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Abstract

In this paper, we propose a unified real-time framework

for gait-based age estimation and gender classification that

uses just a single image, which reduces the latency in video

capturing compared with the existing methods based on a

gait cycle. To cope with the problem of lacking motion in-

formation in the input single image, we first reconstruct a

gait cycle of a silhouette sequence from the input image via

a gait cycle reconstruction network. The reconstructed gait

cycle is then fed into a state-of-the-art gait recognition net-

work for feature representation learning, which is further

used to obtain the class of the gender and the estimated

probability distribution of integer age labels. Unlike the

existing methods focusing on the gait sequences captured

from the side view, the proposed method is applicable to

the gait images from an arbitrary view with a single trained

model, which is more suitable for real-world application

scenarios (e.g., automatic access control). Stand-alone and

client-server online systems were implemented based on the

proposed method, which validates the real-time/online prop-

erty in actual scenes. The experiments on the world’s largest

multi-view gait dataset demonstrate the effectiveness of the

proposed method, which achieves performance improvement

compared with the benchmark algorithms.

1. Introduction

Gait is a behavioral biometric that has unique advantages

in the following aspects: it can be recognized without subject

cooperation; it is effective even at a large distance from a

camera with low-resolution images. Gait recognition has

therefore been applied to surveillance, forensics, and crim-

inal investigation by taking advantage of the CCTVs now

widely installed in public areas [6, 15, 30].

Currently, most studies on gait analysis aim at person

authentication and identification [38, 43, 11, 33, 48, 34, 21,

47, 7, 49, 23], i.e., hard biometrics. On the other hand, the

soft biometrics, such as age estimation and gender classifica-

tion, also own great application potential [51]. In addition to

help with the surveillance applications as an additional cue

(e.g., finding lost children/elderly), gait-based age estimation

and gender classification can also be used for some commer-

cial applications, for examples, an automatic access control

for specific places or systems with age/gender limit, and

a dialogue robot providing guidance and recommendation

services in a shopping mall.

Most existing studies on gait-based age estimation [32,

27, 26, 28, 42, 41] and gender classification [13, 24, 55, 8,

36, 29, 56, 16] utilize the gait feature extracted from a gait

cycle of a silhouette sequence, such as the gait energy image

(GEI) [11]. Relying on a gait feature from a full gait cycle,

however, results in the latency of capturing a video with

the required time length (e.g., around one sec.), which is

unfavorable for real-time online applications.

An direct solution to this problem is to reduce the required

video length, such as estimation from just a single image,

which has not been investigated to the best of knowledge.

In this case, the time occupied by data capturing is greatly

reduced, which is more suitable for the real-time systems.

For example, a dialogue robot can know the age and gender

of a customer in a shopping mall before he/she approaches,

and hence can quickly change the guidance/recommendation

mode and contents according to the estimation results. In the

case of simultaneous processing of multiple subjects, which

is often considered in the automatic access control, single

image-based age estimation and gender classification may

reduce the processing time by times, as well as solving the

temporal partial occlusion possibly occurs when multiple

subjects walking towards, which is a real-world challeng-

ing factor that affects the performance of gait cycle-based

approaches.

Nevertheless, estimation of the age and gender using

just a single image is pretty challenging because of lack

of individual gait motion information. In fact, the age and

gender-related gait patterns are reflected in terms of both

body shape (e.g., larger head-to-body ratio for children, and
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Figure 1. Comparison of age estimation and gender classification

from (a) a single image, and (b) a full gait cycle. Each row shows

the single image and gait cycle of the same subject, with his/her

actual age and gender shown in the right. The single image does not

contain any motion information, which makes age estimation and

gender classification very difficult, whereas the age/gender-related

characteristics appear in the full gait cycle (e.g., larger stride and

arm swing for the first young male subject, and much smaller stride

for the last elderly female subject) to help with the estimation.

middle-age spread and stoop for elderly) and temporal pose

changes (e.g., larger stride length for youth, relatively small

stride and arm swing for females compared with males) [32,

51], which are both contained in the gait cycle-based features,

such as GEI. By contrast, only the body shape is visible in

the captured single image, which may significantly affect

the performance if we estimates the age and gender directly

from the single image, as shown in Fig. 1(a). Since the

motion patterns (e.g., stride) can never be observed in the

input single-support phases, and the body shapes in these

frames do not appear obvious age-related patterns (e.g., large

head-to-body ratio, large stoop), it is very possible to obtain

large estimation errors for these subjects if only this frame is

considered, whereas a full gait cycle provides more motion

characteristics for easier estimation (e.g., larger stride and

arm swing for young male subject, and much smaller stride

for elderly female subject), as shown in Fig. 1(b).

Therefore, it is reasonable to consider improving the per-

formance of age estimation and gender classification by

reconstructing a full gait cycle of a silhouette sequence from

the given single image first, which has already been investi-

gated in the field of single image-based gait recognition [50],

and extremely low frame-rate gait recognition [2, 1, 3, 31].

The rationale behind the gait cycle reconstruction from a

single image is that a snapshot of a single gait image in a nat-

ural gait sequence implies the motion (i.e., pose sequences)

before or after this frame while maintaining the gait individ-

uality [50]. Thus, the reconstructed gait cycle increases the

individual gait motion information that can be used for the

subsequent procedures.

We therefore propose a real-time end-to-end CNN frame-

work for gait-based age estimation and gender classification

from a single image, which first reconstructs a gait cycle

with continuous pose changes from the input single image

before the final estimation and classification tasks. More

specifically, given a single gait image, a gait cycle recon-

struction network first reconstructs a silhouette sequence

of a gait cycle, which is further fed into a sequence-based

gait recognition network for discriminative feature learning.

Finally, the learned feature is used to obtain the estimated

gender class and age label probability distribution. The con-

tributions of this work are three-fold.

1. A single CNN model applicable to a gait image from

an arbitrary view.

Unlike most studies on gait-based age estimation and

gender classification focusing on the side view [32, 27, 26,

28, 42, 41, 24, 55], and a few works on gender classification

that considered multiple views by applying view-dependent

models [36, 10], the proposed method handles the gait image

from an arbitrary view using a single CNN model without

requiring the view information. This is more suitable for the

real application scenarios as there are no restrictions on the

observation view angle of the captured subjects.

2. Simultaneous age estimation and gender classification

from a single gait image for the first time.

The proposed method uses a single image to conduct age

estimation and gender classification simultaneously, which

has not been studied to our knowledge. It enables the ac-

quisition of estimated age and gender information without

latency in gait video capture, and hence is more suitable

for the real-time online system. The effectiveness of the

proposed method is demonstrated through the experiments

on the world’s largest multi-view gait dataset, i.e., the OU-

ISIR Gait Database, Multi-View Large Population Dataset

(OU-MVLP) [39], which yields superior performance than

the state-of-the-art approaches.

3. Implementation of online systems.

We implemented two online systems: a stand-alone sys-

tem and a client-server system, based on the proposed

method using a single video camera, which directly ob-

tains the estimation results during the subjects’ walking

without extra requirements. The computational time of the

stand-alone system was evaluated in an actual online envi-

ronment, which validated its real-time property for possible

application to automatic access control systems or dialogue

robots. We also demonstrated that a client computer without

a general-purpose GPU (e.g., a tablet computer) successfully

ran our application online with a web API.

2. Related work

2.1. Gait­based age and gender analysis

Age estimation. Apart from some early works focusing on

age group classification, most researches tackle age estima-

tion, where approaches using different kinds of machine

learning techniques and CNN frameworks were applied on

appearance-based features (e.g., GEI). Compared with the

traditional methods [32, 51, 28, 26, 20] that employed typical

regression methods (e.g., Gaussian process regression [32])

with incorporated manifold analysis [28, 20], CNN-based
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methods [40, 59, 22] achieved significantly promoted perfor-

mance. For examples, Sakata et al. [40] utilized DenseNet

for age value regression, and Zhu et al. [59] proposed a

global and local CNN combining with an ordinal distribu-

tion regression.

Unlike above-mentioned methods that estimate a single

age value, Sakata et al. [41] proposed a label distribution

learning framework, which estimates a probability distribu-

tion (i.e., uncertainty) of the estimated age. This is more

favorable for some real applications since it helps reduce the

risk caused by estimation errors, for example, the robot can

show broader recommendations for the target customer if

the uncertainty is large.

However, most of the existing studies on gait-based age

estimation focused on the gait images captured from the side

view, which may limit their use in real-world applications.

Gender classification. Instead of fitting a human model by

the model-based approaches [19, 53, 13, 45], appearance-

based methods [24, 55, 12, 29] directly used the appearance-

based features (e.g., GEI) without model fitting, which re-

duces the fitting errors and computational time. Several

works [13, 8, 56, 9] fused the features from multiple views

to gain more gait information for robust classification, and

achieved better performance than aforementioned single

view-based studies. To handle temporal partial occlusion

in a gait cycle, Isaac et al. [14] classified the gender for

each frame independently, and obtained the gender class of

a sequence via majority voting. In [10], a real-time gender

classification method was proposed using part of the gait

cycle (i.e., setting as 15 frames), as well as a view-dependent

classifier to reduce the effects of different views. Using part

of the gait cycle, however, still requires the latency in video

capturing, and the view estimation error may also affect the

performance of view-dependent classification.

Multiple tasks. A few studies [37, 57, 58, 42] tackle age

estimation, gender classification, and/or hard biometrics si-

multaneously. In [37], identity, gender and age were simulta-

neously output from a multi-task CNN, which adopts optical

flow sequences as the input, and in [58], body shape param-

eters (i.e., BMI) was also obtained by inputting both GEI

and silhouette images into a joint CNN. While Zhang et al.

[57] proposed a deep CNN with multi-task learning for age

estimation, which also integrates the gender information for

performance improvement, Sakata et al. [42] proposed a

multi-stage CNN to incorporate the tasks of gender and age

group classification before final age regression.

However, the aforementioned single-task and multi-task

researches all relied on a gait cycle or a sequence with a

certain time length, which results in latency for data capture.

2.2. Gait cycle reconstruction

Reconstructing a gait cycle from a single image or

a few images is often considered in the fields of gait

recognition from a single image [50] and low frame-rate

videos [31, 1, 2, 4, 5]. While a few works explored the

direct reconstruction of a single GEI template [4, 5], most

works chose to recover a silhouette sequence of a gait cycle

instead [3, 31, 1, 2, 50], which contains more temporal in-

formation than a single GEI. Unlike the traditional manifold

learning-based approaches [31, 1, 2] that only optimized the

performance of reconstruction, an end-to-end CNN-based

method [50] achieved superior recognition performance by

simultaneous optimization of the phase-aware gait cycle re-

constructor (PA-GCR) and following recognition network,

which ensures the balance between reconstruction quality

and recognition accuracy. We therefore employ PA-GCR as

the module responsible for gait cycle reconstruction in our

whole framework.

3. Proposed method

3.1. Overview

The proposed method automatically estimates the age

and classifies the gender of a subject during his/her walk-

ing, as outlined in Fig. 2. After capturing a single gait

image using a normal video camera, the silhouette image is

first extracted by background subtraction-based graph-cut

segmentation [35]. The size-normalized and gravity center-

registered silhouette is then obtained [33] to be used as input

for the proposed method.

In the training phase, we input a pair of silhouettes from

the same subject with different phases (i.e., poses) to mit-

igate the possible intra-subject variations existed in the re-

constructed gait cycles and the final estimation results. The

parameters are shared among this parallel networks. A full

gait cycle is first reconstructed from the input image via the

PA-GCR [50], which is further fed into the state-of-the-art

sequence-based gait recognition network (i.e., GaitSet [7])

to learn a discriminative feature representation. The learned

feature is finally used to obtain the probability distribution

of the gender labels and integer age labels, as well as the

expectation calculated from the estimated age label distribu-

tion, which is regarded as the estimated age value. In the test

phase, only a single image is required to output the gender

class and estimated age.

3.2. Gait cycle reconstruction via PA­GCR

The PA-GCR is a gait cycle reconstruction module that

takes a single silhouette image as the input and output a full

gait cycle with specified phases. Four parts are contained

in the PA-GCR, i.e., encoder, phase estimator, feature trans-

former, and decoder. During the training process, the PA-

GCR is jointly optimized with the following feature learning

module in an end-to-end manner, which aims to achieve the

trade-off between the performance of reconstruction, and

final age estimation and gender classification. We will briefly
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Figure 2. Overview of the proposed method. The digits represent the dimension of the features. GT and fc denote the ground truth and fully

connected layer, respectively. In the training phase, a pair of single images from the same subject is used as the inputs, and the network

parameters are shared; in the test phase, only a single image is fed into the network to output the estimated gender class and age label

distribution, and the expectation of the label distribution is computed as the final estimated age value.

introduce it and readers may refer to [50] for more details.

Following [50], the phase of a silhouette is represented

as a 2D vector using cosine and sine functions of a cyclic

angle, and the ground truth of the gait cycle is set to a fixed

number of frames with synchronized phases among different

subjects. To mitigate the dependence of the encoded feature

on the input phase, a similarity loss is defined to minimize the

difference between the phase-independent features obtained

by the feature transformer for an input pair of the same

subject as

Lsim =
1

N

N
∑

n=1

‖f α
n − f β

n‖
2
2, (1)

where f α
n and f β

n are the transformed features of n-th in-

put pair (n = 1, . . . , N) with phase θ
α and θ

β (α, β =
1, . . . , T ), respectively. N is the number of training pairs,

and T is the number of frames in a gait cycle, which is set to

20 experimentally.

The reconstructed cycle is then generated by the decoder

using the transformed phase-independent feature, which is

constrained by a reconstruction loss as

Lrec =
1

N

N
∑

n=1

∑

t∈{α,β}

‖RCt
n −GTCn‖

2
2, (2)

where RCt
n (t ∈ {α, β}) is the reconstructed gait cycle for

n-th input with phase θ
t, and GTCn is the corresponding

ground truth gait cycle.

3.3. Feature extraction via GaitSet

Unlike most gait recognition networks using GEI as an

input [44, 48, 47, 54, 21], GaitSet [7] directly inputs a sil-

houette sequence, which is treated as a set of images, and

yields the state-of-the-art performance in the gait recogni-

tion community. We therefore employ GaitSet to extract

discriminative gait feature from the reconstructed gait cycle.

Each of the silhouette in the reconstructed gait cycle is

first fed into a CNN to extract frame-level feature indepen-

dently, which is then aggregated into a single set-level feature

using set pooling. A discriminative representation is further

obtained from the set-level feature by horizontal pyramid

mapping, where features on different scales with different

spatial locations are combined.

The feature learned by GaitSet is finally used to obtain the

gender class and estimated age via a fully connected layer

with Softmax normalization, respectively. As mentioned in

[41] and Section 2.1, the uncertainty of the estimated age

is quite beneficial for real applications, we therefore output

a probability distribution of discrete age labels instead of a

single age value; hence, the dimension of the output vector

for gender and age is set to two and Y , respectively, and Y
is set to 100 in our implementation.

3.4. Loss functions

Age estimation. To supervise the output age label distri-

bution, we adopt JensenShannon (JS) divergence [25] to

measure the similarity between the estimated probability

distribution and a ground truth probability distribution. Com-

pared with the KullbackLeibler (KL) divergence used in

[41], the JS divergence is an extended version that consid-

ers symmetry, and hence is more suitable for the proposed

method which takes a pair of single images as the network

input. Given two probability distributions P (xi) and Q(xi)
for discrete variables {xi} (i = 1, . . . , I), the JS divergence
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between them is defined as

JS(P‖Q)=
1

2
KL

(

P

∥

∥

∥

∥

P+Q

2

)

+
1

2
KL

(

Q

∥

∥

∥

∥

P+Q

2

)

, (3)

where KL(·) is the KL divergence [18] between

two distributions, which is defined as KL(P‖Q) =
∑I

i=1 P (xi)(logP (xi)− logQ(xi)).
Denote the estimated age label distribution for the n-

th input pair with phase θ
t (t ∈ {α, β}) as â

t
n =

[âtn(1), . . . , â
t
n(Y )]T ∈ R

Y , where âtn(y) (y = 1, . . . , Y )
is the estimated probability for the interger age y. The cor-

responding ground truth probability distribution is denoted

as a t
n = [atn(1), . . . , a

t
n(Y )]T , which is set to a Gaussian

distribution with the mean and standard deviation of the

ground truth age yn and 1, respectively. Similar as [41], we

adopt the single estimated age value as the expectation of

the estimated probability distribution, which is computed

as ŷtn =
∑Y

y=1 yâ
t
n(y). We therefore define a loss function

to minimize both the JS divergence between the estimated

and ground truth age label distributions, and the L1 distance

between the expected age and ground truth age as

Lage =
1

N

N
∑

n=1

∑

t∈{α,β}

(JS(â t
n‖a

t
n) + ‖ŷtn − yn‖1). (4)

Because the inputs from the same subject with different

phases may cause the intra-subject differences in the esti-

mated age, we additionally define a loss function to force the

age estimation results to be similar between the input same

subject pair, which is computed as

Lap =
1

N

N
∑

n=1

(JS(âα
n‖â

β
n) + ‖ŷαn − ŷβn‖1). (5)

Gender classification. Let the output vector for gender be

ĝ
t
n = [ĝtn, 1 − ĝtn]

T ∈ R
2, where ĝtn and 1 − ĝtn indicates

the predicted probability for female and male, respectively.

A binary cross-entropy loss is defined between the predicted

probability and ground truth gender class gn as

Lgen = −
1

N

N
∑

n=1

∑

t∈{α,β}

(gn log ĝ
t
n+(1−gn) log(1− ĝtn)).

(6)

Similarly, a loss function to minimize the difference in

output gender probability between the input training pair is

computed as

Lgp =−
1

N

N
∑

n=1

(ĝβn log ĝαn + (1− ĝβn) log(1− ĝαn)

+ ĝαn log ĝβn + (1− ĝαn) log(1− ĝβn)).

(7)

Joint losses. We finally combine all loss functions to simul-

taneously optimize the whole framework in an end-to-end

manner, which ensures a well balance between the recon-

struction quality and accuracies of gender classification and

age estimation. The joint loss function is computed as

Ljoint = wsimLsim + wrecLrec + wage(Lage + wapLap)

+ wgen(Lgen + wgpLgp),
(8)

where wsim, wrec, wage, wap, wgen, and wgp are the corre-

sponding weights for each single loss function.

4. Online systems

We implemented two online systems: one is a stand-

alone system and the other is a client-server system where

the client and server communicate via a web API each

other. While a computer for the stand-alone system and

the server is equipped with a general-purpose GPU, i.e.,

NVIDIA GeForce RTX 2080 Ti, that for the client does not

need it and a conventional tablet computer, Surface Go 2,

was used as the client.

We employed Microsoft Kinect v2 as an input device and

extract walking persons’ silhouettes from each captured sin-

gle depth image by a background subtraction. We then regis-

ter and size-normalize each person’s silhouette into an image

with the size of 64 × 64 pixels. The above mentioned pre-

preprocessing part was implemented by C++ and OpenCV.

On the other hand, we implemented a deep learning mod-

ule composed of gait cycle reconstruction and age/gender

estimation by Python and PyTorch and converted them by

Boost.Python so as to be called from C++.

The stand-alone system was implemented by simply com-

bining the above-mentioned pre-processing and deep learn-

ing modules. Hence, the stand-alone system can show the

estimated gender and age for each subject in each captured

single frame, as shown in Fig. 5.

As for the client-server system, once the client sends a

capture depth image to the server with the web API, the

server processes it with the pre-processing and deep learning

modules and returns the estimation results to the client again

via the web API. The latency due to communication over

network naturally arises for the client-server system, and

hence the real-time processing at standard video rate (e.g.,

30 fps) is difficult. The system can, however, still work

well thanks to the proposed single frame-based processing

under the latency (e.g., a few frames per second), unlike the

conventional video-based gait analysis assumes inputs are

captured at the standard video rate.

5. Experiments

5.1. Dataset

We trained and evaluated the proposed method on OU-

MVLP [46], which is the world’s largest gait dataset with

a wide view variation. It contains 10,307 subjects (5,114
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Figure 3. Distribution of subjects’ genders and ages in the OU-

MVLP dataset.

males and 5,193 females) with ages ranging from 2 to 87

years old. The distribution of subjects’ genders and ages is

shown in Fig. 3. Each subject was captured from 14 views,

ranging 0◦–90◦ and 180◦–270◦ in 15◦ interval, with two

sequences (‘00’ and ‘01’) captured for each view. Following

the original protocol, we used 5,153 subjects for training and

the other disjoint 5,154 subjects for testing. In the training

phase, the images from both ‘00’ and ‘01’ sequences in all

views were simultaneously used to train a single CNN model;

in the test phase, the performance was evaluated for each

view independently using only ‘00’ sequence, from which a

single frame was randomly chosen as the network input.

5.2. Training details

The network was trained using Adam [17] with the batch

size of 8× 16, which indicates 8 subjects with 16 samples

for each were chosen to constitute a mini-batch. Note that

only the same subject pairs in a batch were used for train-

ing process. We followed the training strategy in [50], i.e.,

first trained PA-GCR only for the first 30K iterations with

an learning rate of 10−4, and then included the following

GaitSet to train more 250K iterations with learning rates of

10−5 and 10−4 for PA-GCR and GaitSet, respectively, which

were both reduced by 0.1 for the final 100K iterations. The

weight parameters wsim, wrec, wage, wap, wgen, and wgp in

Eq. 8 were experimentally set to 0.0005, 10, 1, 1, 2, and

0.01, respectively.

5.3. Evaluation metrics

We evaluated the accuracy of gender classification using

mean correct classification rate (CCR), and evaluated that

of the estimated age using mean absolute error (MAE) and

cumulative score (CS) [32]. Let ŷi and yi be the estimated

age and ground truth age of the i-th test sample, the MAE is

computed as MAE = 1
Ns

∑Ns

i=1 |ŷi − yi|, where Ns is the

number of test samples. The CS for y-year absolute error

tolerance is computed as CS(y) = Ns(y)/Ns, where Ns(y)
is the number of samples whose estimation absolute error is

within y years.

To measure the performance of estimated probability dis-

tribution, we computed a mean cross-entropy (MCE) be-

Table 1. MAE [year], CSs [%], MCE, and mean CCR [%] over all

samples from all 14 views for the proposed method, GEINet [41]

and GaitSet [7]. Bold indicates the best results.

Method MAE CS(1) CS(5) CS(10) MCE CCR

GEINet 9.11 15.70 46.73 65.82 -13.60 N/A

GaitSet 9.02 16.39 47.59 66.01 -5.04 92.72

Ours 8.39 15.84 48.00 68.40 -4.27 94.27

tween the estimated and ground truth distribution as

MCE =
1

Ns

Ns
∑

i=1

100
∑

y=1

ai(y) log(âi(y)), (9)

where ai(y) and âi(y) are the ground truth and estimated

probability of age label y for i-th test sample. We further

defined the ground truth distribution as a delta function of

the ground truth age yi, and hence Eq. 9 is converted to

MCE =
1

Ns

Ns
∑

i=1

log(âi(yi)), (10)

which is a log likelihood for the estimated age label distribu-

tion that gets larger when the estimated probability for the

ground truth age is larger.

5.4. Comparison with benchmarks

Because this is the first work tackling single gait image-

based age estimation and gender classification, we compared

the proposed method with a baseline, i.e., pure GaitSet [7] di-

rectly using a single image without gait cycle reconstruction,

and a state-of-the-art age estimation method, i.e., GEINet

that estimates an age label distribution using KL divergence-

based loss function [41] in Table 1. Note that both the

GaitSet and GEINet were trained and tested using the same

samples as ours.

Compared with the GEINet with a simple network struc-

ture, the sequence-based GaitSet yields slightly better MAE

and CSs, and significantly better MCE, which indicates that

GaitSet still extracts more effective features even if only a

single image is used. All three methods gain similar CS

for 1-year absolute error, which is easier to be achieved for

children and teenagers because the body shape differences

(e.g., head-to-body ratio) are obviously observed even in a

single frame. On the other hand, age estimation for adults

is much more difficult if only a single frame is used, which

only contains the shape information; hence, the proposed

method obtains much better performance for adults by re-

constructing a gait cycle, which is illustrated by the CS for

larger absolute error tolerance, and also the scatter plots in

the supplementary material. Therefore, the proposed method

achieves the best performance for both age estimation and

gender classification in general.

We also report the MAE, MCE and CCR of each view

for the proposed method in Table 2. The performance of
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Table 2. MAE [year], MCE and CCR [%] of each view for the proposed method.

Metrics 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ Mean

MAE 8.91 8.83 8.27 8.48 8.35 8.08 7.83 9.24 8.86 8.61 8.48 8.11 7.88 7.74 8.39

MCE -4.28 -4.36 -4.29 -4.34 -4.27 -4.21 -4.19 -4.42 -4.34 -4.30 -4.34 -4.19 -4.16 -4.16 -4.27

CCR 91.5 93.0 94.5 94.6 95.0 94.9 95.7 93.0 93.6 94.9 94.8 94.4 94.6 94.9 94.3

Table 3. Ablation experiments evaluated by MAE [year], MCE and mean CCR [%] over all 14 views.

Network Age loss Pair loss
#Training

input frame
Test input

Results

MAE MCE CCR

GaitSet JS + L1
√

1 1 frame 9.02 -5.04 92.72

Proposed L1 (regression)
√

1 1 frame 8.72 N/A 93.87

Proposed KL + L1
√

1 1 frame 8.61 -4.47 93.71

Proposed JS + L1 × 1 1 frame 8.55 -4.77 94.07

Proposed JS + L1
√

1 1 frame 8.39 -4.27 94.27

GaitSet (upper bound

for reconstruction)
JS + L1

√
20 GT cycle 6.63 -4.75 96.04

both age estimation and gender classification is better for

the views around the side view (e.g., 75◦and 90◦), and is

worse for those around the front/back view (e.g., 0◦and 15◦).

This is understandable because both the body shape (e.g.,

middle-age spread) and motion (e.g., stride) patterns that

indicate age and gender are clearer near the side view, which

is true for both a single image and a reconstructed gait cycle.

5.5. Ablation study

The results of ablation experiments for the proposed

method are shown in Table 3. In the first row, the part of

gait cycle reconstruction (i.e., PA-GCR) was removed from

the proposed method, i.e., the GaitSet was trained and tested

using a single frame. The second and third rows show the ef-

fects of loss function Lage by: changing the task of age label

distribution estimation into single age value regression, i.e.,

using a fully connected layer with 1-dim output to regress

a scalar value and computing a L1 loss between the output

and ground truth age; replacing the JS divergence in Eq. 4

with KL divergence used in [41]. The fourth row shows the

results of removing the loss functions defined between the

input pair (i.e., Lap and Lgp). The fifth row is the result of

the proposed method. The upper bound of the gait cycle

reconstruction framework is shown in the last row, which

was done by testing with ground truth gait cycle using the

GaitSet model pre-trained with 20 frames-input.

Compared with directly extracting features from a single

image using GaitSet (first row), the performance of both age

estimation and gender classification was clearly improved

using the proposed method (fifth row), which shows the

effectiveness of reconstructing a gait cycle before feature

extraction. As shown in the second, third and fifth rows,

the age label distribution estimation-based methods worked

better than the regression-based method that outputs a sin-

gle age value, because the former mitigated the estimation

errors caused by the subjects with similar appearances but

different actual ages (e.g., a middle-aged with slim body)

by providing the uncertainty for different age labels [41].

Additionally, thanks to the symmetric property of JS diver-

gence measure, the proposed method gained better results

than that using the KL divergence measure. Including con-

straints on output between training pairs also improved the

performance (comparing fourth and fifth rows), as it reduced

the intra-subject differences in estimations resulted from

the phase differences of the input frames. Therefore, all

analyzed components contributed to the proposed method.

The GaitSet using the ground truth gait cycle (last row)

obtained much better results for MAE but worse for MCE

compared with the proposed method using reconstructed

gait cycle. This means that the accuracy of estimated age

probability distribution is somewhat sacrificed to achieve a

relatively good estimation of a single age value during the

training process, which easily happens when the weighted

sum-based loss function is adopted for multiple tasks.

5.6. Visualizing age label distribution

We then qualitatively evaluated the estimated age label

distribution by comparing the proposed method with the

one frame-based GaitSet (i.e., first row in Table 3) and the

ground truth cycle-based GaitSet (i.e., last row in Table

3). Two examples are shown in Fig. 4, where the first

subject is an adult captured from 90◦, and the second is an

elderly captured from 0◦. More examples are shown in the

supplementary material.

Because the first subject shows a relatively larger head-

to-body ratio in the given single frame due to the hair style,

the one frame-based GaitSet under-estimated this subject as

a child with a large probability (i.e., sharp peak in the distri-

bution) based only on this shape characteristics. Similarly,

due to the quite limited shape information captured from

0◦, where age-related patterns (e.g., stoop) are difficult to be

observed, the one frame-based GaitSet estimated the second

subject as a youth, which results in a large estimation error.

By contrast, the reconstructed gait cycle reflects more in-
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Figure 4. Two examples for visualizing age label distribution. (a)

Input single image with the ground truth age. (b) For each example,

first row is a half of the reconstructed gait cycle by the proposed

method, and second row is the corresponding ground truth half

cycle. (c) Estimated age label distribution by each method (left:

first subject. right: second subject). The digits shown after each

method is the corresponding estimated age, and the black dotted

line indicates the ground truth age.

formative motion patterns, such as the stride-to-height ratio,

which should be relatively smaller for the adults compared

to the children [32, 52], and hence the proposed method

estimated the first subject as an adult instead. Moreover,

due to the limited physical changes, the gait differences

among adults (e.g., 20–40 years old) are quite small, which

is difficult to correctly judge an exact age value; hence, the

proposed method showed the uncertainty on estimated age

by assigning probabilities to a range of age labels, while the

probabilities around the ground truth age is also relatively

larger. Therefore, the proposed method returned a reason-

able age label distribution that is consistent with our prior

knowledge and insights from [41].

On the other hand, the ground truth cycle-based GaitSet

also outputted a probability distribution for an appropriate

range of age labels. While the proposed method assigned

similar probabilities to a relatively wider age range (e.g.,

30–40 years old for the first subject), the ground truth cycle-

based GaitSet predicted a much larger probability for a spe-

cific age around the ground truth age (i.e., 34 years old for

the first subject). This results in smaller estimation error

for the final expected age from the distribution, whereas the

probability for the ground truth age is relatively smaller com-

pared with the proposed method, which is consistent with

the results of quantitative evaluation shown in Table 3.

5.7. Processing time of online system

To validate the real-time processing capability of the on-

line stand-alone system, we evaluated the running time of

the system in an online environment. While a single/multiple

subjects walking in the capture scene, the system automati-

Figure 5. A snapshot of the online system in an actual online scene.

Left: overview of the capture scene with a walking subject and the

results shown in the system at the same time, right: an enlarged

image of the system shown in the left. The system still works for a

person from a back view unlike face biometrics. Video examples

are found in the supplementary material.

Table 4. Processing time [msec.] for different number of subjects

detected from the captured image.

#Detected subjects 0 1 2 3 4

Processing time 2–3 10–12 16–19 26–27 35

cally outputted the estimated age and gender for each of the

subject frame-by-frame, as shown in Fig. 5. The processing

time for different number of subjects detected from the cap-

tured image is shown in Table 4. Obviously, the proposed

system meets the requirements of a real-time online system,

since the computation time is less than/around the frame rate

of Kinect (i.e., 30 fps) for even multiple subjects.

6. Conclusion

This paper presented a real-time CNN framework for gait-

based age estimation and gender classification from a single

image. A full gait cycle is first reconstructed from the input

single image by the PA-GCR, and the reconstructed gait

cycle is then used for feature leaning by the GaitSet. Finally,

the estimated gender class and age label probability distribu-

tion are obtained from the proposed network simultaneously.

We also implemented two online systems: the stand-alone

system and the client-server system to demonstrate the pro-

posed method works real-time/online.

An important future work is to evaluate the performance

of the proposed method by capturing images in an actual

online situation. Another possible extension is to directly

output a continuous age distribution instead of discrete label

distribution, and also include a regularizer for smoothing

the estimated distribution. Additionally, since the system

may receive more than one frame when the subjects walk-

ing towards, the fusion of the results obtained by multiple

frames is also worth investigating, which can further im-

prove the estimation accuracy and stability compared with

the independent frame-by-frame version.
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