Vid2Int: Detecting Implicit Intention from Long Dialog Videos

Xiaoli Xu1* Yao Lu1* Zhiwu Lu1,2† Tao Xiang3

1Gaoling School of Artificial Intelligence, Renmin University of China
2Beijing Key Laboratory of Big Data Management and Analysis Methods
3University of Surrey, United Kingdom

lmnhsp@gmail.com luyao777@ruc.edu.cn luzhiwu@ruc.edu.cn

Abstract

Detecting subtle intention such as deception and subtext of a person in a long dialog video, or implicit intention detection (IID), is a challenging problem. The transcript (textual cues) often reveals little, so audio-visual cues including voice tone as well as facial and body behaviour are the main focuses for automated IID. Contextual cues are also crucial, since a person’s implicit intentions are often correlated and context-dependent when the person moves from one question-answer pair to the next. However, no such dataset exists which contains fine-grained question-answer pair (video segment) level annotation. The first contribution of this work is thus a new benchmark dataset, called Vid2Int-Deception to fill this gap. A novel multi-grain representation model is also proposed to capture the subtle movement changes of eyes, face, and body (relevant for inferring intention) from a long dialog video. Moreover, to model the temporal correlation between the implicit intentions across video segments, we propose a Video-to-Intention network (Vid2Int) based on attentive recurrent neural network (RNN). Extensive experiments show that our model achieves state-of-the-art results.

1. Introduction

Implicit intention detection (IID) from a long dialog session consisting of multiple question-answer pairs (see Fig. 1) is a challenging problem that has attracted multiple research disciplines. Specifically, it has been studied by researchers from psychology [7, 2], linguistics [3], sociology [9], and recently computer vision [47, 12]. Note that solving IID automatically without relying on a human expert has many potential real-world applications such as court trials [32] and financial loan risk assessment [49]. For instance, a deception detection model [47, 12] can help a court judge to make more informed decision during a court trial, and a bank loan officer to detect the occurrence of fraud.

IID covers a number of research directions including deception detection [19, 16] and subtext detection [20]. Deception is an intentional attempt to mislead others [10], and subtext is almost constantly presented in a discourse [4]. From a linguistic point of view, language is rather indirect: people often do not say what they want to say, and tend to express it indirectly (either subconsciously or deliberately). Although the implicit intention is important for daily communication, detecting it is extremely hard. We typically need specific linguistic forms designed by experts to examine it. Hiring a human expert is often expensive and unscalable if IID is to be employed widely. Therefore, there is an urgent need for automated IID methods.

Existing automated IID methods are divided into three groups. The first group exploits verbal cues [21, 23, 27, 10, 20] for intention detection. Compared with the statements of events that a person has experienced, the fake statements are often not vivid enough and the details are scarce. Different from fake statements, the subtext in the discourse is even harder to identify. The second group is based on the micro-expression recognition technique [13, 14, 31, 34], i.e., it relies on analysing visual non-verbal clues. The third group employs physiological measurements (e.g., heart rate) and analysis [35, 36, 43]. These methods thus require profes-

*Equal Contribution
\†Corresponding Author
sional software/hardware and subject cooperation. Among the three groups, the second group, i.e., the visual cue based methods seem most promising because these methods do not need either subject cooperation or the unreliable verbal transcript analysis. Very impressive detection accuracies have been reported [47, 12]. This line of approach is thus the focus of this study.

Despite the promise shown by existing visual cue based IID methods [47, 12], they are severely limited by the lack of suitable datasets. More specifically, a long dialog is composed of multiple question-answer pairs; the dialog video thus can be temporally segmented accordingly. The intention exhibited in each pair/segment typically varies – the subject can tell the truth in some segments whilst lying in others. Importantly, the intention is typically correlated across different segments: a subject often tells more lies to cover up an earlier lie. This suggests that: (1) IID should be performed at a fine-grained video segment level rather than holistically at the video level; and (2) the intention in a specific segment should be inferred with consideration on the temporal context provided by other segments of the video. However, existing datasets such as [32] only contain video-level labels, resulting in existing methods [47, 12] completely ignoring fine-grained IID as well as the temporal correlation between the intentions over different segments of the video. To overcome this limitation and kick-start the research into fine-grained IID, we contribute a new benchmark dataset called Vid2Int-Deception. This dataset contains question-answer pair level annotation and thus enables fine-grained context-aware IID.

To solve the fine-grained IID problem, we first propose a multi-grain representation model. The model is designed to capture the subtle movement changes of eyes, face and body from a long dialog video. After segmenting the long dialog video into segments, each of which contains a question-answer pair, our model takes optical flow as input, because it has proven to be useful for movement change detection [40, 50, 39, 45, 30, 11, 24]. We note that for modeling subtle human facial and body behaviour relevant for intention detection, optical flow is much more effective than the raw RGB frames (see suppl. material). Moreover, to capture the temporal context for inferring intention, we treat a sequence of video segments as input and our goal is to translate the sequence into a sequence of intention labels or descriptions. This is analogous to Seq2Seq [42, 17, 44]. More specifically, the multi-grain representation model is integrated into a Video-to-Intention (Vid2Int) network model for fine-grained IID based on attentive recurrent neural network (RNN) [22, 38]. The overview of our Vid2Int model is shown in Fig. 1.

Our contributions are: (1) For the first time, we tackle the problem of fine-grained IID from a long dialog video containing multiple question-answer pairs. (2) To facilitate the research in this new problem, we contribute a benchmark dataset called Vid2Int-Deception, which consists of 292 long dialog videos (each with multiple question-answer pairs and segment-level annotation on deception). (3) Apart from the main contributions of defining a new problem and providing a first benchmark dataset to enable the research on the problem, we also formulate an effective Vid2Int model with a number new components introduced. The efficacy of our model is validated through extensive experiments on both Vid2Int-Deception and an existing court video dataset [32]. The results not only show that our model is clearly superior to existing alternatives, but also provide important insight on how to solve the fine-grained IID problem. The code and dataset will be released soon.

2. Related Work

Implicit Intention Detection. We have discussed the three groups of IID methods. More recent methods mostly focus on the non-intrusive non-contact approaches which rely on verbal, acoustic, visual, and thermal techniques. In particular, visual methods for deception detection typically leverage facial micro-expressions [13, 14, 31, 34] and action recognition [12]. Moreover, some multimodal methods [25, 1, 18, 47, 26] have also been developed for detecting implicit intention from videos. However, these approaches can only handle each video as a whole, and cannot attach class labels (e.g. deception/truth labels) to multiple video segments within the video. This is partially due to the lack of suitable datasets. By contributing the first fine-grained IID dataset, we are able to tackle the segment-level intention detection problem for the first time. RGB Frames vs. Optical Flow as Input. Both RGB frames and optical flow have been used as inputs for a video analysis model. Two-stream networks have been popular, which exploit both for video analysis [40, 45, 51, 30]. More recent models, particularly those designed for action recognition, use only RGB frames [6, 28]. However, for IID from long dialog videos, optical flow is found to be far more useful than RGB frames. It is also noted that adding RGB frames to optical flow only yields slight improvements (see the suppl. material). Therefore, in this work, we leverage only optical flow for IID.

Recurrent Neural Networks. Recurrent neural networks (RNNs) have often been exploited for sequence modeling. [38] proposed a bidirectional RNN trained in both positive and negative time directions. A modified RNN that utilizes the Long Short-Term Memory (LSTM) [22] structure generally outperforms the vanilla RNN. A number of attentive RNN models [8, 48, 46] have also been proposed for better sequence modeling. In this work, based on attentive RNN, we propose a Vid2Int model for comprehensive understand-

1Note that although our Vid2Int model is a generic IID model, in this study we only evaluate it on the deception detection sub-problem, and leave the subtext detection sub-problem to future work.
Figure 2. Overview of our Vid2Int-Deception dataset. All video segments are organized into 20 answer groups: answer group i consists of all answers to question i ($i = 1, ..., 20$).

The Vid2Int is different from existing RNNs in that: (1) It shares the same LSTM for two IID tasks (i.e. IID over video segments and IID over the entire dialog video); (2) Both hidden states and the outputs of IID over video segments are used to generate attention weights (see Fig. 7).

3. The Vid2Int-Deception Dataset

The first challenge in IID from long videos is that there exist no suitable datasets for question-answer or video segment level intention detection. The well-known court video dataset [32] used for deception detection has only video level annotation only. In addition, there are a number of other shortcomings: (1) The subjects in this dataset have various angles and significant changes in posture. The videos also have strong background noise and low video quantity. (2) Since the subjects often say a lot of words very quickly, these words may be mixed with truthful/deceptive intentions. However, it is difficult to distinguish which of these words are deceptive. Therefore, a new dataset is needed to study the much harder fine-grained IID problem.

To this end, we contribute a new dialog video dataset named Vid2Int-Deception. Concretely, we invite 73 volunteers (both undergraduate and graduate students) for our data collection, 41 of which are male and 32 are female. The place where we collect the dialog videos is a lab room so that the background of each video is stable. The volunteers are required to sit down and cannot stand up during video recording. Only the upper bodies of the volunteers appear in the recorded videos. A Nikon COOLPIX L110 camera is used for video recording. A polygraph device is used as a reference during our data collection, acting as a strong baseline (widely considered to be more trusted than human-s). Each video has a frame size of $1,280 \times 720$ and a frame rate of 30 FPS.

Our Vid2Int-Deception dataset consists of 292 dialog videos, each of which has five question-answer pairs. By regarding each answer as a video segment, we have totally 1,460 video segments. Note that each video segment contains both the questioning and answering periods because the volunteer has subtle movement changes even when the questioning phase just begins. After video recording, we ask the volunteer to give a truthful/deceptive label to each answer according to whether it is consistent with the truth. As a result, our dataset has 148 deceptive videos (at least one answer in each video is deceptive) and 144 truthful videos (all answers in each video are truthful). The distribution of duration (second) of video segments is shown in Fig. 2. All video segments are organized into 20 answer groups: answer group i consists of all answers to question i ($i = 1, ..., 20$). In this work, the candidate question set used for our data collection has 20 questions in total. Moreover, two dialog video examples are shown in Fig. 3, where each example is decomposed into three videos by focusing on different parts of the subject. Notation: $\Delta t = 5$ frames.

The correlation matrix between candidate questions (i.e. answer groups) is illustrated in Fig. 4. In this work, based on a form of entropy, we define the correlation matrix $C = [c(i, j)]_{20 \times 20}$ between answer groups as follows:

$$c(i, j) = 1 + \frac{1}{2} \sum_{s=1}^{4} p_s(i, j) \log_2 p_s(i, j),$$

where $p_s(i, j)$ is the probability of the combination state s.
of answer group pair \((A_i, A_j)\). When \(i = j\), we simply define \(c(i, i) = 0\). Given that \(A_i\) (or \(A_j\)) has two states: truthful state \(T\) and deceptive state \(D\), the combination states of \((A_i, A_j)\) are listed as follows: \(1 : (T, T), 2 : (T, D), 3 : (D, T), 4 : (D, D)\). If there is no correlation between \(A_i\) and \(A_j\), \(p_c(i, j) = 1/4\) for the combination state \(s (s = 1, …, 4)\) and thus \(c(i, j) = 0\). If there is strong correlation between \(A_i\) and \(A_j\) \(p_c(i, j) = 1\) and \(p_{c'}(i, j) = 0\) for other states \(s' \neq s\), resulting in \(c(i, j) = 1\). From Fig. 4, we find that there indeed exist a number of strongly-correlated question pairs, indicating that the deception states across different segments are correlated that need to be analysed jointly rather than independently.

The value of our new dataset for real-world applications lies in several aspects: (1) This dataset can facilitate the research on fine-grained IID in long dialog videos, which is crucial for developing a human-centered AI system. We will soon release it on GitHub. (2) We took great care during data collection to simulate the real-world environment: a 'natural' question-answer dialog is conducted with almost unconstrained conditions; a large variety of subjects are recruited; and a polygraph device is used as a reference. The model trained on our dataset can thus be used as a good initialization for real-world applications such as job interview and financial loan risk assessment.

4. Methodology

Our Vid2Int model consists of a voice activity detection module (VADM), a multi-grain representation module (MGRM), and a temporal context module (TCM), as shown in Fig. 5. We give the details of each module below.

4.1. Voice Activity Detection Module

Voice Activity Detection (VAD) [41] is also known as voice endpoint detection or speech boundary detection, which aims to identify and eliminate long silent periods from the sound signal stream to save the channel resources without degrading the quality of the service. In our Vid2Int model, VAD is used to automatically split a long dialog video into multiple video segments, each of which corresponds to a single answer of the subject. Specifically, we reduce the sampling rate to 8kHz, compute the sub-band energy with Gaussian mixture model, and output the probability of silence and speech of each audio window.

In this work, we first extract the audio of the long dialog video and then split it into \(m\) audio segments by VAD. The long dialog video is also split into \(m\) video segments according to the boundary points of the audio. Therefore, from the long dialog video, we obtain a sequence of video segments and a sequence of audio segments. In particular, we represent \(m\) audio segments using Mel-frequency cepstral coefficients (MFCC) [29]. Formally, the audio’s feature representation is defined as: \(U_i = \{U_{i,1}, U_{i,2}, \ldots, U_{i,m}\}\), where \(U_i\) is a 32-dimension feature vector obtained by applying a fully-connected layer on the MFCC features of audio segment \(i (i = 1, \ldots, m)\). This enables us to study whether the audio cues complement to those visual cues.

4.2. Multi-Grain Representation Module

After each dialog video is divided by VADM, there are \(m\) video segments, which are denoted as \(\{S_1, S_2, \ldots, S_m\}\), as illustrated in Fig. 5. The obtained video segments are further fed into a face detector and an eye detector to extract the face area and the eye area, respectively. Therefore, each dialog video is decomposed into three videos by focusing on different parts of the subject: the body part \(\{S_{1b}, S_{2b}, \ldots, S_{mb}\}\), the face part \(\{S_{1f}, S_{2f}, \ldots, S_{mf}\}\), and the eye part \(\{S_{1e}, S_{2e}, \ldots, S_{me}\}\). Since each video segment often has hundreds of frames (with much redundant information), the computational cost is huge when all frames are used. Therefore, we sample each video segment with \(K\) sub-segments at equal intervals for the subsequent optical flow extraction, as in [45].

For optical flow extraction, we operate on a stack of consecutive warped optical flow fields to capture the motion information. In this work, each dialog video are represented with three types of optical flow: body flow \(F^b = \{F_{1b}, F_{2b}, \ldots, F_{mb}\}\), face flow \(F^f = \{F_{1f}, F_{2f}, \ldots, F_{mf}\}\), and eye flow \(F^e = \{F_{1e}, F_{2e}, \ldots, F_{me}\}\).

Our MGRM for fusing the above three optical flows is shown in Fig. 6, where MobileNetV2 [37] is used as the backbone network. Specifically, the three optical flows are first encoded into three feature vectors of different grains (i.e. body, face, eye) with three backbone networks. Further, the coarse-grained features are combined with more
fine-grained features before pooling layers. In this work, we pay more attention to the face flow and eye flow, because these two local flows make it easier to detect the subtle movement changes of the subject.

Formally, after the three flows (F^b, F^f, F^e) are fed into the backbone networks, we extract 7×7 feature maps ($f_{i,7 \times 7}^b(i)$, $f_{i,7 \times 7}^f(i)$, $f_{i,7 \times 7}^e(i)$) of 1,280 channels for video segment i ($i = 1, ..., m$). Importantly, different from existing multi-stream fusion networks [40, 15], our model employs multi-grain fusion rather than simple concatenation. First, we concatenate the feature map $f_{i,7 \times 7}^b(i)$ for body flow to the feature map $f_{i,7 \times 7}^f(i)$ for face flow, and reduce the channel from 2,560 ($2 \times 1,280$) to 1,280 using 1×1 convolution kernel. We thus obtain a new feature map $\hat{f}_{i,7 \times 7}^f(i)$ for face flow. Second, we concatenate the feature map $\hat{f}_{i,7 \times 7}^f(i)$ for face flow to the feature map $f_{i,7 \times 7}^e(i)$ for eye flow, and adopt the same channel reduction operation to obtain a new feature map $\hat{f}_{i,7 \times 7}^e(i)$ for eye flow. Third, we define a small down-sampling block which has two 3×3 convolution layers followed by batch normalization and RELU activation. For the three flows, 7×7 feature maps ($f_{i,7 \times 7}^b(i)$, $\hat{f}_{i,7 \times 7}^f(i)$, $\hat{f}_{i,7 \times 7}^e(i)$) are transformed into 3×3 feature maps ($\hat{f}_{i,3 \times 3}^b(i)$, $\hat{f}_{i,3 \times 3}^f(i)$, $\hat{f}_{i,3 \times 3}^e(i)$) using the down-sampling block. We impose average pooling on the 3×3 feature maps to output 1280-dimensional feature vectors ($\hat{f}_i^b, \hat{f}_i^f, \hat{f}_i^e$). We thus represent video segment i as:

$$V_i = \Phi(\hat{f}_i^b, \hat{f}_i^f, \hat{f}_i^e),$$

where Φ denotes the concatenation operation and V_i is a 3,840-dimensional feature vector. The output of our MGRM is thus represented as $V = \{V_1, V_2, ..., V_m\}$.

By concatenating the audio’s feature representation $U = \{U_1, U_2, ..., U_m\}$ with $V = \{V_1, V_2, ..., V_m\}$, we represent each dialog video as $D = \{D_1, D_2, ..., D_m\}$, as shown in Fig. 5. Formally, $D_i (i = 1, ..., m)$ is formulated as:

$$D_i = \Phi(V_i, U_i),$$

where Φ is the concat operation and D_i is a 3,872-dimensional feature vector.

4.3. Temporal Context Module

Temporal context exists in a sequence of video segments. In our dataset, the volunteers are asked successively with a number of related questions, and the deception states are thus heavily correlated (see Fig. 4). Consequently, we need to model the temporal context across a sequence of answer segments to obtain better IID results. In this work, a Temporal Context Module (TCM) is designed to learn the temporal context from a long dialog video (see Fig. 7).

We firstly feed the fused representation D into an LSTM module, since it has the capacity of learning the temporal context information. The total hidden state of LSTM can be defined with $H = [h_1, h_2, ..., h_m]$, where h_i is the hidden state of each hidden layer in LSTM. We can use h_i to predict the subject’s implicit intention within the video segment D_i.

![Figure 5. Overview of our full Vid2Int model. Voice activity detection is used to split the long dialog video into multiple video segments.](image)

![Figure 6. Illustration of the network architecture of our MGRM.](image)
Let each cell state be defined as C_i ($i = 1, ..., m$). The hidden state of each video segment is given by:

$$h_i = \text{LSTM}(h_{i-1}, D_i, C_i),$$ \hspace{1cm} (4)

where h_i is a 128-dimensional feature vector in our setting.

Note that each hidden state has a different influence on IID for the whole dialog video and the prediction of each video segment can also exert their influence. For example, given a deceptive dialog video, the answer segments with truthful predictions should have less importance for IID on the whole video. Therefore, we propose an attentive-LSTM module which consists of two forms of self-supervised attention, as illustrated in Fig. 7. Formally, we define the attentive representation $\text{att}(h_i)$ of h_i as follows:

$$\text{att}(h_i) = w_\alpha(h_i) \cdot w_1(h_i),$$ \hspace{1cm} (5)

where $w_\alpha(h_i)$ is the first attention and $w_1(h_i)$ is the second attention. Specifically, $w_\alpha(h_i)$ is defined as:

$$w_\alpha(h_i) = FC(h_i),$$ \hspace{1cm} (6)

where FC denotes the fully-connected layer used for attention. Moreover, $w_1(h_i)$ is defined with the predicted labels:

$$w_1(h_i) = \varphi_1(p_i) = p_i[1 - \alpha \cdot p_i(1 - p_i)],$$ \hspace{1cm} (7)

where p_i is the probability of h_i being classified as the deceptive class, and α denotes a hyperparameter for adjusting w_1 ($\alpha = 4$ in this work). We have $p_i = \text{softmax}(FC(h_i))$, where FC denotes the fully-connected layer used for label prediction. Note that the term $[1 - \alpha \cdot p_i(1 - p_i)]$ measures the reliability of the label prediction for h_i.

Finally, we multiply the total hidden state H and attentive weights $\text{att}(H) = [\text{att}(h_1), \text{att}(h_2), ..., \text{att}(h_m)]^T$ to generate the attentive representation of each dialog video. The feature vector \hat{H} of the dialog video is defined as:

$$\hat{H} = H \times \text{att}(H).$$ \hspace{1cm} (8)

There are two IID tasks concerned in our Vid2Int model: IID for each video segment, and IID for each long dialog video. Let L_s be the loss defined over video segments and L_d be the loss defined over dialog videos. Our total loss for model training can be defined as follows:

$$L = L_s + \beta L_d, \hspace{1cm} (9)$$

where β denotes a hyperparameter for weighting the two losses. In this work, we empirically set $\beta = 1$.

5. Experiments

5.1. Fine-Grained IID from Dialog Videos

Dataset and Setting 1) Vid2Int-Deception. The new Vid2Int-Deception is used in this experiment. As mentioned earlier, it consists of 292 long dialog videos. The participant in each video is required to answer five related questions. Each video has a frame size of $1,280 \times 720$ and a frame rate of 30 FPS.

2) Data Split. Our Vid2Int-Deception dataset is split into the training/test set at the ratio 4:1 according to the participants, which ensures that participants in the test set have no overlap with those in the training set. Further, we adopt two approaches to augment the training set: three brightness adjustments and four frame random deletions (at the beginning of each video). After data augmentation, there are 2,803 dialog videos in the training set.

3) Evaluation Setting. For performance evaluation, we define two metrics as: (1) Answer-ACC: the classification accuracy computed over visual answers (i.e. video segments) in the test set; (2) Dialog-ACC: the classification accuracy computed at the dialog video level in the test set.

4) Implementation Details. Our full model for fine-grained IID is trained end-to-end using back-propagation and adaptive moment estimation. The learning rate is set to 0.005 at first epochs and then reduced by 0.5 on plateau with patience of 30 epochs. The maximum number of total epochs is set to 120. We train our full model on one TITIAN XP, with the batch size 5. Our implementation is developed within the PyTorch framework.
Comparative Results The comparative results for fine-grained IID on the Vid2Int-Deception dataset are shown in Table 1. For competitors, we focus on those optical-flow based methods because RGB frames are found to be much weaker for fine-grained IID (see more supports in the suppl. material). It can be seen that: (1) Our Vid2Int model significantly outperforms the representative/state-of-the-art alternatives, validating the effectiveness of both multi-grain representation and attentive LSTM for fine-grained IID. (2) Adding LSTM into all compared methods consistently leads to improvements, indicating that the temporal context is indeed crucial for solving the fine-grained IID problem.

Ablation Study Results 1) Ablation Study for Our Full Model. To show the contribution of each module of our full Vid2Int model, we compare six simplified versions: (1) Face+Softmax – only face flow is used, followed by softmax-based prediction; (2) Face+LSTM – only face flow is used, followed by LSTM-based prediction; (3) Concat (Face+Eye)+LSTM – both face flow and eye flow are used, followed by LSTM-based prediction; (4) Concat (Face+Eye+Body)+LSTM – all three flows are used, followed by LSTM-based prediction; (5) MGRM (Face+Eye)+LSTM – our multi-grain representation module using face flow and eye flow, followed by LSTM-based prediction. (6) MGRM (Face+Eye+Body)+LSTM – our MGRM using all three flows, followed by LSTM-based prediction. Note that our full Vid2Int model including attentive-LSTM is denoted as MGRM (Face+Eye+Body)+AT-LSTM.

The ablative results for our full Vid2Int model are shown in Table 2. We have the following observations: (1) Adding more modules into our model consistently leads to performance improvements, demonstrating the contribution of each module. (2) The margins between MGRM (Face+Eye+Body)+LSTM and Concat (Face+Eye+Body)+LSTM validate the effectiveness of our MGRM (also see Table 3); (3) Our attentive LST-
Figure 9. An example of fine-grained IID with our Vid2Int model.

Figure 10. Ablative results obtained for multi-modal fusion.

Q15: Please describe your family.
Q16: Please describe the jobs of your parents.

The above observation can be explained as: (1) Although the four questions are closely related, Q1 and Q2 are clearly more private/personal than Q15 and Q16; (2) Since people are more likely to hide their thoughts when asked more private questions, the IID task becomes harder.

2) Qualitative Results. Fig. 9 provides an example of fine-grained IID with our Vid2Int model. It shows that only the first prediction is wrong and the rest labels are predicted correctly by our model. This suggests that LSTM is indeed a good choice for IID from long dialog videos. Moreover, a demo video is also included in the suppl. material to simulate the realistic scenario.

3) Multi-Modal Fusion. Fig. 10 shows the ablative results for multi-modal fusion. The notations are: A – acoustic modality; V – visual modality; A+V – both modalities. It can be seen that the audio modality brings further improvements when it is fused with the visual modality for IID.

5.2. IID from Court Videos

Dataset and Setting. We also evaluate our Vid2Int on a court video dataset [32] which has truthful and deceptive videos collected from public court trails. This dataset includes 121 short videos, along with their transcriptions. As in [12], we select a subset of 104 videos from the original dataset. The subset has 50 truthful videos and 54 deceptive videos. Different from our Vid2Int-Deception dataset, each video in the court video dataset has a single label, without the labels of video segments. Therefore, only the MGRM of our Vid2Int model is used on this dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>ACC</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>[32] (visual+verbal)</td>
<td>75.20</td>
<td>–</td>
</tr>
<tr>
<td>[33] (visual+verbal)</td>
<td>77.11</td>
<td>–</td>
</tr>
<tr>
<td>[25] (visual+acoustic+verbal)</td>
<td>78.95</td>
<td>–</td>
</tr>
<tr>
<td>[18] (visual+acoustic+verbal)</td>
<td>96.42</td>
<td>–</td>
</tr>
<tr>
<td>[47] (visual+acoustic+verbal)</td>
<td>–</td>
<td>92.21</td>
</tr>
<tr>
<td>[26] (visual+acoustic+verbal)</td>
<td>96.14</td>
<td>97.99</td>
</tr>
<tr>
<td>[12] (visual)</td>
<td>93.16</td>
<td>96.71</td>
</tr>
<tr>
<td>[12] (visual+acoustic+verbal)</td>
<td>97.00</td>
<td>99.78</td>
</tr>
<tr>
<td>Vid2Int (visual)</td>
<td>94.84</td>
<td>97.32</td>
</tr>
<tr>
<td>Vid2Int (visual+acoustic+verbal)</td>
<td>97.84</td>
<td>99.83</td>
</tr>
</tbody>
</table>

Table 5. Comparative results (%) for IID on the real-life court video dataset. Three modalities (i.e. visual, acoustic, and verbal) can be used for IID on this dataset.

Moreover, we perform 10-fold cross validation over subjects (but not over videos) as in [12], which ensures that the subjects in the test set have no overlap with those in the training set. Two evaluation metrics are computed on the test set: (1) ACC – the classification accuracy (ACC) over the test video samples; (2) AUC – the area under the precision-recall curve (AUC) over the test set, which is originally defined to cope with the imbalance of the positive and negative classes. These metrics have been widely used in previous works [12, 26].

Comparative Results. We compare our Vid2Int model to the state-of-the-art models on the public court video dataset. The comparative results are shown in Table 5. We have the following observations: (1) Our Vid2Int model performs the best, validating the effectiveness of our multi-grain representation module for IID. (2) Our model outperforms the state-of-the-art model [12], showing that our multi-grain fusion is more effective to combine multiple visual clues than the cross-stream fusion proposed in [12]. (3) It is obvious from Table 5 that the results obtained on this dataset is getting saturated. This means that a new and more challenging dataset is needed to study the much harder fine-grained IID problem. This is exactly where our first contribution lies.

6. Conclusion

In this paper, we investigated the challenging problem of fine-grained IID from long dialog videos. Studying this problem is made possible for a new dataset contributed by this work. We also proposed a multi-grain representation model over optical flow to capture the subtle movement changes of eyes, face, and body for fine-grained IID. Moreover, for modeling temporal context, a Vid2Int model based on attentive RNN was proposed. Extensive experiments show that our model achieves state-of-the-art results.

Acknowledgement. Zhiwu Lu is partially supported by National Natural Science Foundation of China (61976220 and 61832017), and Beijing Outstanding Young Scientist Program (BJJWZYJH012019100020098).
References

