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Abstract

Object counting which aims to calculate the number of

total instances of the given class is a classic but crucial task

that can be applied to many applications. Most of the prior

works only focus on counting certain classes of objects such

as people, cars, animals, etc. However, in recent years,

there are lots of applications that need to get the count of

the unseen class of objects such as a mechanical arm com-

manded to grab the novel object. In this paper, we present

an effective object counting network, Class-agnostic Few-

shot Object Counting Network (CFOCNet), that supports

counting arbitrary classes of object unseen during training

stage. Instead of counting a pre-defined class, our model

is able to count instances based on input reference im-

ages and reduces the huge cost of data collection, train-

ing and parameter tuning for each new object class. Our

model utilizes not only the similarity between query image

and reference images but self attending the query image to

learn the self-repeatedness. Using a two-stream Resnet that

matches features in different scales, our network can auto-

matically learn to aggregate different scales of the matching

scores. We evaluate our method on the subset of the COCO

dataset that contains 80 classes of objects and many diverse

scenes. In the experiments, our network outperforms other

methods including detection and some previous works by

a large margin. To the best of our knowledge, we are the

first that mainly focuses on few-shot object counting in the

class-agnostic manner.

1. Introduction

Object counting has become a popular research area in

recent years. There is a large number of works that propose

different object counting methods to get the total amount of

certain category such as people [2, 22, 27], cars [12], ani-

mals [19, 21], grape [24], etc. The application of counting

objects is becoming increasingly popular in various aspects.

To count cars, for example, one needs to first collect thou-

sands, even tens of thousands of images with manually an-

notated positions of each car, followed by a learning process

to find a desirable solution. These kinds of methods usu-

Figure 1. Class-specific counting versus class-agnostic counting.

(a) In the scenario of class-specific counting, a counter is only re-

sponsible for counting a certain object that is seen in training. (b)

In this paper we propose a class-agnostic counter that can count

arbitrary object provided a query image and few reference images.

Once trained, the counter can count unseen novel object without

any retraining or fine-tuning.

ally perform well in counting the particular class of objects.

However, a counter can only count the certain class that it

is trained on, unable to apply to other categories. Besides,

collecting tremendous labeled data may not be always pos-

sible due to its cost and difficulty of annotating especially

in some areas like medical and bioscience. Furthermore,

the time consumed on training a model is also a concern.

Although state-of-the-art models can output a fairly excel-

lent result, most of them need to be trained for a long time,

from one day to several weeks, depending on the network

architecture.

There are several ways to get the total count of a certain

object, including directly applying object detector on the

input image [7, 10], learning a mapping from patches to a

number [3], or summing over the predicted density map [2].

In this paper, we choose the last one due to its capability
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Figure 2. Overall architecture of the proposed method (CFOCNet). The input of this method is a query image and several reference images

where the number of reference images needs not to be fixed (details can be found in section 3.2). Our network is mainly built upon two

stream Resnet with matching mechanism (details in section 3.2.2) applied on the output of each Resblock followed by a learnable weighted

fusion (details in section 3.2.3) that combines the matching score map of different scales. The final count is calculated by taking integration

of the predicted density map.

to count those occluded, scale-varied and congested scenes

like crowd counting methods [27].

To tackle those aforementioned problems, we introduce

an effective Class-agnostic Few-shot Object Counting Net-

work (CFOCNet) which can not only count arbitrary class

of object but also requires only a few reference images. The

input of our method is a query image and several reference

images. To achieve class-agnostic manner, instead of learn-

ing a bunch of object classifier like Faster-RCNN [20], we

match the query image and reference images in Resnet[11]-

extracted feature space, provided none of category informa-

tion, forcing our network to extract class-independent fea-

ture. Therefore, our model has only to be trained one time

but has the ability to generalize to unseen classes.

Since there is no available dataset that aims at class-

agnostic few-shot counting, we evaluate our method on a

subset of COCO [16] dataset. During testing, categories

of the object to be count are all unseen during training

stage. The experiments show that our CFOCNet surpasses

recent works such as One-Shot Instance Segmentation [18],

which is mainly built on object detection method and Class-

Agnostic Counting [17], which is similar to our method but

has been fine-tuned on testing class. Ablation studies also

show the effectiveness of each part of the proposed network

architecture.

To summarize, our main contributions of this paper are

as follows:

• Different from those object counters that are only de-

signed for counting the specific category, we argue the

importance of class-agnostic few-shot counting. To the

best of our knowledge, there is no previous work that

focuses on this scenario.

• We propose an effective network architecture that cal-

culates the similarity of query image and reference im-

ages in different scales, which reduces the counting

problem to a matching problem.

• Compared to similar works, our CFOCNet has the low-

est MAE/MSE on the subset of the COCO dataset. Vi-

sualization (figure 4) also shows that our method can

successfully predict various objects.

2. Related work

There is a large number of methods introduced in recent

years that focus on few-shot learning and object counting.

In this section, we discuss each task respectively.
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2.1. Few­shot learning

Human is good at recognizing a novel class of object

through only a few of examples. Few-shot learning aims

to mimic human’s ability of generalization that can rapidly

apply a model to new classes not originally trained on. For-

mally speaking, in the few-shot scheme, C categories are

sampled from the training set, each class contains K exam-

ples, and the model is required to classify those C categories

from C × K examples. Such setting is denoted as C-way,

K-shot learning problem.

[9] proposes a model-agnostic meta-learning algorithm

that can be applied to various tasks trained with gradient-

based method. This meta-learning algorithm is trained on

various tasks so that it can solve novel tasks using just a

small number of examples. [23] introduces prototypical

networks for few-shot classification. Prototypical network

computes the distance of each class on a metric space that

can be used on classifying.

In contrast to typical few-shot learning methods which

the number of input examples should be fixed, our network

can receive an arbitrary number of examples during training

and testing, resulting in flexible usage. Besides, prior few-

shot learning works mostly focus on classification. In this

work, to the best of our knowledge, we are the first one that

mainly aims to counting problem.

2.2. Object counting

There are many works contributing to counting objects.

Strategies used to compute the total count of the certain ob-

ject can be mainly divided into two categories: detection

method and density map method. Detection methods such

as [12, 4] acquire the count of object by running a detection

model. These kinds of methods can output satisfiable pre-

diction in regular cases. However, in some extreme cases

where instances of each object are occluded, overlapped

and distorted like crowd counting, detection method may

fail because of the aforementioned difficulties.

Instead of counting by detecting, density map based

methods output a map representing the density distribution

of input image, leading to a more fine-grained counting re-

sult. [5] proposes an image-level supervised density map

estimation for object counting and shows its performance

over state-of-the-art methods. [26] proposes a multi-view

CNN crowd counting network which can make use of mul-

tiple camera views.

Nevertheless, these aforementioned works only focus on

counting objects that have been seen during training stage.

In this paper, we introduce a network capable of counting

arbitrary unseen classes of objects in an agnostic manner.

Figure 3. Distribution of the number of instances per image on

4-fold training data. Due to its extremely skewed distribution,

we empirically choose images that have five or more instances of

training categories to make the training process stable.

3. Method

In this section, we formally define the class-agnostic

few-shot problem in section 3.1, followed by proposed net-

work architecture in 3.2.

3.1. Problem definition

The problem definition of this paper is defined as fol-

lows: given a query image that contains several different

objects and several reference images of the same category,

our model should output a number that represents the num-

ber of instances of the reference images contained in the

query image. The query image can consist of arbitrary ob-

jects which in this work is selected from the COCO dataset.

Each reference image contains only one object of the de-

sired category.

The number of reference images can be one or more, pro-

viding more reference images leading to better performance

(details can be found at figure 5). If the number of refer-

ence images is decreased to one, the problem is degraded

to one-shot learning. In order to input arbitrary number of

reference images, we design a flexible network architecture

to satisfy such circumstances which is discussed in section

3.2.

Besides few-shot manner, our method also aims at class-

agnostic learning, which is, in other words, an ability to

generalize to the unseen objects. During training stage, only

query image and reference images are provided to our net-

work, without any label information, forcing our network

to extract class-independent information. In testing stage,

although the categories of reference images does not appear

in training data, our method can still estimate reasonable

result.
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COCO Dataset (one-shot) (≥5 instances)

fold 0 fold 1 fold 2 fold 3

Method MAE MSE MAE MSE MAE MSE MAE MSE

Segment [18] 4.61±0.04 5.91±0.14 4.53±0.08 5.93±0.13 4.10±0.10 5.56±0.23 4.32±0.13 5.61±0.27
Cac [17] 5.01±0.04 5.92±0.04 4.22±0.03 5.66±0.51 3.97±0.08 4.98±0.09 3.77±0.14 4.73±0.19

CFOCNet 3.18±0.05 4.04±0.08 3.69±0.07 4.71±0.17 3.24±0.11 4.40±0.21 3.19±0.14 4.40±0.36

Table 1. Result on each of four folds conditioned on one query image (#instances≥5) and one reference image. We repeat each experiment

5 times and report the average MAE (Mean Absolute Error) and MSE (Mean Square Error) along with standard deviation. Our CFOCNet

outperforms previous works by a large margin without any fine-tuning on testing categories.

COCO Dataset (five-shot) (≥5 instances)

fold 0 fold 1 fold 2 fold 3

Method MAE MSE MAE MSE MAE MSE MAE MSE

Segment [18] 4.40±0.05 5.67±0.05 4.36±0.07 5.68±0.10 3.80±0.02 5.18±0.13 4.16±0.05 5.31±0.07
Cac [17] 3.63±0.03 4.58±0.05 4.07±0.04 6.13±0.23 3.05±0.08 4.04±0.09 3.46±0.06 4.64±0.15

CFOCNet 2.98±0.02 3.74±0.03 3.46±0.09 4.53±0.14 3.03±0.05 4.04±0.05 2.82±0.07 3.77±0.10

Table 2. Result on each of four folds conditioned on one query image (#instances≥5) and five reference image. We repeat each experiment

5 times and report the average MAE and MSE along with standard deviation. In this table, the number of reference images increases

from one to five which provides the model more matching capability. Again, our CFOCNet outperforms previous works by a large margin

without any fine-tuning on testing categories.

3.2. Network architecture

Inspired by [15] that shows great success in object track-

ing, our network mainly consists of a two-stream Resnet en-

coder that calculates the matching score in different scales

followed by a decoder that generates the predicted den-

sity map. Encoder has two stream that extracts the feature

of query image and reference images respectively, coupled

with a correlation operation (section 3.2.2) to embed two

branches’ information. Decoder learns to fuse the score

maps generated from encoder by a trainable weighted sum

mechanism. Each component is discussed in the following

section.

3.2.1 Resnet encoder

As shown in figure 2, the encoder has two streams, one is

query stream and the other is reference stream. In this work,

we use the first three blocks of Resnet-50 due to its power-

ful feature representation. The query stream is the standard

Resnet that is composed of three Resblock, the output of

each block denoted as follows:

Res
query
i , i ∈ {1, 2, 3} (1)

where i represents the i-th Resblock’s output. The reference

stream is also the standard Resnet which has multiple input

images, output of each block denoted as follows:

Res
ref
i,j , i ∈ {1, 2, 3}, j ∈ {1, 2, ..., k} (2)

where k represents the number of reference images (k-shot).

Then Res
query
i and Res

ref
i,j are used as the input of next

Resblock or the input of correlation operation.

3.2.2 Matching mechanism

Recent counting methods learn a detector per object cate-

gory which shows satisfiable results in counting certain ob-

ject class. However, in the class-agnostic setting, we should

find a way that makes our model not be restricted in spe-

cific categories. Thus in our network, instead of providing

label information into our network to train a class-specific

detector, we leverage the matching mechanism widely used

in traditional methods [8, 13].

To calculate the matchingness of query image and ref-

erence objects, we first aggregate the feature of reference

images extracted from encoder by pooling operation along

the j dimension:

Res
ref
i = max pool(Res

ref
i,j ), i ∈ {1, 2, 3} (3)

where providing more reference images leads to better per-

formance. Then we can calculate the matching score be-

tween R
query
i and R

ref
i by:

input = self attn(Res
query
i ) (4)

kernel = max pool(Res
ref
i , r) (5)

Mi = Conv(input, kernel), i ∈ {1, 2, 3} (6)

where max pool here denotes the max pooling operation

along the spatial dimension (height and width) to reduce

the spatial resolution of extracted feature map to r × r due
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COCO Dataset (one-shot) (≥1 instances)

fold 0 fold 1 fold 2 fold 3

Method MAE MSE MAE MSE MAE MSE MAE MSE

Segment [18] 2.91±0.02 4.20±0.03 2.47±0.04 3.67±0.05 2.64±0.02 3.79±0.06 2.82±0.02 4.09±0.03
Cac [17] 2.97±0.02 4.02±0.02 3.39±0.03 4.56±0.11 3.00±0.04 3.94±0.04 3.30±0.03 4.40±0.09

CFOCNet 2.24±0.01 3.50±0.03 1.78±0.02 2.90±0.03 2.66±0.03 3.82±0.07 2.16±0.03 3.27±0.07

Table 3. Result on each of four folds conditioned on one query image (#instances≥1) and one reference image evaluated on the full set of

each fold. The experiment is repeated 5 times to reduce the randomness. Our method outperforms others by a large margin in all folds of

the full set.

to computational cost. We empirically set r = 4 to achieve

the best result. Conv denotes the convolution operation that

computes the similarity of each spatial location of feature

map from query stream. Since the kernel here is derived

from the feature map of reference stream, it does not re-

quire more trainable variables, resulting in a parameterless

convolution. In addition, to calculate the matchingness be-

tween two branches, self-attention mechanism [25] is also

applied on query branch to encourage the model focusing

on self-similarity incurred by repeatedness of the same ob-

jects. After above matching operation, now we have three

different maps of matching score M1,M2,M3 representing

the similarities in various scales.

3.2.3 Density map decoder

Due to the scale variation of query image ranging from

bus to donut, a scale-aware fusing mechanism is required.

In this work, we propose a learnable weighted sum fusing

mechanism to let the model automatically attend on the de-

sired scale according to the matching score generated from

the encoder.

To calculate the weighted sum of three matching score

maps, we first compute the weight of each matching score

maps by:

Si = Sum(Conv(Mi)), i ∈ {1, 2, 3} (7)

W = Softmax(S),W ∈ R3 (8)

where Conv denotes the 1× 1 convolution that reduces the

channels to be one and Sum is summing operation that pro-

duces a scalar. Softmax is used to normalize the weight

corresponding to different matching score maps. Then the

fused matching score map can be computed as:

F =

3
∑

i=1

Wi ×Mi, i ∈ {1, 2, 3} (9)

Finally, because the spatial resolution of F is 1/8 of orig-

inal image, the output density map is simply generated by

applying transpose convolution and bilinear upsampling.

4. Experiments

In this section, we first introduce the dataset used for

training and testing in section 4.1, followed by implemen-

tation details in section 4.2. Evaluation protocal and main

result are discussed in section 4.3 and section 4.4 respec-

tively.

4.1. Dataset

Since there is no available dataset that aims at evaluating

the generalization of the class-agnostic setting, we manually

choose a subset of COCO [16] dataset to meet such require-

ment. The COCO dataset is widely used in object detection,

instance segmentation and many other works due to its rich

object categories (80 classes) and various scenes. In this

paper, we follow the setting in [18] that uses 4-fold valida-

tion which split 80 object categories into 60/20 for training

and testing. Therefore the 20 categories of objects in testing

stage are unseen in training stage which can benchmark the

model ability of generalization to novel classes.

4.2. Implementation details

4.2.1 Training example generation

A training example consists of one query image and k ref-

erence images. Query image is randomly sampled from the

dataset which one or more training class is contained in. To

make the training converge faster, we further choose the im-

ages that have five or more instances of training categories

that can provide more updating signal to the model (distri-

bution in figure 3). Once the query image is selected, it may

have several objects of training classes. Hence we again

randomly sample one desired class contained in query im-

age to decide the class of reference images.

To get the reference images of the desired class, we crop

all the instances of each object from training set, saving

them to the disk indexed by their category index for later

usage. Thus, in the training stage, we can rapidly sample k

image of the desired category. In this paper, we set k = 5
for all experiments.
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COCO Dataset (five-shot) (≥1 instances)

fold 0 fold 1 fold 2 fold 3

Method MAE MSE MAE MSE MAE MSE MAE MSE

Segment [18] 2.86±0.01 4.08±0.01 2.46±0.02 3.58±0.03 2.65±0.01 3.73±0.02 2.91±0.01 4.08±0.01
Cac [17] 3.93±0.02 5.12±0.04 3.67±0.02 4.83±0.05 4.33±0.02 5.14±0.40 3.31±0.03 4.26±0.05

CFOCNet 2.15±0.01 3.43±0.02 1.73±0.01 2.79±0.02 2.39±0.02 3.39±0.04 1.90±0.01 2.80±0.03

Table 4. Result on each of four folds conditioned on one query image (#instances≥1) and five reference images evaluated on the full set of

each fold. Our network’s MAE/MSE decreases as the number of reference images increases (cf. table 3) while others have no performance

gain, proving the effective design of our network.

4.2.2 Ground truth generation

The output of the network is a density map that represents

the distribution of reference class. Since the COCO dataset

has only bounding box annotation, converting box annota-

tion to density map is required. We follow previous work

[22] that generates the ground truth density map as follows.

First, we obtain a binary map:

Bi,j =

{

1 if (i, j) is annotated
0 else

(10)

The annotated here means that (i, j) is the center of the

bounding box. Then we convolve B by a Gaussian kernel

with standard deviation empirically set to 10.

4.2.3 Network settings

During training, the query image is randomly cropped to

256×256 with randomly flipped of probability 0.5, while

reference images are resized to 64×64 with padding to keep

the aspect ratio. Besides, the channel of feature maps used

to compute the matching score is reduced to 256 by apply-

ing a 1×1 convolution. In this paper, we let k = 5, resulting

in a 5-shot matching problem.

The network is supervised by the standard L2 loss that

compares the difference between two images, defined as:

LE =
1

N

N
∑

i=1

‖Pi −GTi‖
2, (11)

supposed there are N pixels in a given image where Pi is

the prediction of our model and GTi is ground truth den-

sity map. In addition, SSIM loss is used as well since it

shows the advantage on catching local pattern consistency

[2], defined as:

SSIM =
(2µpµgt + c1)(2σp,gt + c2)

(µ2
p + µ2

gt + c1)(σ2
p + σ2

gt + c2)
(12)

where µp and µgt are mean and σp and σgt are standard

deviation of prediction map and ground truth density map,

σp,gt denotes the covariance, c1 and c2 are small value to

avoid division by zero. Aggregating each pixel of predic-

tion, SSIM loss is defined as:

LSSIM = 1−
1

N

∑

SSIM(x), (13)

where x is the position of the map. Final loss is calculated

by fusing these two loss functions:

L = LE + λLSSIM , (14)

where λ is used to balance two loss functions. In this paper

we set λ to 1e− 5.

Our network is trained from scratch without any pre-

trained weight. Adam [14] optimizer is used because it

shows faster converging speed in many tasks, learning rate

is set to 1e− 4 without any scheduling and batch size is set

to 20. All the experiments are implemented by Tensorflow

[1] framework and nVidia V100 GPUs.

4.3. Evaluation protocol

To evaluate the effectiveness of the proposed method, we

measure the performance by MAE (Mean Absolute Error)

and MSE (Mean Square Error) that are commonly applied

on recent works [12, 17], defined as follows:

MAE =
1

M

M
∑

i=1

|Predi − Cnti| (15)

MSE =

√

√

√

√

1

M

M
∑

i=1

|Predi − Cnti|2 (16)

where M is total images, Predi is prediction count inte-

grated from predicted density map and Cnti is ground truth

count obtained by taking integral of predicted density map.

Since our network is fully convolutional, which can re-

ceive arbitrary size of the input image, different from train-

ing stage that uses a patch-based input, we empirically find

out that during testing directly inputting the whole query

image to the network leads to better performance.
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Figure 4. Visualization of our method versus previous works. The first row is the query image, the second row is the reference images

sampled from testing set, and the third, fourth and fifth row shows the predicted result of [18], [17] and CFOCNet (ours). The number in

the upper-right corner represents the count. It is obvious that our method has finer prediction than similar works. The analysis can be found

in section 4.4.3.

4.4. Results

4.4.1 Baselines

We compare our method with two similar works, One-shot

Instance Segmentation [18] and Class-agnostic Counting

[17]. Each of them is briefly described in the following sec-

tion.

One-shot Instance Segmentation: This paper proposes

a Siamese Mask R-CNN network to address the problem

of one/few-shot object detection and segmentation. To be

compared with our method whose output is a scalar repre-

senting the number of instances of the given class of the ob-

ject, we choose to use the bounding box part of this model.

By manual thresholding the confidence score ([0.70, 0.99])

of the bounding boxes, we choose the best one that results

in the lowest MAE in each fold respectively. The result of

this method is evaluated on the checkpoint released on its

Github page.

Class-agnostic Counting: This paper also introduces a

siamese-like network to predict a density map that indicates

the distribution of the interesting object. It first learns a

GMN (Generic Matching Network) on ImageNet [6], fol-

lowed by a fine-tuning process on the target dataset. Dif-

ferent from this method, our proposed model is only trained

on the COCO dataset without any fine-tuning on target cat-

egories. Besides, due to the original network architecture

only capable of receiving only one reference image, we

slightly modify the internal layer to make it able to pro-

cess arbitrary reference images along with query image at

the same time. To be fair, we train this model on the COCO

dataset from scratch according to the 4-fold splits.

4.4.2 Comparison

Since the reference images are randomly chosen from test-

ing set, the result of each experiment may fluctuate. To

alleviate the uncertainty caused by randomness, for each

experiment we repeat five times and report the average

MAE/MSE and standard deviation.

First, we evaluate each fold on those images having more

than five instances of objects which meet the training condi-

tion. As shown in table 1, our CFOCNet (last row) reaches

the lowest MAE/MSE on all folds, significantly outper-

forming similar works. Table 2 shows the performance

where number of reference images increases to five. It is

obvious that our model can benefit from having more ref-

erence images, indicating the power of feature aggregating

as mentioned in section 3.2.2. The effect of the amount of

reference images provided to the network is described in
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Ablation Studies (one-shot) (≥1 instances)

Method MAE MSE

w/o weighted fusion 2.40±0.01 3.29±0.02
w/o self-attn 2.45±0.02 3.90±0.08
CFOCNet 2.16±0.03 3.27±0.07

Table 5. Ablation studies of removing some part of our network

conducted on fold 3. As shown in this table, removing each of the

components resulting in larger MAE/MSE. Details can be found

on section 4.4.4.

section 4.4.4.

Secondly, we test our model on the full set of each fold,

that is, query image not restricted to the number of object

instances. In this case, there are some images that con-

tain less than 5 instances which are not seen during training

stage. Again our method performs better than others, indi-

cating that our model can generalize to the distribution that

is different from training (table 3). Besides, our network

performs better than using only one reference image (table

4), showing the effectiveness of network architecture.

4.4.3 Visualization

In addition to the quantitative result, we also visualize the

result of the output of our network and previous works. Fig-

ure 4 shows the results that are most accurate among all

folds. The first row is the query image with red bounding

boxes annotating the instances of ground truth objects. The

second row shows some examples of reference images. We

visualize the prediction of One-shot Instance Segmentation

[18] by manual thresholding the confidence score which re-

sulting in the lowest MAE. Visualization result shows that

[18] can successfully regress the bounding box of objects,

but with wrong object class. Class-agnostic Counting [17]

outputs a similar density map to our CFOCNet. However,

the prediction of [17] consists of too much false positive,

especially in those regions with similar shape or texture.

4.4.4 Ablation studies

To verify the effectiveness of components of our architec-

ture, we conduct ablation studies on 1) remove the weighted

fusion of three matching score map, as described in equa-

tion 7 and 8, which three maps are directly added instead

and 2) remove the self-attention layer, as described in equa-

tion 4. Table 5 shows the result of removing each of

the aforementioned components, leading to a performance

drop on both MAE/MSE, indicating the importance of the

weighted fusion and self-attention mechanism.

Furthermore, we conduct an ablation study on the num-

ber of reference images, increasing from one to five. As

shown in figure 5, providing more reference images to our

network leads to better performance, which is also a proof

Figure 5. Ablation study on the number of reference images pro-

viding to the network, tested on fold 3. We repeat this experiment

five times and report the average MAE along with standard de-

viation. It is clear that providing more reference images leads to

lower MAE.

of the benefit gained from the pooling operation of reference

branch.

5. Conclusion

In this paper, we tackle the problem of class-agnostic

few-shot learning on object counting tasks. We propose a

network, called CFOCNet, that computes the number of in-

stances of certain object class by providing one or more ref-

erence images to the network. To achieve the class-agnostic

manner, we cast the counting problem into a matching

problem in order to force the model learning the class-

independent feature so that in the testing stage the model

can generalize to such unseen objects. The experiments also

show that our proposed model can reach lower MAE/MSE

in each fold of the COCO dataset.

During doing experiments, we also find out that the ob-

ject instances that appeared in the dataset are not well-

annotated. For example, there are many images containing

so large amount of instances that not all of them are anno-

tated. Therefore the ground truth counts are often under-

estimated, leading to the increase in MAE/MSE. Despite

this, our model still shows its matching ability on the unan-

notated regions, as shown in figure 4.
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