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Abstract

In this work, we propose a novel Cyclic Image Transla-

tion Generative Adversarial Network (CIT-GAN) for multi-

domain style transfer. To facilitate this, we introduce

a Styling Network that has the capability to learn style

characteristics of each domain represented in the training

dataset. The Styling Network helps the generator to drive

the translation of images from a source domain to a ref-

erence domain and generate synthetic images with style

characteristics of the reference domain. The learned style

characteristics for each domain depend on both the style

loss and domain classification loss. This induces variability

in style characteristics within each domain. The proposed

CIT-GAN is used in the context of iris presentation attack

detection (PAD) to generate synthetic presentation attack

(PA) samples for classes that are under-represented in the

training set. Evaluation using current state-of-the-art iris

PAD methods demonstrates the efficacy of using such syn-

thetically generated PA samples for training PAD methods.

Further, the quality of the synthetically generated samples

is evaluated using Frechet Inception Distance (FID) score.

Results show that the quality of synthetic images generated

by the proposed method is superior to that of other compet-

ing methods, including StarGan.

1. Introduction

The unique texture of the iris has made iris-based recog-

nition systems desirable for human recognition in a number

of applications [21]. However, these systems are increas-

ingly facing threats from presentation attacks (PAs) where

an adversary attempts to obfuscate their own identity, im-

personate someone’s identity, or create a virtual identity

[28]. Some commonly known iris presentation attacks (as

shown in Figure 1) are:

• Printed photo [2, 18]: High-tech digital printers and

scanners have made it possible to print good quality

Figure 1: Examples of bonafide iris and presentation attack

(PA) images: (a) Bonafide, (b) Printed eye, (c) Cosmetic

contact lens and (d) Artificial eye

images of bonafide irides, which can be used to imper-

sonate someone’s identity.

• Artificial eyes [10]: Prosthetic or doll eyes are typi-

cally hand-crafted by professionals to look as similar

to the bonafide irides as possible. Attackers can utilize

such artifacts to obfuscate their true identity.

• Cosmetic contact lens [13, 15]: The term “cosmetic

contact lens” refers to lenses that typically have tex-

ture over them and are tinted with some color. These

patterns can obstruct the natural iris texture that is re-

quired to recognize a person. Therefore, they can be

used to deceive recognition systems.

In addition, electronic displays [20], cadaver eyes [3]

and holographic eye images [26] may be used to launch a

presentation attack. Grasping the threat posed by these at-

tacks, researchers have been working on devising methods

for iris presentation attack detection (PAD) that aim to dis-

tinguish between bonafide and PAs. In [18, 27], researchers

used textural descriptors like Local Binary Pattern (LBP)

and multi-scale binarized statistical image features (BSIF)
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Figure 2: Schematic of the proposed Cyclic Image Translation Generative Adversarial Network (CIT-GAN). The proposed

architecture has three important components: (a) Generator: Unlike a standard generator, this network takes as an image

X from a domain and its label as input (represented as [1,0,0] in the figure) and outputs an image Y ′ with style similar to

a reference image Y with domain label [0,1,0]. (b) Styling Network: The image-to-image translation to multiple domains

is driven by a Styling Network that learns the style code for each given domain. (c) Discriminator: Unlike a standard

discriminator, the discriminator in the proposed method has multiple branches each of which determines whether the input

image is real or synthetic pertaining to that domain.

Figure 3: Examples of image translation from source to ref-

erence domain via CIT-GAN using domain specific styling

vector obtained from the Styling Network.

to detect print attacks. Kohli et al. [23] proposed a varia-

tion of LBP to obtain textual information from iris images

that helps in detecting cosmetic contact lens. More recently,

deep features from Convolutional Neural Networks (CNNs)

have been used to detect multiple iris presentation attacks

[6][20]. Yadav et. al. [35] utilized the Relativistic Dis-

criminator from a RaSGAN as a one-class classifier for PA

detection. These methods report high accuracy for iris PA

detection, but their performance can be negatively impacted

by the absence of a sufficient number of samples from dif-

ferent PA classes [11]. Therefore, we can conclude that cur-

rent iris PAD methods need a copious amount of training

data corresponding to different PA classes and scenarios.

Unfortunately, in the real world, such a dataset is hard to

acquire.

With recent advances in the field of deep learning, re-

searchers have proposed different methods based on Con-

volutional Autoencoders [31, 33] and Generative Adversar-

ial Networks (GANs) [17] for image-to-image style trans-

lation. Here, image-to-image translation refers to learning

a mapping between different visual domain categories each

of which has its own unique appearance and style. Gatys et

al. [16] proposed a neural architecture that could separate

image content from style and then combine the two in dif-

ferent combinations to generate new natural looking styles.

Their paper mainly focused on learning styles from well

known artworks to generate new high quality and natural

looking artwork. Karras et al. [22] introduced StyleGAN

that uses a non-linear mapping function to embed a style

driven latent code to generate images with different styles.

However, since the input to the generator in StyleGAN is

a noise vector, non-trivial efforts are required to transform

image from one domain to another. Some researchers over-

came this issue by enforcing an overlay between generator’s

input and output for diversity in generated images using ei-

ther marginal matching [1] or diversity regularization [37].

Others approached style transfer with the guidance of some

reference images [5, 7].

However, these methods are not scalable to more than

two domains and often show instability in the presence of

multiple domains [9]. Choi et al. [8, 9] proposed to solve

this problem by using a unified GAN architecture called

StarGAN for style transfer that can generate diverse images

across multiple domains. StarGAN uses a single generator
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Figure 4: The components of proposed network Cyclic Image Translation Generative Adversarial Network. The Generator

takes in an image as input and the image translation from one domain to another is driven by styling code from the Styling

Network. Styling Network learns the style encoding or style characteristics of each domain, while domain classification loss

ensures that the style encoding learnt by the network belongs to the correct domain. Similar to a standard discriminator, the

proposed discriminator competes with the generator by deciding for each domain whether the input is real or synthetic.

Figure 5: Details of the architecture of the CIT-GAN used for generating synthetic iris images.

with a mapping and Styling Network to learn diverse map-

pings between all available domains. The Styling Network

aims to learn style codes for all the domains, while the map-

ping network is used to produce random style codes from

latent codes. On one hand, it enforces the generator to learn

diverse mappings across domains, but it also introduces the

risk of generating images that are far from the original do-

mains. Therefore, when introducing the mapping network,

it becomes important to regularize the generator with diver-

sity sensitive loss [9] that helps ensure that the generated

data are diverse in nature.

In this research, we propose a GAN architecture that

uses a novel Styling Network to drive the translation of in-

put image into multiple target domains. Here, the genera-

tor takes an image as input along with a domain label and

then generates images with characteristics of the target do-

mains. Apart from the domain label, the generative capa-

bility of the network is enhanced using a multi-task Styling

Network that learns the style codes for multiple PA domains

and helps the generator to synthesize images reflecting the

style components of the target PA domains.1 The domain-

specific style characteristics learned using Styling Network

depend on both style loss and domain classification. This

ensures variability in style characteristics within each do-

main. Since there are multiple domains, the discriminator

has multiple output branches to decide if a given image is

real or synthetic for each of the domains (see Figure 2).

1A PA domain refers to a specific PA category, e.g., printed image.
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Figure 6: Given are some examples of synthetic samples generated using the proposed Cyclic Image Translation Generative

Adversarial Network (CIT-GAN). (a)-(b) represent synthetic cosmetic contact lenses, (c)-(d) are two different types of syn-

thetically generated print images (one with whole iris image and other with pupil cut-out), and (e)-(f) are synthetic artificial

eyes with (f) representing a doll eye.

The primary contributions of this paper are as follows:

• We propose a unified GAN architecture, referred to as

Cyclic Image Translation Generative Adversarial Net-

work (CIT-GAN), with novel Styling Network to gen-

erate good quality synthetic images for multiple do-

mains. The quality of generated samples is evaluated

using Fréchet Inception Distance (FID) Score [19].

• We demonstrate the usefulness of the synthetically

generated data to train state-of-the-art iris PAD meth-

ods and improve their accuracy.

2. Background

Generative Adversarial Networks (GANs) have been

used by researchers extensively for synthetic image genera-

tion [17], super-resolution [4], anomaly detection [38], etc.

due to their effectiveness in learning intricate features and

texture of a given data distribution. Details of these net-

works are presented below.

2.1. Standard Generative Adversarial Network
(GAN)

A Generative Adversarial Network [17] consists of two

components, a generator G and a discriminator D, that com-

pete with each other. G takes as input a noise vector z and

aims to generate good quality synthetic data that closely re-

sembles the real data. On the other hand, D aims to dis-

tinguish between synthetically generated data and real data.

This is denoted by a min-max objective function O,

min
G

max
D

O(D,G) = Exr∼P[log(D(xr))]

+Ez∼M[log(1−D(G(z)))].
(1)

Here, xr ∼ P represents the real data distribution and

z ∼ M represents the Gaussian noise distribution. D(x)
outputs whether input x belongs to the real distribution or

not. The generator G takes an input z to generate a synthetic

image.

2.2. Frechet Inception Distance (FID) Score

Due to rapid advances in the field of DeepFakes, re-

searchers have been studying different methods to evalu-

ate the quality of synthetically generated data. Salimans

et al. [29] used a pre-trained inception-V3 to compare the

marginal and conditional label distribution of synthetically

generated data to compute the inception score. Higher the

inception score, better the quality of the generated dataset.

However, the inception score does not include the statis-

tics of the real data distribution when computing the score.

In [19], Heusel et al. exploited the statistics of real data

and compared it with the statistics of the synthetically gen-

erated dataset to compute the Frechet Inception Distance

(FID) score:

FID = ‖µr − µs‖
2
+ Tr(Σr +Σs − 2

√

ΣrΣs). (2)

Here, µs,µr,Σs and Σr are the statistics of the synthetic

(s) and real (r) distributions. Since FID computes distance

between the two distributions, the lower the FID score, bet-

ter is the quality of generated dataset.

3. Cyclic Image Translation Generative Adver-

sarial Network (CIT-GAN)

Let x ∼ X be an input image and d ∼ D be an arbitrary

domain from domain space D. The proposed method aims

to translate image x to synthetic image y with style charac-

teristics of domain d. This is achieved using a Styling Net-

work S that is trained to learn domain specific style codes,

and then train G to generate synthetic images with the given

target style codes (see Figure 3).

3.1. Generative Adversarial Network

Unlike standard GAN, the generative adversarial net-

work in the proposed method has been updated to include
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Table 1: Experiment-1: True Detection Rate (TDR in %) at 0.1%, 0.2% and 1.0% False Detection Rate (FDR) of existing iris

PAD algorithms in baseline experiment (referred to as Experiment-1) when trained using imbalanced samples across different

PA classes.

BSIF+SVM [14] Fine-Tuned VGG-16 [16] DESIST [23] Fine-Tuned AlexNet [24] D-NetPAD [30]

TDR (@0.1%) 3.32 85.25 4.25 86.10 87.94

TDR (@0.2%) 6.15 83.86 5.85 87.29 88.91

TDR (@1.0%) 28.11 89.07 17.15 90.51 92.54

Table 2: Experiment-2: True Detection Rate (TDR in %) at 0.1%, 0.2% and 1.0% False Detection Rate (FDR) of existing

iris PAD algorithms in Experiment-2 to evaluate the equivalence between real and synthetic PAs. When comparing with the

performances in Table 1, it can be seen that substituting some of the real PAs in the training set with synthetically generated

samples has a limited impact on the performance of PAD algorithms, especially at a FDR of 1%.

BSIF+SVM [14] Fine-Tuned VGG-16 [16] DESIST [23] Fine-Tuned AlexNet [24] D-NetPAD [30]

TDR (@0.1%) 11.09 78.29 4.48 79.90 84.27

TDR (@0.2%) 18.06 83.03 7.43 84.13 86.04

TDR (@1.0%) 29.38 87.39 17.43 89.66 89.55

domain level information. These changes are reflected in

each component of the proposed architecture (as shown in

4) :

• Generator: For image-to-image translation between

multiple domains, G takes an input image x and trans-

lates it to an image G(x, s) with the desired style code

s. The style code s is facilitated by Styling Network S

and injected into G.

• Discriminator: Discriminator in the proposed archi-

tecture has multiple branches, where each branch Dd

decides whether the input image x is a real image in

domain d or a synthetic image.

With the new objective for the generative adversarial net-

work, the adversarial loss can be updated as,

Ladv = Ex,d[log(Dd(x))]

+Ex,d′ [log(1−Dd′(G(x,s′)))].
(3)

Here, Dd(x) outputs a decision on image x for domain

branch d. The Styling Network S takes an image y from

target domain d′ and outputs a style code s′. G(x,s′) gen-

erates image y′ with style characteristics of target domain

d′.

3.2. Styling Network

Given an input image x belonging to domain d, the

Styling Network S encodes the image into a style code s.

Similar to D, the Styling Network S is a multi-task network

that learns the style code for an input image and injects the

style code into G to generate images with the given style

codes. This is achieved using [9],

Lstyle = Ex,d′ [‖s′ − Sd′(G(x,s′))‖]. (4)

Figure 7: Comparing performance of D-NetPAD in

Experiment-1 and Experiment-2 to evaluate the equivalence

of synthetic PA samples in replacing real PA samples. D-

NetPAD is one of the best performing PAD algorithms in

iris liveness detection competition (LivDet-20 edition) [12].

Here, s′ = S(y) is the style code of reference image y be-

longing to target domain d′. This ensures that G generates

images with the specified style code. However, poor qual-

ity synthetic data in the initial training iterations can affect

the quality of the domain specific style codes learned by

S. To avoid this, we introduce a domain classification loss

Lcls at the shared layer of S from soft-max layer (as shown

in Figure 4) to ensure that the learnt style code aligns with

the correct domain. Further, this helps the Styling Network

to learn style vectors (or feature characteristics) of varying

samples from same domain.

Lcls = −logP (D = d|X = x). (5)
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Figure 8: Comparing the performance of D-NetPAD in

Experiment-1 and Experiment-4 to emphasize that the per-

formance of current iris PAD methods are affected due

to training with imbalanced samples from PA classes

(Experiment-1). Improved performance is reported in

Experiment-4 that utilizes synthetic samples for balanced

training.

Here, d is the true domain of input x.

3.3. Cycle Consistency

While translating images from the source domain to the

domains depicted by the reference images, it is important

to preserve some characteristics of the input images (such

as geometry, pose and eye lashes in case of irides). This is

achieved using the cycle consistency loss [8],

Lcycle = Ex,d,d′ [‖x−G(G(x,s′), s)‖]. (6)

Here, s = S(x) represents the style code of input image

with domain d, and s′ = S(y) is the style code of reference

image in target domain d′. This ensures that image x with

style s can be reconstructed using synthetic image G(x,s′).
Hence, the overall loss function for the proposed Cyclic

Image Translation Generative Adversarial Network can be

defined as:

Ltotal = Ladv + λ1Lstyle + λ2Lcls + λ3Lcycle. (7)

Here, λ1, λ2 and λ3 represent the hyperparameters for

each loss term.

4. Dataset Used

In this research, we utilized five different iris PA datasets,

viz., Casia-iris-fake [32], Berc-iris-fake [25], NDCLD15

[14], LivDet2017 [36] and MSU-IrisPA-01 [34] for training

and testing different iris presentation attack detection (PAD)

algorithms. These iris datasets contain bonafide images and

images from different PA classes such as cosmetic contact

lenses, printed eyes, artificial eyes and kindle-display attack

(as shown in Figure 1). The images in these datasets are pre-

processed and cropped to a size of 256x256 around the iris

using the coordinates from a software called VeriEye.2 The

images that were not properly processed by VeriEye were

discarded from the datasets as this paper focuses primarily

on image synthesis. This give us a total of 24,409 bonafide

irides, 6,824 cosmetic contact lenses, 680 artificial eyes and

13,293 printed eyes.

5. Image Quality

The proposed architecture is trained using 6,450

bonafide images, 2,104 cosmetic contact lenses, 4,482

printed eyes and 276 artificial eyes randomly selected from

the aforementioned datasets. The trained network is then

utilized to generate synthetic PA samples. To achieve this,

6,000 bonafide images were utilized as source images. The

source images are then translated to different PA classes us-

ing 2,000 printed eyes, 2,000 cosmetic contact lens and 276

artificial eyes as reference images. Using this approach, we

generated 8,000 samples for each PA class. The generated

samples from CIT-GAN obtained an average FID score of

32.79.

For comparison purposes, we used the same train and

evaluation setup to generate synthetic samples using Star-

GAN [8], Star-GAN v2 [9] and Style-GAN [22]. As

mentioned before, Style-GAN and Star-GAN are not well-

equipped to handle multi-domain image translation. There-

fore, they obtained a high average FID score of 86.69 and

44.76, respectively. On the other hand, Star-GAN v2 is

equipped to handle multi-domains using a styling and map-

ping network. A trained Star-GAN v2 utilizes the mapping

network to generate diverse style codes to diversify images.

The synthetic iris PAs generated using this method were

diverse in nature, but failed to capture the true character-

istics of PAs like artificial eyes. Hence, the average FID

score of the generated image using Star-GAN v2 was 38.81

- much lower than that of Style-GAN and Star-GAN, but

still a bit higher than CIT-GAN. This can also be seen in

the FID score distribution in Figure 10 that compares the

synthetically generated data using Star-GAN v2 with that

of CIT-GAN.

6. Experimental Setups

In this section, we describe different experimental se-

tups that are used to evaluate the quality and usefulness of

synthetic PA samples generated using CIT-GAN. We eval-

uated the performance of different iris PAD methods viz.,

VGG-16 [16], BSIF [14], DESIST [23], D-NetPAD [30]

and AlexNet [24] under these different experimental setups

2www.neurotechnology.com/verieye.html
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Table 3: Experiment-3: True Detection Rate (TDR in %) at 0.1%, 0.2% and 1.0% False Detection Rate (FDR) of existing iris

PAD algorithms in Experiment-3 to evaluate the efficacy of proposed method, CIT-GAN, in generating synthetic PA samples

that captures the real PA distribution across various PA domains.

BSIF+SVM [14] Fine-Tuned VGG-16 [16] DESIST [23] Fine-Tuned AlexNet [24] D-NetPAD [30]

TDR (@0.1%) 7.57 76.12 2.31 78.89 82.26

TDR (@0.2%) 10.51 80.98 4.70 82.66 84.54

TDR (@1.0%) 29.43 85.81 15.29 88.37 88.86

Table 4: Experiment-4: True Detection Rate (TDR in %) at 0.1%, 0.2% and 1.0% False Detection Rate (FDR) of existing iris

PAD algorithms in Experiment-4. When comparing against the performances numbers in Table 1, it can be seen that training

using balanced samples from each PA class/domain helps improve the performance of current iris PAD algorithms.

BSIF+SVM [14] Fine-Tuned VGG-16 [16] DESIST [23] Fine-Tuned AlexNet [24] D-NetPAD [30]

TDR (@0.1%) 14.39 69.40 2.59 79.26 90.38

TDR (@0.2%) 22.91 75.34 5.38 82.80 94.19

TDR (@1.0%) 51.11 91.60 21.41 92.70 97.89

Figure 9: Comparing performance of D-NetPAD in

Experiment-1 and Experiment-3 to evaluate the efficacy of

the proposed method, CIT-GAN, in generating synthetic PA

samples that represent the real PA distribution across vari-

ous PA domains.

for analysis purposes. Note that D-NetPAD is one of the

best performing PAD algorithms in the iris liveness detec-

tion competition (LivDet-20 edition) [12].

6.1. Experiment1

This is the baseline experiment that demonstrates the

performance of the current iris PAD methods on the previ-

ously mentioned datasets with imbalanced samples across

different PA classes. The PAD methods are trained using

14,970 bonafide samples and 10,306 PA samples consist-

ing of 276 artificial eyes, 4,014 cosmetic contact lenses and

6,016 printed eyes. The test set consists of 9,439 bonafide

samples and 9,896 PA samples corresponding to 404 artifi-

cial eyes, 2,720 cosmetic contact lenses and 6,772 printed

eyes.

6.2. Experiment2

In this experiment, our aim is to evaluate the equiva-

lence between real PAs and synthetically generated PAs.

Therefore, the iris PAD methods are trained using 14,970

bonafide samples and PAs consisting of both real PA images

and synthetic PA images. The real PA dataset has 138 arti-

ficial eyes, 2,007 cosmetic contact lenses and 3,008 printed

eyes. The synthetic PA dataset is generated using the re-

mainder of the real PA dataset as reference images (i.e.,

138 artificial eyes, 2,007 cosmetic contact lenses and 3,008

printed eyes) in order to capture their style characteristics

in the generated dataset. As before, the test set consists

of 9,439 bonafide and 9,896 PA samples corresponding to

404 artificial eyes, 2,720 cosmetic contact lenses and 6,772

printed eyes.

6.3. Experiment3

This experiment aims to evaluate the efficacy of the

proposed method, CIT-GAN, in generating synthetic PA

samples that represent the real PA distribution across var-

ious PA domains. Here, the iris PAD methods are trained

using 14,970 bonafide samples and synthetically gener-

ated 276 artificial eyes, 4,014 cosmetic contact lenses and

6,016 printed eyes. The test set consists of 9,439 bonafide

and 9,896 PA samples corresponding to 404 artificial eyes,

2,720 cosmetic contact lenses and 6,772 printed eyes.

6.4. Experiment4

As mentioned in Experiment-1, current iris PAD meth-

ods are trained and tested on imbalanced samples from PA

classes thereby affecting their accuracy. To overcome this,
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Figure 10: Comparing the FID score distributions of Star-GAN v2 [9] and CIT-GAN for each synthetically generated PA

domain. A lower FID is better.

we train the iris PAD methods using 14,970 bonafide sam-

ples and a balanced set of 15,000 PA samples correspond-

ing to 276 artificial eyes, 4,014 cosmetic contact lenses and

5000 printed eyes that are real; and 4,724 artificial eyes and

986 cosmetic contact lenses that are synthetic. This bal-

ances the number of samples across PA classes. The testing

was done on 9,439 bonafide samples and 9,896 PA sam-

ples consisting of 404 artificial eyes, 2,720 cosmetic contact

lenses and 6,772 printed eyes.

7. Results and Analysis

In this section, we discuss the results obtained for the

four different experiments described in the previous sec-

tion. Experiment-1 is the baseline experiment that evaluates

the performance of various iris PAD methods. The training

set for this experiment contains 14,970 bonafide and 10,306

PA samples consisting of 276 artificial eyes, 4,014 cosmetic

contact lenses and 6,016 printed eyes. Due to imbalance in

the number of samples across various PA domains, the per-

formance of the PAD methods is affected. This becomes

apparent when comparing the results of Experiment-1 with

that of Experiment-4 where PAD methods are trained using

9,439 bonafide samples and a balanced number of PA sam-

ples (i.e., 5,000 samples from each PA domain) containing

both real and synthetic PAs. As seen from the results in

Table 1 and Table 4, performance for each PAD method im-

proves in Experiment-4. For example, in the case of D-

NetPAD, the TDR at a 1% FDR improved from 92.54%

in Experiment-1 to 97.89% in Experiment-4 (as shown in

Figure 8). A huge increase in performance was also no-

ticed for BSIF+SVM where TDR improved from 28.11%

in Experiment-1 to 51.11% in Experiment-4, at a FDR of

1%.

In addition, the equivalence of synthetically generated

PA samples and real PA samples was established using

Experiment-2 and Experiment-3. In Experiment-2, some

of the real PA samples in the training set were replaced with

synthetically generated PAs. Comparing the performance in

Table 1 and Table 2, a very slight difference in PAD perfor-

mance is observed (see Figure 7). Similarly, in Experiment-

3, where all the real PAs are replaced with synthetically gen-

erated PA samples, only a slight decrease in performance

was seen for the PAD methods (as shown in Figure 9) signi-

fying underlying similarities between real and synthetically

generated data.

8. Conclusion and Future Work

In this research work, we designed an image-to-image

translation method (CIT-GAN) that can synthetically gen-

erate images across multiple iris presentation attack do-

mains, i.e., multiple types of iris PAs. The results obtained

in the previous sections show the equivalence of syntheti-

cally generated PA samples and real PA samples. Further-

more, the results in Table 1 and Table 4 demonstrate that the

performance of the iris PAD methods can be improved by

adding synthetically generated data to different PA classes

for balanced training.

We would like to extend this work to generate PA sam-

ples with different variations and multi-domain style char-

acteristics such as ”printed” cosmetic contact lenses, etc.

This will allow current iris PAD methods to generalize over

different styles of PAs for enhanced PA detection.
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