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Abstract

Automatic check-out (ACO) emerges as an integral com-

ponent in recent self-service retailing stores, which aims at

automatically detecting and counting the randomly placed

products upon a check-out platform. Existing data-driven

counting works still have difficulties in generalizing to real-

world retail product counting scenarios, since (1) real

check-out images are hard to collect or cover all products

and their possible layouts, (2) rapid updating of the product

list leads to frequent and tedious re-training of the counting

models. To overcome these obstacles, we contribute a prac-

tical automatic check-out framework tailored to real-world

retail product counting scenarios, consisting of a photoreal-

istic exemplar augmentation to generate physically reliable

and photorealistic check-out images from canonical exem-

plars scanned for each product and an incremental learn-

ing strategy to match the updating nature of the ACO sys-

tem with much fewer training effort. Through comprehen-

sive studies, we show that the proposed IncreACO serves as

an effective framework on the recent Retail Product Check-

out (RPC) dataset, where the proposed photorealistic exem-

plar augmentation remarkably improves the counting per-

formance against the state-of-the-art methods (77.15% v.s.

72.83% in counting accuracy), whilst the proposed incre-

mental learning framework consistently extends the count-

ing performance to new categories.

1. Introduction
Recent self-service retailing stores are trying to release

the human labors from tedious retailing product checking-

out, by the means of emerging automatic check-out (ACO)
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Figure 1. The incrementally update process of the automatic

checkout (ACO) system with our IncreACO framework. We gen-

erate images from isolated source exemplars and incrementally up-

date the ACO model to recognize new products.

system. This system functions when observed the un-

manned check-out platform with cluttered products picked

by the consumers; it generates a shopping list, telling the

numbers of products of each category, as shown in Fig. 1.

This system is analogous to object counting in the computer

vision community, but it still faces challenges, especially in

real-world check-out scenarios:

(1) Learnable object counting models heavily rely on care-

fully labeled check-out datasets covering all available

products and their possible poses, interactions, layouts,

and etc. However, these images are hard to collect all

at once due to the well-known combinatorial explosion

and when the categories have to be updated frequently.

(2) Practical ACO systems have to be frequently updated

due to the rapid updating of product categories in real

ACO scenarios. However, it is time-consuming and

unscalable to train a counting model from scratch with

a large dataset including the old and new products.
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To deal with the first challenge, prior arts employ deep

generative models to synthesize check-out images by sam-

pling and re-arranging canonical exemplars of products cap-

tured from a set of fixed viewpoints and poses, such as

Wei et al. [25]. Nevertheless, the produced images are far

from realistic and usually ignore the physical reliability of

object layouts, leading to abnormal object poses and inter-

actions among objects. Thus we would like to explore a

physically reliable data augmentation, called Photorealistic

Exemplar Augmentation (PEA), that comprehensively ren-

ders unlimited novel check-out images with diverse but re-

liable object layouts, so as to minimize the domain gap be-

tween the real and synthesized check-out data distributions.

Furthermore, the second challenge can be alleviated by

the recent advances of incremental learning frameworks,

which also mitigates the dataset scale required for train-

ing the new categories. It just requires a limited amount

of labeled check-out images including randomly placed

products both from new and old categories. However, the

ACO task is analogous to fine-grained object detection, thus

simple adoption of conventional data-separated incremental

learning pipeline is not applicable and would inevitably re-

sult in confusion of products with similar patterns. There-

fore, an ACO-specific incremental learning framework be-

comes a necessity and to the best of our knowledge, we are

the first to explore such a pipeline in this special application.

To this end, we propose a novel learnable framework to-

wards the practical automatic check-out system, namely as

incrementally learned automatic check-out with photoreal-

istic exemplar augmentation (a.k.a. IncreACO), so as to re-

solve the aforementioned challenges simultaneously in an

integrated way. The overall framework of our IncreACO is

shown in Fig.1.

We first propose a novel Photorealistic Exemplar Aug-

mentation (PEA). It improves the realness of the gener-

ated check-out images by taking the perspectives, layouts,

and occlusions of real check-out images into consideration,

rather than just naı̈ve pasting the exemplar product patches

onto a check-out background image. Given the product

patches extracted from the canonical exemplar images with

a fixed set of poses [25], we at first select candidate prod-

uct patches whose poses may occur within the check-out

scenarios. Then we decide where to place the candidate

items in the check-out platform. Finally, we calculate the

degree of overlapping between candidate samples and com-

pare them with a pre-defined threshold to avoid severe oc-

clusions. These three steps encourage more physically re-

alistic spatial product distribution by considering both the

geometric structure of each product and the geometrical re-

lations between products. The synthesized check-out im-

ages are then rendered by CycleGAN [26] to mimic real

data. Our synthesized images are much closer to the real

check-out images than those of previous works [14, 25].

We further propose an incremental learning pipeline tai-

lored to the automatic check-out scenario, for the purpose

of fast adapting to the rapid updated retail product cate-

gories and resolving the absence of labeled check-out data.

The proposed photorealistic exemplar augmentation, as an

effective high-quality data provider, effectively generates

diverse but customized samples for the learning of novel

classes. Together with the retroactivity towards the old

product categories, we employ the distillation-based in-

cremental learning framework [15, 24] to learn the object

detection for the novel categories. We employ Mask R-

CNN [7] as the backbone for object detection and count

the number of each product accordingly. Experiment re-

sults show that the proposed photorealistic exemplar aug-

mentation generates superior check-out samples, which can

significantly boost the counting performance of our auto-

matic check-out model on a recent large-scale retail prod-

uct checkout (RPC) dataset [25]. Moreover, our ACO-

specific incremental learning framework also preserves the

check-out performance with progressively updated cate-

gories, which only required a fractional amount of novel

samples together with a small retroactive factor.

2. Related Work

Retail Product Checkout Datasets. There are multiple

datasets about retail product check-out and each of them

has different settings. SOIL-47 [13] is a small-scale dataset

that contains 46 categories, and each of which has 21 im-

ages. The recorded products have diverse color distribu-

tions. SKU110 [4] is a large-scale dataset, where 11762 im-

ages are collected in densely packed shelf scenarios, while

no class information is provided. Meanwhile, Supermar-

ket Produce Dataset [21] and Freiburg Groceries Dataset [9]

both include thousands of images for grocery products, but

they only focus on classification. Moreover, Grocery Prod-

uct Dataset [3] contains 80 product categories with 8350

training images, while it tests on the shelf loaded products.

Most of the mentioned datasets collect train and test sets

from different domains, and none of them is developed for

the check-out scenario. Recently, Wei et. al. [25] propose

a large-scale Retail Product Dataset (RPC) designed for au-

tomatic check-out (see Sec. 4.1.1 for more details), where

photorealistic data generation that transforms the training

exemplars to the testing domain is vital to train a reliable

automatic check-out model that works in real scenarios.

Data Augmentation. Data augmentation operations are

practical solutions to enrich data to avoid overfitting and im-

prove the generalization of the trained models [22, 18, 23].

Moreover, when the labeled real data are expensive to ob-

tain, the data augmentation is extended to employ image

synthesis to economically generate large-scale training data

that match the distribution of the testing data. For instance,

CDVAE [17] applies the variational autoencoder (VAE) [11]

to encode the source data into the latent space and then de-
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Figure 2. The proposed photorealistic exemplar augmentation.
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Figure 3. Samples of pose selection. The stability factor Rstable is

the product of Rarea and Rrect. The unstable poses with stability

factor less than Tstable are removed.

code it into the target domain. More recently, Goodfellow

et. al. [5] propose the Generative Adversarial Networks

(GAN) to synthesize data in the target domain. For the prod-

uct retail check-out tasks, data augmentation also follows

the image synthesis pipeline. For example, Wei et. al. [25]

propose to extract single product patches out of training im-

ages and then mix multiple patches into a single synthesized

image, after which they employ CycleGAN [26] to trans-

fer the style of real check-out images to these synthesized

samples. To improve reliability, Li et. al. [14] propose to

discard small-area patches with invalid perspective angles.

However, the generated images are still lack of physical

reliability as geometrical relations, are poorly considered.

Compared with these methods, our method further explores

geometrically reliable product layouts in real check-out sce-

narios and generates more photorealistic data.

Incremental Learning Incremental learning [1] is to con-

tinuously learn new categories, tasks or domains, while

avoiding tremendous performance drops, a.k.a, catastrophic

forgetting, on the previous data. Most previous works fo-

cus on learning classifier. They are built on different data

settings. (1) Strict: only new categories’ data are acces-

sible during incremental learning. LwF [15], EBLL [19],

and EWC [12] apply knowledge distillation [8] and use the

output of the previous frozen model as the soft labels of

old classes when training with novel data. (2) Relaxed:

a small volume of old data was allowed to help alleviate

catastrophic forgetting. In incremental learning, iCaRL [20]

selects the most representative samples of old classes and

jointly trains the classifier with data of new classes. It is

easy to separate the data for classification since each image

belongs to a single category. Nevertheless, for detection, a

single image might contain multiple objects, including both

previous and current classes. There are some attempts on

incremental learning of object detectors [24, 6] using PAS-

CAL VOC 2007 [2] and MSCOCO 2017 [16]. However, it

is somewhat hard to select reliable labeled detection data to

incrementally learn the new categories. ILWCF [24] simply

ignores the labels of unwanted categories during training,

which would confuse the model. And CIFRCN [6] discards

the images which consist of both previous and current ob-

jects, while it suffers from the shortage of training data. In

our work, the photorealistic exemplar augmentation tries to

solve this problem using image synthesis techniques.

3. Methodology

Our IncreACO framework would like to incrementally

learn automatic check-out that is tailored to the frequently

updated category list in a real retail product check-out sys-

tem. This framework consists of two vital components, one

is the photorealistic exemplar augmentation, and the other

is the incremental learning mechanism towards the prod-

uct counting model. Note that our data augmentation can

be seamlessly incorporated into our incremental learning

pipeline, so that the complete IncreACO framework can si-

multaneously resolve the aforementioned challenges with

respect to data and learning, respectively.

3.1. Photorealistic Exemplar Augmentation

Based on single-product images (exemplars) captured

from a fixed set of camera viewpoints, such as Retail Prod-

uct Check-out (RPC) Dataset [25], the goal of the photoreal-

istic exemplar augmentation (PEA) is to synthesize photore-

alistic multi-products images with reliable physical interac-

tions and layouts, analogously to the real check-out images

captured from the check-out platform.

Our PEA consists of three stages, as shown in Fig. 2.

The first stage segments the product instances from these

exemplar images. The second stage synthesizes multi-
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product check-out images by randomly pasting the product

instances via a set of geometry-aware criteria. The third

stage renders the photorealistic check-out images from the

synthesized images. In the first and third stages, we apply

the off-the-shelf solutions proposed by Li [14] and Cycle-

GAN [26], while our contributions lie on the second stage.

The second stage has three vital geometrical criteria:

(1) Pose Selection. Given a bag of single-product exemplar

images, we at first select the instances with valid poses (or

called viewpoints according to the cameras) that are possi-

ble in the real check-out system. For example, in the train-

ing set of RPC dataset [25], products with some poses (such

as the first two instances in Fig. 3) are rare in real check-out

scenarios. Therefore, we propose a stability factor to mea-

sure how “stable” a product’s pose would be:

Rc,i
stable = Rc,i

area ·R
c,i
rect, (1)

which includes two parts, as illustrated in Fig. 3. c ∈ C
means a specific class in the product category list, i denote

the instance index in the class c. Rarea measures the nor-

malized mask area of the product instance over the largest

mask area within all available product instances from this

category, where a larger area indicates the placement more

stable in the check-out image, i.e.,

Rc,i
area = A(mi

c)/max
j

A(mj
c), (2)

where mi
c represents the segmentation mask of a product

instance in class c, and A(·) calculates the area of a mask.

Since retail products are usually designed in regular shapes,

such as cuboid or cylinder, to ease the product packaging.

Thus stable placement will usually share a near regular sil-

houette (e.g. rectangles), such that

Rc,i
rect =

A(mi
c)/A(rect(mi

c))

max
j

A(mj
c)/A(rect(mj

c))
. (3)

rect(·) computes the minimum enclosing rectangle of this

mask. We remove the invalid pose whose stability factor is

fewer than a threshold, Rc,i
stable < Tstable. For the candidate

poses, the one with a larger stability factor takes a higher

chance to be selected.

(2) Instance Placement. In real check-out images, prod-

ucts are usually placed near to each other, but with fewer

occlusions between each other. Practically, we propose to

place a new product instance, i.e. its mask, near a previ-

ously chosen object. As shown in Fig. 4, we have already

placed two candidate product instances onto the background

image with mask mold. Then we randomly pick a point P
from the edge of mold and sample a surrounding point Q
according to a Gaussian distribution centered at P , which

will act as a corner of the next product instance. We then

compute the minimum enclosing rectangle of the previous

product instance where P lies in:
(s0, s1, s2, s3) = rect(mi

old), if P ∈ mi
old, (4)

where i is the index of the previously chosen product in-

stance. s0, s1, s2, s3 are four clock-wisely ordered vertices,

mold point Q

Q

rotate 
& rescale minimum enclosing

rectangle

Q

s0

s3
s2

s1

mnew

paste on Q 

edge point P  

P

t0

t3

t2

t1

t2Q

minimum enclosing 
rectangle

Figure 4. Instance placement. We randomly choose an edge point

P from mold and sample a surrounding point Q. The nearest edge

of the MER of mi

old of P to Q is (s0, s3). We compute MER for

the new instance mnew after rotation and re-scaling and randomly

choose t2 from {t1, t2} to paste on Q.

top

horizontal

45°

30°

2c
overlapR = 0.77

= 2.531c
overlapR

top

horizontal

top

horizontal

Figure 5. The overlap factor for each category is the ratio of two

areas: the minimum area of mask from the top view and the max-

imum area of mask from the horizontal view.

and the bottom vertex is s0. The rectangle’s edge that is

nearest to the point Q is marked as (u, v), u, v ∈ {0, 1, 2, 3}
are the indices of the four vertices, such that (0, 3) means

the edge whose vertices are s0 and s3 in Fig. 4. mnew is

mask of the new product instance. After a random rotation

and re-scaling, we also compute its MER:

(t0, t1, t2, t3) = rect(scale(rot(mnew))). (5)

rot(·) is the random rotation. scale(·) re-scales the products

from 0.5 to 0.7. t0, t1, t2, t3 are four vertexes of the mini-

mum enclosing rectangle. Note the vertices are ordered in

the same manner as the old masks. To avoid large overlap

with existing objects, we choose a vertex tk from the ver-

tices out of tu and tv and let it paste on Q.

(3) Overlap Review. By the instance placement step, the

previous product instances may still be occluded. Note that

different product category has different geometric structure,

thus they have different chances to be occluded, e.g. flat

objects, such as notebooks, are easy to be occluded while

bulging stuff, such as juice bottles, are hard to be occluded

in practice. We design an overlap factor to quantify this:

Rc
overlap = min

i
A(mi

c,top)/max
i

A(mi
c,horizontal), (6)

where mi
c,top is the mask from the top view, and

mi
c,horizontal is the mask from the horizontal view, c is the

product category. Fig. 5 indicates different overlap factors.

We then convert this factor into a threshold:
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T c
overlap =

{

0 , Rc
overlap < 0.5

(Rc
overlap − 0.5)× 0.2, Rc

overlap >= 0.5
,

(7)
which is a piecewise function, indicating to what degree the

overlap caused by the instance placement can be tolerated.

Since only previous instances can be covered by the new in-

stance, the overlap degree between the new product instance

and each previous instance is defined as:

IOU i
old = A(mi

old ∩mnew)/A(mi
old). (8)

If IOU i
old of each old product is lower than the thresh-

old T c
overlap of its category, the newly placed object will be

retained. Otherwise, we go back to the last step to re-place

the instance until it satisfies the overlap criteria.

3.2. Incremental Learning Mechanism

In this section, we first present our model training strat-

egy based on incremental learning and then introduce the

retroactive factor in incremental dataset powered by the

photorealistic exemplar augmentation.

3.2.1 Model training strategy
In the beginning, the model is well trained with a basic

dataset, including Co previous product categories. When

Cn new product categories arrive, we generate a new

dataset, named as the incremental dataset. Based on this

dataset, we learn a new model via incremental learning. Re-

ferring to LwF [15], we deploy the previously well-trained

model as the teacher while the newly-incremented model

as the student. The teacher is frozen during the incremen-

tal learning phase and the student is first initialized as the

teacher except for the new components in the last layer.

Similar to the object detection model, the product count-

ing model has two heads: a classifier to recognize the object

and a regressor to locate it. The output of the teacher serves

as the soft label for the Co old categories to the student,

which is called knowledge distillation [8]. For the classi-

fier, the distillation loss is written as:

Lold cls(yo, ŷo) = −CoT
2

Co
∑

i=1

y′(i)o log ŷ′(i)o , (9)

where yo, ŷo are the outputs of the teacher and student mod-

els over the old classes. y′o and ŷ′o are the soften dis-

tributions by a pre-defined temperature T , i.e., y′
(i)
o =

(y
(i)
o )1/T /

∑

j(y
(j)
o )1/T , ŷ

′(i)
o = (ŷ

(i)
o )1/T /

∑

j(ŷ
(j)
o )1/T .

Here we set T = 1. For the regressor, we apply the smooth

ℓ1 loss between the teacher and student models for knowl-

edge distillation:

Lold reg(to, t̂o) =
∑

m=x,y,w,h

Co
∑

i=1

smoothℓ1(t
i,m
o − t̂i,mo ),

(10)
where to, t̂o are teacher and student models’ bounding box

regression results. For learning the new classes, the ground-

truth label supervises the total Co + Cn classes with the

cross-entropy loss for the classifier and the smooth ℓ1 loss

for the regressor.

3.2.2 Retroactive Factor

We apply our photorealistic exemplar augmentation to gen-

erate the basic dataset that treats each previous product cate-

gory equally. In the incremental dataset, the sampling prob-

ability of each new product is p, and that of each old prod-

uct is αp, where α is a retroactive factor. When α = 0,

the dataset only includes new product categories. Here we

choose α = 0.05 to preserve memory of old products and

also help learn the correlation between old and new prod-

ucts. Additionally, each image in the incremental dataset is

required to include as least one new product.

4. Implementation and Experiments

4.1. Implementation Details

4.1.1 Dataset Preparation

We adopted the Retail Product Check-out (RPC)

dataset [25] to evaluate the performance of our pro-

posed IncreACO framework. It has 200 products and

83739 images, in which the 200 fine-grained categories

belong to 17 meta categories. There exists a domain

gap between the source domain and the target domain.

In the target domain, the testing set (24000 images) and

validation set (6000 images) include multi-product images

on a white check-out platform that mimics the real-world

checkout scene. While in the source domain, the training

set contains 53739 canonical single-product exemplar

images collected in a studio in which four fixed cameras

capture the product from the top, 45◦, 30◦, and horizontal

viewpoints, respectively (see Fig. 5). The goal is to predict

the quantity of each product in the image of the testing set.

4.1.2 Training and Testing Details

To fairly compare our method IncreACO to the previous

methods, we referred to the basic pipeline of DPNet [14]

and employed Mask-RCNN [7] without the mask head as

the backbone to predict objects and compute the product

numbers. Our model was developed on PyTorch equipped

with NVIDIA RTX 2080 Ti GPU cards. The training and

testing images were resized to 800× 800. The learning ob-

jective was optimized by the SGD optimizer.

Photorealistic Exemplar Augmentation. We referred to

the background removal method [14] in the first stage of

PEA. Tstable = 0.6 for the pose selection. And the instance

placement took 30 pixels as the standard deviation for the

Gaussian distribution. We used CycleGAN [26] to render

the final results from the synthesized results, according to

[25]. The CycleGAN applied Adam [10] optimizer with

an initial learning rate of 0.0002 and was trained for 200
epochs. Training images were resized to 800 × 800 and

cropped to 256× 256.

Learning from Scratch. As the oracle of the proposed

method, we learned the automatic check-out model based

on all available product categories. We generated 100, 000
images by the proposed photorealistic exemplar augmenta-
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tion and set the batch size to 8. The learning rate started at

0.01 and decayed by the factor of 10 after 120k iterations.

Incremental Learning. Given 200 fine-grained product

categories from 17 meta categories, we randomly chose one

fine-grained category out of each meta category and thus

obtained 17 fine-grained categories as the new coming prod-

ucts for incremental learning. The rest 183 categories were

considered previous products and made the basic dataset.

Thus Co = 183 and Cn = 17. We set α = 0.5 and

No = 91, 500, Nn = 13075. For the basic dataset, the

model was trained with 180k iterations with a learning rate

started at 0.01 and decayed by the factor of 10 after 120k it-

erations. For the new dataset, the model was trained for 18k

iterations with a learning rate started at 0.001 and decayed

by the factor of 10 after 12k iterations.

4.1.3 Evaluation Metrics
The testing set has three clutter modes: easy, medium, and

hard, which indicate the number of products in each image.

We adopt the evaluation metrics proposed by [25], such as

Check-out Accuracy (cACC), Average Counting Distance

(ACD), Mean Category Counting Distance (mCCD) and

Mean Category Intersection of Union (mCIoU).

To meet the scenario of incremental learning, we modify

the mCCD to separate the evaluations with respect to the

old and new classes, named as mCCDo and mCCDn, re-

spectively. We also propose the Mean Category Confidence

Score (mCCS) to provide a complementary examination of

the model’s incremental learning ability, which is also eval-

uated onto new and old classes,

mCCSo =
1

Co

Co
∑

k=1

∑N
i=1 Pi,k

∑N
i=1 GTi,k

, (11)

mCCSn =
1

Cn

Co+Cn
∑

k=Co+1

∑N
i=1 Pi,k

∑N
i=1 GTi,k

, (12)

where Pi,k and GTi,k are the prediction and ground-truth

for the ith image in the kth category, and N is the number of

images. A better model lets this metric approach to one.

4.2. Experimental results

4.2.1 Photorealistic Exemplar Augmentation

As introduced in Sec. 3.1, the counting results trained by

synthesized images are denoted as syn, the results trained

by rendered images after CycleGAN are denoted as render,

and the results by joint training from synthesized and ren-

dered images are denoted as syn+render. We compare our

oracle model (i.e. trained from scratch and by all the cate-

gories) with two previous works, RPC [25] as the baseline

of this dataset, and DPNet [14] trained with their designed

generated data.

The first three rows in Fig. 6 show some samples of

the synthesized data of the RPC baseline, DPNet, and our

PEA sequentially. Intuitively, in images generated by our
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Figure 6. (1) The first three rows compare the synthesized images.

Orange box marks images with scattered products, Red box shows

invalid poses, and yellow box presents severe occlusion. Both

RPC baseline (1st row) and DPNet (2nd row) suffer from invalid

poses, scattered products, and severe occlusion, which are solved

in our method (3rd row). (2) The fourth row demonstrates our ren-

dered images based on the synthesized images (3rd row) and looks

close to the real checkout images (last row).

method, products are of valid poses and placed more com-

pactly with appropriate occlusions, making the images more

realistic and reliable. The fourth row demonstrates our ren-

dered images with the same content of the synthesized im-

ages (third row) and extra-textual details, which make the

images closer to the real checkout images (last row). Com-

paring the last two rows, it is hard to distinguish our ren-

dered images and the real checkout images.

Tab. 1 shows the counting results, which demonstrate the

effectiveness of our PEA. Taking the average clutter mode

as an example, for syn, our counting accuracy (cAcc) is

26.52% compared to 18.07% of DPNet and 9.27% of RPC.

For render, the style transfer improves the performance to

a great extent, such as the cAcc is increased from 26.52%
(syn) to 75.3% (render) on average mode. And syn+render

produces the best results. Specifically, our method achieves
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Table 1. Results on the RPC dataset. R:RPC. D:DPNet. O:Ours.
Data Method cAcc ↑ ACD ↓ mCCD ↓ mCIoU ↑ mAP50 ↑ mmAP ↑

Easy Mode

RPC 18.49% 2.58 0.37 69.33% 81.51% 56.39%

Syn DPNet 32.35% 1.94 0.3 76.59% 88.01% 66.71%

Ours 43.58% 1.31 0.19 83.38% 93.45% 71.09%

RPC 63.19% 0.72 0.11 90.64% 96.21% 77.65%

Ren DPNet 85.38% 0.23 0.03 96.82% 98.72% 83.1%

Ours 86.91% 0.23 0.04 96.65% 98.66% 86.66%

Syn RPC 73.17% 0.49 0.07 93.66% 97.34% 79.01%

+ DPNet 86.58% 0.21 0.03 97.12% 98.62% 83.47%

Ren Ours 88.06% 0.21 0.03 96.95% 98.78% 87.28%

Medium Mode

RPC 6.54% 4.33 0.37 68.61% 79.72% 51.75%

Syn DPNet 14.48% 3.17 0.27 76.68% 87.65% 63.63%

Ours 23.6% 2.32 0.19 82.31% 92.59% 66.90%

RPC 43.02% 1.24 0.11 90.64% 95.83% 72.53%

Ren DPNet 70.90% 0.49 0.04 95.9% 98.16% 77.22%

Ours 75.36% 0.45 0.04 96.43% 98.58% 81.39%

Syn RPC 54.69% 0.90 0.08 92.95% 96.56% 73.24%

+ DPNet 73.20% 0.46 0.04 96.24% 98.19% 77.69%

Ren Ours 77.31% 0.40 0.03 96.82% 98.75% 82.17%

Hard Mode

RPC 2.91% 5.94 0.34 70.25% 80.98% 53.11%

Syn DPNet 7.48% 4.45 0.26 77.58% 87.89% 62.34%

Ours 12.62% 3.35 0.19 82.48% 92.25% 65.08%

RPC 31.01% 1.77 0.1 90.41% 95.18% 71.56%

Ren DPNet 56.25% 0.84 0.05 85.28% 97.67% 74.88%

Ours 63.70% 0.70 0.04 95.97% 98.09% 78.91%

Syn RPC 42.48% 1.28 0.07 93.06% 96.45% 72.72%

+ DPNet 59.05% 0.77 0.04 95.71 97.77 75.45

Ren Ours 66.14% 0.64 0.04 96.35% 98.29% 79.68%

Average Mode

RPC 9.27% 4.27 0.35 69.65% 80.66% 53.08%

Syn DPNet 18.07% 3.18 0.26 77.11% 87.74% 63.42%

Ours 26.52% 2.33 0.18 82.63% 92.54% 66.64%

RPC 45.60% 1.25 0.10 90.58% 95.5% 72.76%

Ren DPNet 70.80% 0.52 0.04 95.86% 97.93% 77.07%

Ours 75.30% 0.46 0.04 96.32% 98.22% 81.07%

Syn RPC 56.68% 0.89 0.07 93.19% 96.57% 73.83%

+ DPNet 72.83% 0.48 0.04 96.17 97.94 77.56

Ren Ours 77.15% 0.41 0.03 96.72% 98.37% 81.82%

Table 2. Ablation study about the photorealistic exemplar augmen-

tation on the setting of syn.
Methods cAcc ↑ ACD ↓ mCCD ↓ mCIoU ↑

Baseline 10.55% 4.01 0.33 70.51%

PS 12.89% 3.66 0.3 73.28%

PS+IP 15.98% 3.33 0.27 75.88%

PS+IP+OR 21.3% 2.82 0.23 78.97%

77.15%, which is 4.32% higher than DPNet and 20.47%
higher than RPC. These results validate that our method sur-

passes the previous methods, especially in the medium and

hard modes, which confirms the advantages of our photore-

alistic exemplar augmentation.

Ablation Study. We conduct ablation studies on our pho-

torealistic exemplar augmentation, on the setting of syn.

Each variant was trained on 10, 000 images. In the sec-

ond stage, the baseline is randomly choosing and placing in-

stances with a uniform intersection check. Then we replace

the baseline with our pose selection (PS), instance place-

ment (IP), and overlap review (OR) process sequentially.

Tab. 2 shows the evaluation results in average mode, which
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Figure 7. Visualization of three steps in the second stage of PEA.

Compared to baseline, our pose selection (PS) method removes

invalid poses (red box), our instance placement (IP) method sets

products compactly to avoid scattered layout (orange box), and our

overlap review (OR) process avoids severe occlusion (yellow box).

indicates each of these three steps in the second stage can

improve the performances and their combination achieves

the best scores. To make it clear, Fig. 7 also visualizes the

progress of these three steps step-by-step.

4.2.2 Incremental Learning

The incremental learning result is shown in Tab. 3. We

first train the teacher model with the 183-class basic dataset

and evaluate the 183-class test dataset, as shown in the

”183/183” row. Then we evaluate the teacher model on the

full test dataset directly, shown in the ”183/200” row. Since

the model might be confused by the new products, the over-

all metrics decrease, while the metrics for the old classes,

mCCDo and mCCSo, also receive a significant drop. Af-

ter our incremental learning strategy with the new dataset,

the student model learns the new classes as well as keeps the

memory of old classes. As indicated in the ”(183+17)/200”

row, even the new classes are fine-grained (share the same

meta categories with old classes), the model still produces

good results and keeps the discriminative ability towards

previous categories. Here we take the oracle model as the

reference, the incrementally learned model has a compara-

ble performance against the oracle.

We also generate the datasets with previous methods,

RPC and DPNet, and incrementally update the model by

our model training strategy. Comparing to previous meth-
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Table 3. Results of the incremental learning mechanism. Our incremental learning strategy is also applied to two previous data generation

methods provided by RPC and DPNet.
Method Train/Test cAcc ↑ ACD ↓ mCCD ↓ mCIoU ↑ mCCDo ↓ mCCDn ↓ mCCSo → 1 mCCSn → 1

RPC
183/183 58.74% 0.84 0.08 92.89% 0.08 - 98.08% -

183(+17)/200 53.08 0.99 0.08 92.29% 0.07 0.19 97.35% 102.88%

DPNet
183/183 73.37% 0.50 0.04 95.71% 0.04 - 99.02% -

183(+17)/200 67.57% 0.6 0.05 95.06% 0.04 0.13 98.76% 100.91%

Ours

183/183 78.76% 0.38 0.03 96.9% 0.03 - 99.53% -

183(+17)/200 74.3% 0.44 0.04 96.51% 0.03 0.09 99.24% 100.36%

183/200 47.53% 2.06 0.18 84.65% 0.1 1.0 106.59% 0.0%

200/200 77.15% 0.41 0.03 96.72% 0.03 0.04 99.31% 98.97%

(b1) (b2)(a2)

mCCS=1

(a1)

mCCS=1

Figure 8. Comparison of (a1-a2) different model training strategies; (b1-b2) different retroactive factors.

ods, our photorealistic exemplar augmentation improves the

incremental learning results, by 21.22% higher than RPC

and 6.73% higher than DPNet in counting accuracy (cAcc).

And our cAcc, 74.3%, after incremental learning is still

higher than the cAcc of the oracle model trained using the

data generated by previous methods (up to 72.83%).

Note that our incremental learning method is only incre-

mentally trained with a small number of images (which is

13, 075), rather than training from scratch with 100k im-

ages. This saves a large number of computational budgets

and meets the frequent-updating demand of the category list

in real ACO scenarios.

Model Training Strategies. We compare four different

model training strategies, as shown in Fig. 8(a1-a2). When

new products arrive, the student model is initialized as an

identical copy of the teacher except for the weights for Cn

new classes in the last layer. The baseline is tested on

this student model without training. mCCSn shows the

base model has no confidence on new classes. Then we

finetune the whole student model on the new dataset, de-

noted as finetune, where the model becomes over-confident

on new products. To deal with this, we also experiment

on part-finetune, which only finetunes the weights for new

classes in the last layer with other parameters fixed, but the

new classes seem not well learned since mCCDn is large.

Finally, we try our incremental learning strategy instead

of fintune, named as increm, in which both mCCSn and

mCCSo are close to 1 and the mCCD scores are in low

values. It also achieves the best results on the rest metrics,

showing the advantage of our incremental learning strategy.

Retroactive Factor. We also analyze on the effectiveness

of retroactive factor αs 0, 0.05, 0.1 and 1. The results are

shown in Fig. 8(b1-b2). Benefiting from our incremental

training strategy, the model performs well on these four ex-

periments (cAcc > 65%). When α = 0, the incremental

dataset only includes new products, thus the model has high

confidence scores on new products. With the raising of α,

mCCSn decreases and mCCSo increases. When α = 1,

where each old and new product takes the same ratio in the

new dataset, the model is under-confident on new products.

Note in this task, the model is supposed to also learn the

interrelation between different categories when they show

up in the same image. We find the model performs best

when α = 0.05. In this circumstance, it does not only

keep good discriminative ability about the previous prod-

ucts but also learn the new products rationally. Moreover,

the retroactive setting enables the model to learn the inter-

actions between old and new products.

5. Conclusion

In this paper, we introduce IncreACO to solve the prac-

tical challenges in the automatic checkout system (ACO).

Our developed photorealistic exemplar augmentation im-

proves the realness of generated images by considering the

perspectives, layouts, and occlusions of real checkout im-

ages. Results show PEA performs better than previous

methods by 4.32% checkout accuracy in average mode.

Meanwhile, our incremental learning pipeline for the first

time matches the incremental updating nature of ACO, in

which a small ratio of retroactivity is proved to alleviate the

forgetting of old products. Powered by PEA, the model is

incremented with much less time and data than the normal

training process and shows great performance on both old

and new classes.
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