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Abstract

The majority of descriptor-based methods for geomet-

ric processing of non-rigid shape rely on hand-crafted de-

scriptors. Recently, learning-based techniques have been

shown effective, achieving state-of-the-art results in a vari-

ety of tasks. Yet, even though these methods can in principle

work directly on raw data, most methods still rely on hand-

crafted descriptors at the input layer. In this work, we wish

to challenge this practice and use a neural network to learn

descriptors directly from the raw mesh. To this end, we in-

troduce two modules into our neural architecture. The first

is a local reference frame (LRF) used to explicitly make the

features invariant to rigid transformations. The second is

continuous convolution kernels that provide robustness to

sampling. We show the efficacy of our proposed network in

learning on raw meshes using two cornerstone tasks: shape

matching, and human body parts segmentation. Our results

show superior results over baseline methods that use hand-

crafted descriptors.

1. Introduction

Shape descriptors are key to many applications in 3D

computer vision and graphics. Examples include shape

matching, segmentation, retrieval, and registration, to name

a few. A good local descriptor should balance between

two opposite forces. On the one hand, it needs to be dis-

criminative enough to uniquely describe a surface local re-

gion. At the same time though, it needs to keep robustness

to nuisance factors like noise or sampling. Depending on

the task, other properties may be required. Common ex-

amples are invariance to rigid transformations [19, 17, 18]

or isometric deformations [45, 7, 49]. To this end, many

descriptors have been manually crafted with built-in invari-

ance. However, these rely on one’s ability to analytically

model structure in the data which can often be too diffi-

cult. Alternatively, machine learning approaches and neural
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networks in particular, can recover complex patterns from

training samples. Further, end-to-end learning is task aware

and thus can tailor the learned descriptors to the specified

task. Neural networks have proven very powerful in learn-

ing descriptors from raw data in various domains includ-

ing images, text, audio and point clouds. Recently, an ex-

citing research branch termed geometric deep learning has

emerged, offering various techniques to process shape rep-

resented as meshes. Interestingly though, the vast major-

ity of methods still rely on hand-crafted descriptors at the

input to the network as these seem to perform better than

working on raw data. In this work, we wish to challenge

this practice and learn directly from the raw mesh. Our

proposed method is data-driven in nature, however, we in-

tegrate the powerful local reference frame (LRF) module

commonly used in hand-crafted descriptors into our net-

work. We found through experimentation that structuring

the learning through the LRF, is key to reach good per-

formance. A second contribution is the use of continuous

convolution kernels. This concept was recently shown to

be quite powerful in point cloud networks [65]. Here, we

show its usefulness in the context of deformable meshes.

We show the efficacy of our proposed network in learning

on raw meshes using two cornerstone tasks: shape match-

ing, and human body parts segmentation. Our results show

superior results over baseline methods that use hand-crafted

descriptors.

Contributions Our contributions can be summarized as

follows.

• We introduce a local reference frame (LRF) and con-

tinuous convolution kernel modules in the context of

deformable shapes.

• Using these, we are able to work directly on raw mesh

features and outperform previous methods that take

hand-crafted descriptors as input.

• We achieve improved results on deformable shape

matching, and human body part segmentation.
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2. Related Work

2.1. Shape descriptors

Rigid Case Rotation invariant 3D local descriptors are of

great interest in the realm of 3D computer vision. Most of

the works consider the scenario where the 3D point sets un-

dergo a rigid transformation. The first handcrafted family

of works tried to achieve repeatability under those transfor-

mations by building certain invariances such as isometry in-

variance [62, 33, 24, 58, 57, 61]. Many of these works rely

extensively on a local reference frame that is assumed to be

repeatably constructed on the point sets [51, 47, 46]. With

the advances in deep networks, these methods have been re-

placed by their learned counterparts [67, 35, 18, 17, 22, 13].

Be it data driven or not, a large portion of all these works

owe their robustness to the local reference frames unless the

input is made invariant to rotations [17, 68]. One of the aims

of this paper is to extend the findings regarding locally rigid

LRFs to the non-rigid.

Case of Deformable Shapes For the non-rigid shapes,

pointwise descriptors are mostly designed to be intrinsic

in order to handle isometric deformations [5, 56, 59] and

scale [11]. However, designing a descriptor by hand is a

cumbersome task. It requires manual balancing of the trade-

off between robustness and discriminability, and often re-

lies on heuristics to capture local patterns. Learning based

methods are well suited for this task, given the availability

of enough training samples. Pioneering works in the field

include [9] which extended a “bag of features” approach to

non-rigid 3D shape retrieval, and [43] which utilized a Ma-

halanobis metric learning to optimize a parametric spectral

descriptor for shape matching. The success of deep learning

in computer vision, has motivated a new active research area

termed Geometric Deep Learning [10]. A main challenge in

this field is how to construct basic operations such as convo-

lution and pooling for geometric data structures. One line of

work has opted for extracting geodesic patches [45, 7, 49].

This way, the convolution operator is defined intrinsically

on the manifold guaranteeing invariance to isometric defor-

mations. The challenge lies in constructing repeatable local

patches with a canonical orientation. For nonrigid shapes

these are often based on curvature, but other approaches ex-

ist such as [29] and the recently proposed GFrames [46].

On the other hand, spectral techniques [12, 28] generalize

a convolutional network through the Graph Fourier trans-

form, thus avoiding the need for a patch. A polynomial

parameterization of the learned filters was proposed in [16]

in order to spatially localize the kernel and reduce the learn-

ing complexity. Common to most learning based methods,

is that they use precomputed descriptors as inputs and im-

prove upon them through learned operations. Few works

explored directly using raw mesh data. In [52] it was shown

that using 3D coordinates underperform SHOT [62] as in-

put; while in [63] the opposite conclusion was reached.

MeshCNN [26] defined convolution on triangular meshes

treating the edge as a first citizen, rather than the nodes. Us-

ing angles and edge ratios as input features they were able to

work on the raw mesh while being rotation, translation and

(uniform) scale invariant. More recently rotation equivari-

ant features were introduced in [66].

2.2. Continuous convolution

Key to our approach is a continuous convolution opera-

tor. Realizing that the input points are merely samples from

an underlying continuous surface, this makes a much more

natural formulation than treating the points as an unstruc-

tured cloud. Several works have explored the use of learned

continuous kernels. In [42, 20] self similarities in the mesh

patches were used via dictionary learning. More recently

[45, 7] studied the extraction of local geodesic patches for

constructing the equivalent of a convolutional neural net-

work for 2-dimensional manifolds. A generalized form of

these was introduced in [49]. In [4] a continuous processing

of pointcloud was proposed by defining an extension oper-

ator that maps pointclouds to continuous volumetric func-

tions. Another line of works parameterizes the continuous

ambient function by another network. This concept was first

introduced in [32], where it was termed “dynamic filter”

as it allows to modify the convolution filters according to

the input, instead of using fixed ones. In [15] a deforma-

tion of the convolution kernel was used to dynamically re-

act to the input image patch. A similar approach was taken

for pointclouds in [60]. Instead of dynamically modifying

the kernel, [39] proposed a χ−transformation in order to to

canonicalize the input points. Our continuous convolution

resembles the most this line of work, however differently

from pointcloud based dynamic filters we utilize the mesh

structure to enrich our point features as described in Sec. 3.

2.3. Sampling on geodesic disk

SpiralNet [40] uses either an RNN or an MLP to con-

sume an ordered representation of the points in the vicinity

of a vertex. The network is made robust to vertex sam-

pling by randomly sampling different points at train time.

This augmentation-based robustness, is replaced in Spiral-

Net++ [23], by fixing the start point under the assumption

of meshes having the same topology which limits the ap-

plication of their method. Specifically, this approach can-

not not be directly applied to the human body segmentation

task where the connectivity changes between subjects. In

our network, by introducing the local reference frame, we

were able to solve the ambiguity mentioned in SpiralNet

and successfully apply our network to meshes with differ-

ent topology.
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Figure 1. Our LRF-Conv layer. We treat a shape as a set of 3D coordinates and surface normals X ∈ R
N×6. Around each point xi ∈ R

6 ≡
[x, y, z, nx, ny, nz]

⊤ we consider a 3D geodesic local neighborhood Ωi: X
M
Ωi

= {xk ∈ X : d(xi,xk) < τ}, where τ is a threshold on

the geodesic distance d. We then perform a farthest point sampling (FPS) on this set, XΩi
= FPS(XM

Ωi
,K), and retain K neighbors. We

perform a de-mean operation, setting the coordinates of xi as the local origin. We further augment each point with the geodesic distance to

this new origin as well as the surface normal of the origin and let x̂ij ∈ R
7 = [x̂ij , ŷij , ẑij , n̂

x
ij , n̂

y
ij , n̂

z
ij , gij , d(xi,xij)]

⊤ represent the

j th point in the local frame of xi. We use X̂Ωi
= {x̂ij}j∈Ωi

to refer to this augmented, centered local set and this is precisely the input to

our LRF-Conv layer. Our layer takes as input a local reference frame [62] Ri assigned to the patch i. Next, we re-orient the input by Ri

to get {x̄ij}j , X̄Ωi
= Ri ◦ X̂Ωi

. Note that the operator ◦ does not act on the distances {dij}j while rotating the rest. We then use an

MLP per entity (coordinates, normals, distances) to extend the input description to match the latent dimension and concatenate these with

features extracted in the previous layer Fl
Ωi

, where F0

Ωi
, 0. This concatenated feature is the input to our trainable continuous convolution

yielding the latent features (output) of this (l+1)th layer. The learnable modules is depicted in green whereas the data containers in purple.

3. LRFConv Layers

At the core of our contribution lies a continuous con-

volution layer that operates on a locally rectified point set

and its geodesics. We call this the LRFConv Layer and

illustrate it in Figure 1. LRFConv receives a local patch

X̂Ωi
= {x̂ij}j = {x̂i1, x̂i2 , . . . , x̂iK} that is already cen-

tered on a given reference point xi as input. This local patch

is composed of a collection of those K points lying in the

region Ωi being subsampled using a farthest point sampling

algorithm [54, 48]. Along with its 3D coordinates, each jth

point in this patch also carries two additional pieces of ge-

ometric information: the surface normal n̂ij ∈ S
3 and the

geodesic distance to the reference (center) point d(xi,xij),
a quantity that is preserved under isometries. For a vertex

j centered around the ith vertex, this yields a 7-dimensional

point representation x̂ij ∈ R
7:

x̂ij =
[

x̂ij ŷij ẑij n̂x
ij n̂

y
ij n̂z

ij gij
]⊤

(1)

where gij , d(xi,xij) and the subscript ij refers to the

index of the jth point in the neighborhood of ith vertex:

j ∈ Ωi. In order to build resilience among six degrees of

freedom (DoF) rotations we re-orient this patch using a lo-

cal reference frame. To this end, we first compute an LRF

for all points in the vertex set X. Then each patch X̂Ωi
is

assigned an LRF in accordance with its index. The axes of

this LRF are assembled into a rotation matrix Ri ∈ SO(3)
which can be used to transform the patch to a canonical

alignment: X̄Ωi
= Ri ◦ X̂Ωi

. Here the ◦ operator only acts

on coordinates and normals separately. We then consider

the aligned local patch X̄Ωi
, {x̄ij ∈ R

7}j . Note that after

such transformations x̄i ≡ o, a constant vector. We com-

pute an intermediate feature representation for the whole

patch using the entirety of the information collected up to

this point and extend it with the help of three multi layer

perceptrons (MLPs). We use one MLP per each of the coor-

dinates, normals and geodesic distances in order to match

the dimension of the latent features propagated from the

previous layer, denoted as Fl
Ωi

∈ R
K×Fl where Fl is the di-

mension of the features. This generates X̄′

Ωi
∈ R

K×(Fl×3).

Note that an essential quantity in feeding forward the infor-

mation generated in the previous layers to the later layers

of our network is Fl
Ωi

. Thus, we concatenate the output of

the said MLPs with F
l
Ωi

and feed the resulting matrix into a

continuous convolution operation producing the output fea-

tures of this layer f l+1
i ∈ R

Fl+1 . Note that in the beginning

we initialize the features to zeros: F0
Ωi

, 0.

In the following, we will present the details of our LRF

computation and dig deeper into the continuous convolu-

tions.

Local Reference Frame (LRF) In order to introduce in-

variance to translations and rotations as well as building ro-

bustness to noise, many of the handcrafted descriptors rely

on the estimation of a local coordinate system that varies

equivariantly with the global transformation of the object.

We use a similar idea to endow our deep features with in-

variances. A frame of reference (LRF) can be parameter-

ized as a rotation matrix Ri = [rxi , r
y
i , r

z
i ] ∈ SO(3) where

each column corresponds to an axis of the local coordi-

nate frame. In our work, we switch between two LRFs

depending on whether the data is real or synthetic. For

scanned point sets, we use SHOT’s LRF [62] thanks to

its uniqueness and robustness to noise. The second kind

that is suited to less noisy, synthetic meshes is inspired by

Texturenet [30]: The first axis is aligned with the surface

normal at xi: ni. The second axis is determined by the

direction of maximum curvature projected on the tangent
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Figure 3. Entirety of our architecture. We extract a local patch centered around each point by querying a geodesic neighborhood. These

patches are sent into a sequence of LRFConv layers followed by a batch normalization (BN) and ReLU non-linearity. We also add skip

connections to be able to increase the depth and avoid the vanishing gradients. After 13 layers of LRFConv we arrive at our latent features

which can be used to address common tasks such as human body segmentation or correspondence estimation. When LRFConv is followed

by a BN and ReLU, we call this an LRFConvBN layer and parametrize it by three respective arguments: K the number of points in the

patch, rb = 0.003 the base radius that determines the size of the neighborhood, ob = 32 where ol = λob sets the dimension of the

output features. The residual blocks (RB) that are composed by two LRFConBNs are similarly parametrized. Note that for correspondence

estimation we have a weight sharing siamese architecture where the latent features of a paired shape are fed into a deep functional map

network [41] along with the features of the base (current) mesh.

labels {yi}.

ℓ = −
1

M

M∑

i=1

yi log si (3)

Correspondence Estimation The fully connected network

for estimating correspondence consists of 7 residual blocks.

In order to have a fair comparison with FMNet [41], the

dimension of the output / feature of each block is set to 352.

This is identical to the length of the latent feature used in

FMNet. We use the shared weights of LSD followed by

the fully connected network to extract the feature from the

target shape Y and the source shape X . Then we follow the

loss function proposed in FMNet:

ℓ =
1

|X |
||P ◦ (DYΠ

∗)||2
F

(4)

Note that our correspondence estimation approach resem-

bles FMNet’s. However, in addition to our continuous con-

volutions, we avoid using the handcrafted SHOT descriptors

and replace them with LSDs.

5. Experimental Evaluation

5.1. Datasets

We demonstrate the efficacy of our learned descriptor on

two cornerstone tasks in shape analysis: dense shape cor-

respondence and part segmentation. To this end, we utilize

two datasets.

Part Segmentation. For the segmentation task, we use the

human segmentation benchmark introduced in [44]. This

dataset consists of 370 models fused from multiple human

shape collections: SCAPE [2], FAUST [6], MIT animation

datasets [64] and Adobe Fuse [1]. All models were manu-

ally segmented into eight parts [34]. The test set is the 18

human models from the SHREC dataset [21]. The variety

of data sources makes the problem especially challenging

as each collection has a different sampling and appearance.

Moreover, the SHREC dataset was used solely for testing

which calls for a high generalization ability.

Shape Correspondence. To showcase our descriptor

learning module in the task of shape matching we use the

FAUST dataset [6]. The data contains 100 human high res-

olution scans belonging to 10 different individuals at 10 dif-

ferent poses each. The scans were all registered to a para-

metric model with 6890 vertices and consistent triangula-

tion. We call this set “Synthetic FAUST”. We also test our

method on the more challenging set of the original scans.

5.2. Part Segmentation

Given an input mesh we use our network to predict for

each vertex the part segment it belongs to. At train time,

we select 2000 random points from each mesh as input to

the network, and use the corresponding segmentation la-

bel as the supervision signal. We train our network for

200 epochs. In all our experiments we use the Adam op-

timizer [37] with a fixed learning rate of 10−3, β1 = 0.9,

β2 = 0.999, and ǫ = 10−8. We compare our results with

the two variations of MDGCNN [52] as proposed by the

authors, using either raw 3D coordinates or precomputed

SHOT [62] descriptors. To better understand the influence

of the continuous convolution module (CC) we also com-

pare with a simplified version of our pipeline, where the

continuous convolution is replaced by a standard PointNet

(PN) [53]. Our results are summarized in Table 1. It can

be seen that our method in both of its forms outperforms

MDGCNN, while using the continuous convolution further

boosts the performance.

In MDGCNN [52] table 2, the authors demonstrated im-

proved performance when using SHOT as input instead of
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Method Input feature Accuracy

MDGCNN [52] 3D coords 88.61

MDGCNN [52] SHOT12 89.47

Ours PN 3D coords 89.69

Ours CC 3D coords 89.88
Table 1. We compare our results with the two variations of

MDGCNN [52], using either raw 3D coordinates or precomputed

SHOT [62] descriptors. To better understand the influence of the

continuous convolution module (CC) we also compare with a sim-

plified version of our pipeline, where the continuous convolution

is replaced by a standard PointNet (PN) [53].

raw data. Perhaps surprisingly, in FeaStNet [63], the find-

ing was different: the raw data achieved better performance

than when using SHOT. This highlights the importance of

the architecture in extracting information from raw data,

and can explain why our proposed modification contributed

to the improved results.

Importantly, we achieve this by using raw 3D coordi-

nates as input and by which bridges the gap reported in

MDGCNN allowing to remove the dependence on manu-

ally designed features. This desired behaviour is expected

since our network imitates the design philosophy of SHOT.

We further present a qualitative evaluation of the part seg-

mentation in Figure 4.

5.3. Rotation invariance

As described in the introduction, depending on the

dataset and task at hand, a descriptor should be invariant to

different transformations. In the case of human body mod-

els and part segmentation it is natural to ask for invariance

to rigid transformations and articulations. While the lat-

ter is achieved through learning from examples, the former

is taken care of by construction using our proposed LRF.

Baking invariance into the descriptor by construction is not

only natural to the problem setting but also more sample ef-

ficient. To see this, we take two baseline methods which

are not rotation invariant, and train them with and with-

out rotation augmentation. We also create an augmented

test set, where each shape has been rotated in 128 differ-

ent angles. We summarize the results of these methods and

ours in Table 2. As can be seen, when the non rotation in-

variant networks are tested on rotated examples their per-

formance drops significantly. Adding rotation at train time

helps shrinking the performance gap however, both still un-

der perform compared to our rotation invariant solution.

Looking closely at the results of PointNet++ [54] one no-

tices that the results improve on the non-rotated test set by

adding the augmentation at train time. This is explained by

the fact that the models in both train and test sets are either

upright or lying down but with very different distribution

between the two poses. What is less intuitive is why this

improvement is not achieved for DGCNN. From our exper-

iments we conclude that the method could not benefit from

Train w/ rot Test w/ rot PointNet++ DGCNN Ours(PN) Ours(CC)

Yes Yes 85.35 43.88

89.69 89.88
Yes No 85.85 36.99

No Yes 56.95 36.65

No No 75.81 66.35

Table 2. The accuracy on human body segmentation of different

learning-based approaches under training and test with and with-

out rotation augmentation

the augmentation and instead reduced to solving the aver-

age case, perhaps due to limited capacity. In Figure 5 we

compare the results of our network with DGCNN on each

of the 18 test shapes. To better visualize the effect of the

rotation angle we sort the test samples (x-axis) according to

the performance of DGCNN. This clearly shows a gap be-

tween samples where the input shape was lying down (first

6 examples) and the ones which were upright.

5.4. Shape matching

Finding dense shape correspondences between a pair of

shapes is one of the most important and most explored prob-

lems in shape analysis. As described earlier, state of the art

methods utilize hand crafted descriptors as input. Here, in-

stead, we propose to learn the descriptor directly from raw

3D coordinates by utilizing our proposed LRFConv. Our

descriptor can in principle be combined with any match-

ing pipeline. In this work we make use of FMNet [41],

one of the best performing methods in the task of shape

matching. Specifically, it accepts a pair of shapes as in-

put together with their computed Laplacian eigenfunctions

and per-point features. Then, both shape features are passed

through a (siamese) feed forward network to get refined de-

scriptors. These, in turn, are used to compute a functional

map aligning the shape eignefunctions. Finally, these are

used to predict a point-to-point soft-correspondences which

are converted to match by taking the maximal probability

per point. In the original work of [41] and its unsupervised

follow up [25] SHOT descriptors were used. Here, instead,

we replace it with our learned descriptors and train the net-

work in an end-to-end fashion.

Synthetic FAUST We first demonstrate our performance

on the synthetic FAUST dataset described in 5.1. We follow

the evaluation protocol as prescribed by [49] were the 100

models are split into 80 train and 20 test shapes, and the

matching is performed with respect to a single fixed null

shape. We train the network for 200 epochs using the same

optimization hyper parameters as described in 5.2. The re-

sults are summarized in Figure 7. As can be seen, by using

our proposed descriptor we were able to improve upon the

results of FMNet with SHOT. We include the performance

of other methods for the sake of completeness.

In Figure 6 we show a qualitative evaluation of our

matching results. When evaluating the temporal complex-
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Figure 4. A qualitative evaluation of our method on human body segmentation comparing to other learning-based approaches.
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Figure 5. We compare the results of our network with DGCNN on each of the 18 test shapes. To better visualize the effect of the rotation

angle we sort the test samples (x-axis) according to the performance of DGCNN. This clearly shows a gap between samples where the

input shape was lying down (first 6 examples) and the ones which were upright.

ity, we found that while our network inference time is pretty

fast (less than 1.5 seconds), the computation of the geodesic

distance is costly. Specifically, for a single mesh in FAUST

registration dataset (with 6890 vertices and 13776 faces),

the time to compute its geodesic distance is 30.43. In con-

trast, the time to compute SHOT on such a mesh is only 0.69

seconds. A for the inference time, compared to FMNet, our

network average prediction run time for a pair of FAUST

models is 1.37 instead of 0.25 seconds. A possible rem-

edy to speed up the pre-processing is to use approximated

geodesics, like the one proposed by [14].

FAUST scans. We also evaluate the performance on

FAUST scans intra-challenge. To this end, we downsam-

pled the scanned meshes to 15K vertices, and fixed them

using MeshFix [3] followed by another downsampling to

7K vertices. We then used the registered models to cre-

ate ground truth to train our network. Here, we also used

a batch size of 8 using 8 GPUs to train the network. Dif-

ferent from the synthetic experiment, here we randomly

chose both input shape, only restricting them to come from

the same subject. At inference time, we retrieve the high-

resolution correspondences for each pairs by upscaling the

correspondence using functional maps as done in [41]. Our

re-implementation of FMNet achieved an average error of

10.8cm while using our learned descriptor to replace SHOT

we were able to reduce that error down to 6.7cm
1.

5.5. Ablation Study

In this section we provide analysis of the design choices

made when constructing our descriptor learning network.

To this end, we utilize the synthetic FAUST dataset and the

task of part segmentation. Since we are working in a sim-

plified setting with only one dataset, we make two modi-

1We note that the errors reported in the original FMNet manuscript

were lower, however we could not reproduce the results perhaps to a dif-

ference in the upscaling procedure
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Figure 6. A qualitative evaluation of our matching results on synthetic FAUST. On the left of the vertical border is a textured target shape. To

the right are four source shapes from the test set with their texture pulled back from the target according to the recovered correspondences.
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Figure 7. Comparison with learning-based approaches on the

FAUST humans dataset. By using our proposed descriptor, we

were able to improve upon the results of FMNet with SHOT.

Net. FUll CC→ PN No gij No nij No LRF No f lij No vij

Acc. 98.30 98.29 98.24 97.98 95.24 94.40 75.21

Table 3. Ablation study on the design choices of our network in-

gredients. By removing different components and retraining we

evaluate their importance.

fications to the network. First, we reduce the base feature

dimensionality (see ob in Figure 4) from 32 to 4. Second,

since the number of vertices is kept fixed we use all vertices

instead of subsampling a 2K subset. To evaluate the impor-

tance of each ingredient, we retrain and evaluate the net-

work performance with and without it. Results are summa-

rized in Table 3. It can be seen that the accuracy achieved

by both CC and PN, is very high. This minor difference

may be a result of the relatively small dataset size.

The importance of the rest of the components in descend-

ing order is: the coordinates vij , removing feature prop-

agation from previous layers f
l
ij , LRF, normals nij , and

geodesic distance gij . As expected, the coordinate vij is

playing the biggest role as it holds the most information of

the local patch geometry. Another motivation to include

normals comes from the results reported in [38], where it

was shown that all state-of-the-art networks struggle with

accurately estimating the normal of a patch. The results

justify the inclusion of each of the components.

Consider the component of PointNet++ that has been

used in the segmentation task, it uses an FPS-based geo-

metric distance, a PointNet-based feature extraction, and

tri-linear interpolation during the upsampling stage. While

our network has the following components: FPS-based on

geodesic distance, continuous convolution based feature ex-

traction, and local reference frame. To appreciate the differ-

ence in performance between our method and PointNet++

when using the raw data, one should observe the results re-

ported in Table 3 of our method when removing the LRF.

The drop in performance is by a non-negligible 3 points.

6. Conclusion

In this work we have studied the problem of learning

shape descriptors. A main motivation for this work was

the fact that sate-of-the-art learning based techniques were

still relying on hand crafted descriptors. Here, we showed

that this is mainly due to the usage of the LRF. By bak-

ing the computation of an LRF into the design of the net-

work we were able to bridge the gap and outperform man-

ual descriptor- based methods with using raw mesh features:

coordinates, normals, and geodesic distances. In addition,

we introduced a continuous convolution kernel which al-

lows the filters to dynamically react to the input features.

We demonstrated the performance of our proposed method

on two important tasks: shape matching and part segmen-

tation. Albeit the usage of a continuous convolution, cur-

rent method including ours, still rely heavily on the set of

sampling points and the sampling method (FPS in our case).

This is of course an unwanted behaviour as the result should

depend on the underlying surface. In future work we plan

to explore this direction.
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Michael M Bronstein, and Daniel Cremers. Anisotropic

diffusion descriptors. In Computer Graphics Forum, vol-

ume 35, pages 431–441. Wiley Online Library, 2016.

[9] Alexander M Bronstein, Michael M Bronstein, Leonidas J

Guibas, and Maks Ovsjanikov. Shape google: Geometric

words and expressions for invariant shape retrieval. ACM

Transactions on Graphics (TOG), 30(1):1, 2011.

[10] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric deep learning:

going beyond euclidean data. IEEE Signal Processing Mag-

azine, 34(4):18–42, 2017.

[11] Michael M Bronstein and Iasonas Kokkinos. Scale-invariant

heat kernel signatures for non-rigid shape recognition. In

2010 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, pages 1704–1711. IEEE,

2010.

[12] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203, 2013.

[13] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully

convolutional geometric features. In The IEEE International

Conference on Computer Vision (ICCV), pages 8958–8966,

2019.

[14] Keenan Crane, Clarisse Weischedel, and Max Wardetzky.

Geodesics in heat: A new approach to computing distance

based on heat flow. ACM Transactions on Graphics (TOG),

32(5):1–11, 2013.

[15] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-

ence on computer vision, pages 764–773, 2017.
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