512 images, which is far beyond

the computing resources available to us. For a fair com-

parison and demonstrating the potential that FixMatch can

benefit from combining with MUSCLE, we evaluated Fix-

Match and MUSCLE with the same number of training it-

erations. We used two sets of training parameters: (1) the

hyper-parameter settings in the MT and LP models, which

were listed above. (2) the hyper-parameter settings in Fix-

Match with our batch composition and reduced number of

iterations, such that the model is trained for 300 epochs with

initial learning rate of 0.03. The learning rate is adjusted

over a 7

16
cycle of cosine learning rate decay. We separately

listed the comparison with FixMatch to avoid confusion.

5.3. Comparison with the State of the Art

Tables 1, 2, 3, 4, and 5 compare the testing accuracy

with supervised learning and the baseline methods [23, 44]

with and without the use of MUSCLE. With MUSCLE,

all baseline models consistently achieve better performance

on all three datasets and all experimental setups. For com-

paring with FixMatch, the performance increases on both

hyper-parameter settings for all datasets and all experi-

mental setups. It is important to also note that the accu-
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Dataset Mini-ImageNet

Top 1 Accuracy Top 5 Accuracy

Num of Labeled Images 10000 (20%) 4000 (8%) 2500 (5%) 10000 (20%) 4000 (8%) 2500 (5%)

Hyper-Parameters Setting 1

FixMatch [43] 26.71± 0.70 18.57± 0.32 14.12± 0.27 51.14± 1.80 39.38± 0.29 32.52± 1.29
MUSCLE+FixMatch 27.33± 0.19 18.72± 0.28 14.58± 0.29 52.43± 0.31 39.83± 0.65 33.16± 0.51

Hyper-Parameters Setting 2

FixMatch [43] 36.05± 0.84 25.82± 0.99 19.11± 0.94 59.26± 1.03 48.61± 1.82 39.58± 1.47
MUSCLE+FixMatch 37.71± 0.48 29.29± 0.12 24.73± 0.68 62.74± 0.22 53.60± 0.33 48.23± 1.05

Table 5: Comparison with the FixMatch model on the Mini-ImangeNet dataset with Resnet18 using two hyper-parameter

settings (Section 5.2). The top 1 and top 5 average accuracy and standard deviation are reported. The percentage of the

labeled data w.r.t the entire training dataset is listed following the number of labels. All results are generated by us.

racy boost achieved with MUSCLE increases as the num-

ber of the labeled images decreases. This matches our ex-

pectations and show the advantage of MUSCLE in label-

starved data scenarios. In Table 2 and Table 3, the perfor-

mance of MT+MUSCLE is better than MUSCLE+MT+LP.

The reason for this is that LP follows a two-stage train-

ing. The first stage trains the model without using LP for

acquiring necessary preliminary knowledge about the task.

Then, in the second stage, that knowledge is used to as-

sign pseudo labels. Due to LP’s properties, one hypothesis

we have is that the second stage needs to start with either

a highly accurate model, or a well-calibrated model [16].

However, in the case of a large number of classes (as in

CIFAR-100 and Mini-ImageNet), the base model trained

by MT+MUSCLE might not sufficiently satisfy either these

requirements. Thus, adding another training stage with LP

could be counter productive.

5.4. Ablation Study

Impact of r and Dropout Layer: We studied the

impact of the ratio r, explained in Section 4.3. Figure 2

(a) shows the testing accuracy with different values of r

on CIFAR-10. The performance is relatively flat for 1 <

r < 2. When r increases beyond 2, where unlabeled data

amount is much larger than the labeled data amount, the ac-

curacy decays significantly. For the Dropout Layer in the

13-layer CNN, MT [44] has provided a detailed ablation

study for showing its importance to MT model. However,

with MUSCLE included, as shown in Figure 2 (b), remov-

ing the Dropout layer can provide positive effect. Since

most of the commonly used networks (e.g. ResNet or VGG)

do not natively contain Dropout layers in the feature extrac-

tor, our method can be used with those networks without

changing the architecture.

Comparison with Contrastive Loss: To show the bene-

fit of the MIL in MUSCLE compared to simple Contrastive

Loss (CL), which is commonly used in self-supervised

learning, we provide two extra sets of ablation studies. First,

we trained models from scratch on CIFAR10 by either re-

placing MIL with CL or combining MIL with CL. Sec-

ond, we pre-trained models on CIFAR10 in an unsupervised

learning manner by either only using CL or combining CL

with MIL. Then, we fine-tuned them using either supervised

learning or MUSCLE. Results are shown in Figure 2 (c)

and (d), respectively. When training models from scratch,

merely using CL performs better than the supervised learn-

ing baseline, but worse than either CL+MUSCLE or MUS-

CLE alone. This outcome is easy to understand as the CL

considers each individual image as a standalone class. Even

if two samples belong to the same class, the loss still at-

tempts to push them away from each other. For the pre-

training+fine-tuning experiment, the outcome shows that al-

though adding MUSCLE to the pre-training stage hardly

provides any benefit, adding MUSCLE to the fine-tuning

stage clearly boosts the performance.

Sequestered Classes: The key point we claim for MUS-

CLE to work is that, compared with other SSL meth-

ods, MUSCLE can directly learn meaningful representa-

tions from unlabeled data due to involving USL early-on

in the training process. Therefore, MUSCLE should have

an advantage when the labeled data does not have enough

samples for representing a specific class. For verifying

this claim, we experimented on CIFAR-20, a hierarchical

dataset based on the CIFAR-100. CIFAR-20 groups the 100

classes from CIFAR-100 into 20 super-classes, with each

super-class having five sub-classes. In the same super-class,

although the images from different sub-classes share some

similarity, it is very hard to infer the super-class of a im-

age based on another image from a different sub-class. For

example, dolphins and otters both belong to aquatic mam-

mals, but it is hard to classify a dolphin to aquatic mam-

mal by only knowing otters are aquatic mammals. In this

case, we introduce a new experimental setup. We randomly

select a sub-class for each super-class and completely re-
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(a) (b) (c) (d)

Figure 2: Ablation studies on CIFAR-10: (a) Batch composition ratio r (Section 4.3) vs. testing accuracy on MUSCLE+MT,

(b) Impact of the dropout layer in the 13-layer CNN network, (c) Comparison on unsupervised learning losses when learning

from scratch, (d) Comparison on unsupervised learning losses when performing pre-training followed by fine-tuning.

move all label information for that sub-class and call them

unlabeled class. Then, we randomly select k images from

the rest of the classes to form the labeled dataset and call

them labeled classes. In other words, an unlabeled class

will not contribute to the labeled data but they still con-

tribute to the unlabeled data. By following this setup, we

believe that the selected labeled images cannot fully repre-

sent their super-classes. In Figure 3, we can see that, com-

pared with supervised learning and MT, MUSCLE delivers

a performance boost in all three types of classes, but the ma-

jority of the performance improvement is in the unlabeled

class. Furthermore, the entropy of the predictions on test-

ing data shows that for both supervised learning method and

MT model, the predictions can be affected by the class type

and the amount of labeled data, whereas MUSCLE has a

very constant prediction entropy across all class types and

label amounts.

6. Conclusion

We presented Mutual-information-based Unsupervised

and Supervised Concurrent LEarning (MUSCLE), which

is a powerful framework for semi-supervised learning that

combines the merits of leading SSL and USL techniques.

In contrast to prior attempts, MUSCLE involves USL in the

training process from the first iteration. MUSCLE achieved

consistent improvement over the state of the art over three

standard datasets, across all experimental setups. The per-

formance boost gained by MUSCLE is maximum when the

amount of training data is lowest, e.g. one sample per class

for CIFAR-100. MUSCLE’s power is further underscored

by its extra robustness in the situation when the labeled data

is biased. Finally, MUSCLE exhibited significant potential

in fine-tuning pre-trained models.

(a) Accuracy with 2000 Label Images (b) Accuracy with 4000 Label Images

(c) Entropy with 2000 Label Images (d) Entropy with 4000 Label Images

Figure 3: Average accuracy and prediction entropy by dif-

ferent class types on CIFAR-20: (a)-(b) testing accuracy,

(c)-(d) average prediction entropy.
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