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Abstract

The majority of descriptor-based methods for geomet-

ric processing of non-rigid shape rely on hand-crafted de-

scriptors. Recently, learning-based techniques have been

shown effective, achieving state-of-the-art results in a vari-

ety of tasks. Yet, even though these methods can in principle

work directly on raw data, most methods still rely on hand-

crafted descriptors at the input layer. In this work, we wish

to challenge this practice and use a neural network to learn

descriptors directly from the raw mesh. To this end, we in-

troduce two modules into our neural architecture. The first

is a local reference frame (LRF) used to explicitly make the

features invariant to rigid transformations. The second is

continuous convolution kernels that provide robustness to

sampling. We show the efficacy of our proposed network in

learning on raw meshes using two cornerstone tasks: shape

matching, and human body parts segmentation. Our results

show superior results over baseline methods that use hand-

crafted descriptors.

1. Introduction

Shape descriptors are key to many applications in 3D

computer vision and graphics. Examples include shape

matching, segmentation, retrieval, and registration, to name

a few. A good local descriptor should balance between

two opposite forces. On the one hand, it needs to be dis-

criminative enough to uniquely describe a surface local re-

gion. At the same time though, it needs to keep robustness

to nuisance factors like noise or sampling. Depending on

the task, other properties may be required. Common ex-

amples are invariance to rigid transformations [19, 17, 18]

or isometric deformations [45, 7, 49]. To this end, many

descriptors have been manually crafted with built-in invari-

ance. However, these rely on one’s ability to analytically

model structure in the data which can often be too diffi-

cult. Alternatively, machine learning approaches and neural
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networks in particular, can recover complex patterns from

training samples. Further, end-to-end learning is task aware

and thus can tailor the learned descriptors to the specified

task. Neural networks have proven very powerful in learn-

ing descriptors from raw data in various domains includ-

ing images, text, audio and point clouds. Recently, an ex-

citing research branch termed geometric deep learning has

emerged, offering various techniques to process shape rep-

resented as meshes. Interestingly though, the vast major-

ity of methods still rely on hand-crafted descriptors at the

input to the network as these seem to perform better than

working on raw data. In this work, we wish to challenge

this practice and learn directly from the raw mesh. Our

proposed method is data-driven in nature, however, we in-

tegrate the powerful local reference frame (LRF) module

commonly used in hand-crafted descriptors into our net-

work. We found through experimentation that structuring

the learning through the LRF, is key to reach good per-

formance. A second contribution is the use of continuous

convolution kernels. This concept was recently shown to

be quite powerful in point cloud networks [65]. Here, we

show its usefulness in the context of deformable meshes.

We show the efficacy of our proposed network in learning

on raw meshes using two cornerstone tasks: shape match-

ing, and human body parts segmentation. Our results show

superior results over baseline methods that use hand-crafted

descriptors.

Contributions Our contributions can be summarized as

follows.

• We introduce a local reference frame (LRF) and con-

tinuous convolution kernel modules in the context of

deformable shapes.

• Using these, we are able to work directly on raw mesh

features and outperform previous methods that take

hand-crafted descriptors as input.

• We achieve improved results on deformable shape

matching, and human body part segmentation.
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2. Related Work

2.1. Shape descriptors

Rigid Case Rotation invariant 3D local descriptors are of

great interest in the realm of 3D computer vision. Most of

the works consider the scenario where the 3D point sets un-

dergo a rigid transformation. The first handcrafted family

of works tried to achieve repeatability under those transfor-

mations by building certain invariances such as isometry in-

variance [62, 33, 24, 58, 57, 61]. Many of these works rely

extensively on a local reference frame that is assumed to be

repeatably constructed on the point sets [51, 47, 46]. With

the advances in deep networks, these methods have been re-

placed by their learned counterparts [67, 35, 18, 17, 22, 13].

Be it data driven or not, a large portion of all these works

owe their robustness to the local reference frames unless the

input is made invariant to rotations [17, 68]. One of the aims

of this paper is to extend the findings regarding locally rigid

LRFs to the non-rigid.

Case of Deformable Shapes For the non-rigid shapes,

pointwise descriptors are mostly designed to be intrinsic

in order to handle isometric deformations [5, 56, 59] and

scale [11]. However, designing a descriptor by hand is a

cumbersome task. It requires manual balancing of the trade-

off between robustness and discriminability, and often re-

lies on heuristics to capture local patterns. Learning based

methods are well suited for this task, given the availability

of enough training samples. Pioneering works in the field

include [9] which extended a “bag of features” approach to

non-rigid 3D shape retrieval, and [43] which utilized a Ma-

halanobis metric learning to optimize a parametric spectral

descriptor for shape matching. The success of deep learning

in computer vision, has motivated a new active research area

termed Geometric Deep Learning [10]. A main challenge in

this field is how to construct basic operations such as convo-

lution and pooling for geometric data structures. One line of

work has opted for extracting geodesic patches [45, 7, 49].

This way, the convolution operator is defined intrinsically

on the manifold guaranteeing invariance to isometric defor-

mations. The challenge lies in constructing repeatable local

patches with a canonical orientation. For nonrigid shapes

these are often based on curvature, but other approaches ex-

ist such as [29] and the recently proposed GFrames [46].

On the other hand, spectral techniques [12, 28] generalize

a convolutional network through the Graph Fourier trans-

form, thus avoiding the need for a patch. A polynomial

parameterization of the learned filters was proposed in [16]

in order to spatially localize the kernel and reduce the learn-

ing complexity. Common to most learning based methods,

is that they use precomputed descriptors as inputs and im-

prove upon them through learned operations. Few works

explored directly using raw mesh data. In [52] it was shown

that using 3D coordinates underperform SHOT [62] as in-

put; while in [63] the opposite conclusion was reached.

MeshCNN [26] defined convolution on triangular meshes

treating the edge as a first citizen, rather than the nodes. Us-

ing angles and edge ratios as input features they were able to

work on the raw mesh while being rotation, translation and

(uniform) scale invariant. More recently rotation equivari-

ant features were introduced in [66].

2.2. Continuous convolution

Key to our approach is a continuous convolution opera-

tor. Realizing that the input points are merely samples from

an underlying continuous surface, this makes a much more

natural formulation than treating the points as an unstruc-

tured cloud. Several works have explored the use of learned

continuous kernels. In [42, 20] self similarities in the mesh

patches were used via dictionary learning. More recently

[45, 7] studied the extraction of local geodesic patches for

constructing the equivalent of a convolutional neural net-

work for 2-dimensional manifolds. A generalized form of

these was introduced in [49]. In [4] a continuous processing

of pointcloud was proposed by defining an extension oper-

ator that maps pointclouds to continuous volumetric func-

tions. Another line of works parameterizes the continuous

ambient function by another network. This concept was first

introduced in [32], where it was termed “dynamic filter”

as it allows to modify the convolution filters according to

the input, instead of using fixed ones. In [15] a deforma-

tion of the convolution kernel was used to dynamically re-

act to the input image patch. A similar approach was taken

for pointclouds in [60]. Instead of dynamically modifying

the kernel, [39] proposed a χ−transformation in order to to

canonicalize the input points. Our continuous convolution

resembles the most this line of work, however differently

from pointcloud based dynamic filters we utilize the mesh

structure to enrich our point features as described in Sec. 3.

2.3. Sampling on geodesic disk

SpiralNet [40] uses either an RNN or an MLP to con-

sume an ordered representation of the points in the vicinity

of a vertex. The network is made robust to vertex sam-

pling by randomly sampling different points at train time.

This augmentation-based robustness, is replaced in Spiral-

Net++ [23], by fixing the start point under the assumption

of meshes having the same topology which limits the ap-

plication of their method. Specifically, this approach can-

not not be directly applied to the human body segmentation

task where the connectivity changes between subjects. In

our network, by introducing the local reference frame, we

were able to solve the ambiguity mentioned in SpiralNet

and successfully apply our network to meshes with differ-

ent topology.
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Figure 1. Our LRF-Conv layer. We treat a shape as a set of 3D coordinates and surface normals X ∈ R
N×6. Around each point xi ∈ R

6 ≡
[x, y, z, nx, ny, nz]

⊤ we consider a 3D geodesic local neighborhood Ωi: X
M
Ωi

= {xk ∈ X : d(xi,xk) < τ}, where τ is a threshold on

the geodesic distance d. We then perform a farthest point sampling (FPS) on this set, XΩi
= FPS(XM

Ωi
,K), and retain K neighbors. We

perform a de-mean operation, setting the coordinates of xi as the local origin. We further augment each point with the geodesic distance to

this new origin as well as the surface normal of the origin and let x̂ij ∈ R
7 = [x̂ij , ŷij , ẑij , n̂

x
ij , n̂

y
ij , n̂

z
ij , gij , d(xi,xij)]

⊤ represent the

j th point in the local frame of xi. We use X̂Ωi
= {x̂ij}j∈Ωi

to refer to this augmented, centered local set and this is precisely the input to

our LRF-Conv layer. Our layer takes as input a local reference frame [62] Ri assigned to the patch i. Next, we re-orient the input by Ri

to get {x̄ij}j , X̄Ωi
= Ri ◦ X̂Ωi

. Note that the operator ◦ does not act on the distances {dij}j while rotating the rest. We then use an

MLP per entity (coordinates, normals, distances) to extend the input description to match the latent dimension and concatenate these with

features extracted in the previous layer Fl
Ωi

, where F0

Ωi
, 0. This concatenated feature is the input to our trainable continuous convolution

yielding the latent features (output) of this (l+1)th layer. The learnable modules is depicted in green whereas the data containers in purple.

3. LRFConv Layers

At the core of our contribution lies a continuous con-

volution layer that operates on a locally rectified point set

and its geodesics. We call this the LRFConv Layer and

illustrate it in Figure 1. LRFConv receives a local patch

X̂Ωi
= {x̂ij}j = {x̂i1, x̂i2 , . . . , x̂iK} that is already cen-

tered on a given reference point xi as input. This local patch

is composed of a collection of those K points lying in the

region Ωi being subsampled using a farthest point sampling

algorithm [54, 48]. Along with its 3D coordinates, each jth

point in this patch also carries two additional pieces of ge-

ometric information: the surface normal n̂ij ∈ S
3 and the

geodesic distance to the reference (center) point d(xi,xij),
a quantity that is preserved under isometries. For a vertex

j centered around the ith vertex, this yields a 7-dimensional

point representation x̂ij ∈ R
7:

x̂ij =
[

x̂ij ŷij ẑij n̂x
ij n̂

y
ij n̂z

ij gij
]⊤

(1)

where gij , d(xi,xij) and the subscript ij refers to the

index of the jth point in the neighborhood of ith vertex:

j ∈ Ωi. In order to build resilience among six degrees of

freedom (DoF) rotations we re-orient this patch using a lo-

cal reference frame. To this end, we first compute an LRF

for all points in the vertex set X. Then each patch X̂Ωi
is

assigned an LRF in accordance with its index. The axes of

this LRF are assembled into a rotation matrix Ri ∈ SO(3)
which can be used to transform the patch to a canonical

alignment: X̄Ωi
= Ri ◦ X̂Ωi

. Here the ◦ operator only acts

on coordinates and normals separately. We then consider

the aligned local patch X̄Ωi
, {x̄ij ∈ R

7}j . Note that after

such transformations x̄i ≡ o, a constant vector. We com-

pute an intermediate feature representation for the whole

patch using the entirety of the information collected up to

this point and extend it with the help of three multi layer

perceptrons (MLPs). We use one MLP per each of the coor-

dinates, normals and geodesic distances in order to match

the dimension of the latent features propagated from the

previous layer, denoted as Fl
Ωi

∈ R
K×Fl where Fl is the di-

mension of the features. This generates X̄′

Ωi
∈ R

K×(Fl×3).

Note that an essential quantity in feeding forward the infor-

mation generated in the previous layers to the later layers

of our network is Fl
Ωi

. Thus, we concatenate the output of

the said MLPs with F
l
Ωi

and feed the resulting matrix into a

continuous convolution operation producing the output fea-

tures of this layer f l+1
i ∈ R

Fl+1 . Note that in the beginning

we initialize the features to zeros: F0
Ωi

, 0.

In the following, we will present the details of our LRF

computation and dig deeper into the continuous convolu-

tions.

Local Reference Frame (LRF) In order to introduce in-

variance to translations and rotations as well as building ro-

bustness to noise, many of the handcrafted descriptors rely

on the estimation of a local coordinate system that varies

equivariantly with the global transformation of the object.

We use a similar idea to endow our deep features with in-

variances. A frame of reference (LRF) can be parameter-

ized as a rotation matrix Ri = [rxi , r
y
i , r

z
i ] ∈ SO(3) where

each column corresponds to an axis of the local coordi-

nate frame. In our work, we switch between two LRFs

depending on whether the data is real or synthetic. For

scanned point sets, we use SHOT’s LRF [62] thanks to

its uniqueness and robustness to noise. The second kind

that is suited to less noisy, synthetic meshes is inspired by

Texturenet [30]: The first axis is aligned with the surface

normal at xi: ni. The second axis is determined by the

direction of maximum curvature projected on the tangent
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