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Figure 1. Skeleton-based action recognition on Toyota Smarthome with poses (Left) extracted by AlphaPose [8] (left), LCRNet++ [30]
(middle), OpenPose [2] (right) and high-quality poses (Right) obtained by the proposed pose refinement system. The action predictions
using refined poses with the same action recognition system become more accurate. (3D reconstructions are from VideoPose [24] over 2D)

Abstract

Taking advantage of human pose data for understand-
ing human activities has attracted much attention these
days. However, state-of-the-art pose estimators strug-
gle in obtaining high-quality 2D or 3D pose data due
to occlusion, truncation and low-resolution in real-world
un-annotated videos. Hence, in this work, we propose
1) a Selective Spatio-Temporal Aggregation mechanism,
named SST-A, that refines and smooths the keypoint loca-
tions extracted by multiple expert pose estimators, 2) an
effective weakly-supervised self-training framework which
leverages the aggregated poses as pseudo ground-truth in-
stead of handcrafted annotations for real-world pose es-
timation. Extensive experiments are conducted for eval-
uating not only the upstream pose refinement but also
the downstream action recognition performance on four
datasets, Toyota Smarthome, NTU-RGB+D, Charades, and
Kinetics-50. We demonstrate that the skeleton data refined
by our Pose-Refinement system (SSTA-PRS) is effective at
boosting various existing action recognition models, which
achieves competitive or state-of-the-art performance. Re-

fined pose data is available at: https://github.com/
walker-ally/SSTA-PRS

1. Introduction

Action recognition approaches have led to significant
improvements for many applications, such as video surveil-
lance, video understanding, human-computer interaction
and game control. Compared with RGB-based action
recognition using spatio-temporal deep convolution on
RGB videos [37, 3, 44, 31], skeleton-based approaches have
drawn increasing attention owing to their strong ability in
summarizing human motion [40, 48, 39, 50, 45, 17, 1, 46,
18, 35,9, 34, 33, 19]. As high level representations, skele-
tons have the merits of being robust to changes of appear-
ances, environments, and view-points. Earlier skeleton-
based approaches using deep-learning like RNNs [48, 39,
50, 38, 45] or temporal CNNs [17, 1] are proposed owing
to their high representation capacity, but they ignore the im-
portant semantic connectivity of the human body. Recent
GCNs-based approaches [46, 18, 35,9, 34, 33, 19] construct
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spatial-temporal graphs and model the spatial relationships
within GCNs directly, and these methods have seen signifi-
cant performance boost, indicating the interest of using se-
mantic human skeleton for action recognition. However,
most of these algorithms use accurate 3D human poses ob-
tained from a Motion Capture system [32] and they can-
not perform well on real-world videos with low-quality 2D
or 3D poses. In the real-world, 1) the performance of hu-
man pose estimation approaches [30, 12, 2, 8, 15, 41, 11]
is limited, especially in case of occlusion, truncation, and
low-resolution scenarios. 2) A large amount of man-
ual skeleton annotation is extremely expensive to obtain.
Motivated by the above problem, we propose a skeleton-
based action recognition framework that uses a Selective
Spatio-Temporal Aggregation based Pose Refinement Sys-
tem, named SSTA-PRS, to extract high-quality 2D skele-
tons from un-annotated real-world videos and leverages
AGCNs [35] for action classification and action detection.

To deal with the absence of keypoints (i.e. joints)
due to occlusion, truncation and low-resolution in real-
world pose estimation (as shown in Fig. 1), we construct
a multi-expert pose estimation system to predict improved
2D poses. It is fine-tuned with the pseudo ground-truth 2D
pose generated by a novel Selective Spatio-Temporal Ag-
gregation (SST-A) which integrates the pose proposals com-
puted from several existing expert pose estimators. In this
work, we select LCRNet++ [30], OpenPose [2] and Alpha-
Pose [8] as the experts. Regarding on our downstream tasks,
we leverage the AGCNss [35] to extract features for an input
pose sequence that are used directly for action classifica-
tion (for trimmed videos) or fed into a temporal model like
LSTM [10], TCNs [16] for temporal action detection (for
untrimmed videos).

The contributions related to this paper are summarized as
follows: 1) We propose a novel Selective Spatio-Temporal
Aggregation mechanism (SST-A), that integrates the advan-
tage of several expert pose estimation systems in both spa-
tial and temporal domains, and we introduce a confidence
metric C' to evaluate the quality of the aggregated poses. 2)
We present a weakly-supervised self-training Pose Refine-
ment System (SSAT-PRS) based on LCRNet++ [30] using
pseudo-ground truth poses, generated by our SST-A mech-
anism instead of using handcrafted pose annotations. 3)
We directly evaluate the upstream pose refinement method
using pose ground-truth then demonstrate the effectiveness
of this framework for the downstream GCNs-based action
recognition task using action ground-truth. Experiments are
conducted on four real-world datasets, Toyota Smarthome,
NTU-Pose, Charades and Kinetics-50.

2. Related Work

Human Pose Estimation in Real-World. Most state-of-
the-art approaches for 2D human pose estimation employ
2D CNNs architectures for a single image in a strongly-

supervised setting [23, 2, 41, 8, 12,4, 15, 20]. For 3D pose
estimation, [30, 22] focus on end-to-end reconstruction by
directly estimating 3D poses from RGB images without in-
termediate supervision. [49] applies GCNs for regression
tasks, especially 2D to 3D human pose regression. [24]
demonstrates that 3D poses in video can be effectively es-
timated with a fully convolutional model based on dilated
TCNs over 2D keypoint sequences. Among these methods,
[30, 23, 22, 8, 12, 41] have first to incorporate a person de-
tector, followed by the estimation of the joints and then the
computation of the pose for each person. These approaches
give full-body predictions once the people are detected, but
the detection speed slows down with the increase of the
number of people present in the image. [2, 4, 15, 20] are
bottom-up approaches which detect all joints in the image
using heatmaps that estimate the probability of each pixel
to correspond to a particular joint, followed by associat-
ing body parts belonging to distinct individuals. These ap-
proaches cannot always provide the none-visible body parts
for each individual due to occlusions and truncations.
By annotating poses in the real-world, approaches [30, 2,
, 29] are becoming more robust to occlusion and they can
provide us with pre-trained pose estimators, so that we can
extract skeleton data from real-world videos without expen-
sive handcraft annotations. In particular, LCRNet++ [30]
is an attractive pose estimator, which leverages a Faster R-
CNN [28] like architecture with a CNNs backbone. A Re-
gion Proposal Network extracts candidate boxes around hu-
mans. To deal with occlusions and truncation, LCRNet++
proposes ‘anchor-poses’ for pose classes instead of object
classes: these key poses typically correspond to a person
standing, sitting, etc. Bottom-up method OpenPose [2] pro-
poses an alternative approach by regressing affinities be-
tween joints (i.e. the direction of the bones), together with
the heatmaps. AlphaPose [8] improves the performance of
top-down pose estimation algorithms by detecting accurate
human poses even with inaccurate bounding boxes. Closer
to our work, Rockwell et al. [29] propose an effective self-
training framework that adapts human 3D mesh recovery
systems to consumer videos. They focus on recovering from
occlusions and truncations, but they do not have solutions to
tackle low-resolution images and the instability of the ex-
tracted 3D meshes along time. In our work, we combine
the advantages of the three expert pose estimators [30, 2, 8]
by spatio-temporal aggregating their results and getting a
more accurate pose than using only one expert.
Skeleton-Based Action Classification. ST-GCN [46],
where spatial graph convolutions along with interleaving
temporal convolutions are used for spatial-temporal mod-
eling is the first GCNs-based method for action recogni-
tion. Subsequently, many GCNs methods representing a
more appropriate spatial graph on intra-frames have been
proposed. 2s-AGCN [35] introduces an adaptive graph con-
volutional network to adaptively learn the topology of the
graph with self-attention, which can better suit the action
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Figure 2. Overview of Pose-Refinement System (SSTA-PRS). Given an RGB frame, a less noisy 2D pose P% (V) and its confidence
value C' is computed by the Selective Spatio-Temporal Aggregation (SST-A) with the pose proposals obtained by several pose estimation
systems and the previous aggregated pose. If the confidence is higher than the threshold -, we are able to calculate the pseudo ground-truth
bounding box and anchor class according to this improved pose to fine-tune the localization and classification branches of an LCRNet [30]
architecture in a weakly-supervised setting. Finally, this refined pose estimation system is used to extract high-quality 2D poses in the

real-world videos for the downstream action recognition task.

recognition task and the hierarchical structure of the GCNSs.
It also uses a two-stream ensemble with skeleton bone
features to boost performance. Their further work, MS-
AAGCN [34] proposes multi-stream adaptive graph con-
volutional networks that introduce attention modules and a
multi-stream ensemble based on 2s-AGCN [35]. Note that
these approaches primarily focus on spatial modeling. In
contrast, MS-G3D [19] presents a unified approach for cap-
turing complex joint correlations directly across spacetime.

Yan et al. [46] use OpenPose [2] to extract poses for ap-
plying GCNs on the real-world dataset [3], but the pose data
is not always full-body due to occlusions and truncations.

Skeleton-Based Action Detection. Action detection
(i.e. action localization) task needs to find precise tempo-
ral boundaries of actions occurring in an untrimmed video.
In order to model long temporal relationships, the current
detection methods [16, 26, 25] encode the videos as a pre-
processing step. After that, action detection can be seen as a
sequence-to-sequence problem. Recurrent neural networks
(RNNGs) [14, 47] have been popularly used to model actions
transitions between frames. These approaches relied on the
memory cell to accumulate temporal information in differ-
ent frames, thus implicitly capturing the relationships be-
tween actions. Temporal convolution networks (TCNs) are
another type of action detection model. Dilated-TCN [16]
increases the temporal reception field by using dilated con-
volutions to model long temporal patterns. Temporal Gaus-
sian Mixture [26] utilizes the Gaussian distribution to gener-
ate the weights of the temporal kernel. This Gaussian-based
kernel enables TGM to capture long temporal relations via
a large receptive field with limited parameters.

In our work, we apply AGCNs [35] that performs the
best on Smarthome [6] with estimated and refined pose data
instead of using a Motion Capture system. To the best of

our knowledge, we are the first to provide high-quality full-
body poses using a pose refinement system and leverage
AGCNs [35] for both action classification and detection in
real-world datasets [6, 36] without ground-truth poses.

3. Pose Refinement Approach

The overall architecture of the proposed method for pose
refinement is shown in Fig. 2. Given an RGB frame, several
pose proposals are obtained by multiple expert pose esti-
mation systems [30, 12, 2, 8, 15, 41, 11] and the Selective
Spatio-Temporal Aggregation mechanism (SST-A) com-
putes an improved pose, which is more accurate, smoother,
and more stable along time. With this aggregated pose, we
compute a confidence metric to estimate its quality. Then,
we select the aggregated poses with higher confidences than
a threshold and calculate the pseudo ground-truth bounding
box and anchor class to fine-tune the localization and clas-
sification branches of an LCRNet [30] architecture. Finally,
the refined pose estimation system is used to extract higher-
quality poses in real-world videos.

3.1. Selective Spatio-Temporal Aggregation

Selective Spatio-Temporal Aggregation (SST-A) is the
key component to deal with the absence of keypoints
caused by occlusion, truncation and low-resolution, and
with the instability in time domain due to pose estimation
from a single frame. Our insight is that 1) bottom-up meth-
ods directly predict the keypoints through the heatmaps,
however, they may miss joints that are none-visible due to
occlusions or truncations because the number of each body
part prediction may not correspond to the number of peo-
ple in the image. 2) Top-down methods regress the coor-
dinates of keypoints over the bounding box of the people.
As long as people are detected, the keypoints of full-body
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Figure 3. Two steps of SST-Aggregation. 1) Aggregation in both
spatial and temporal level (top). The pose P% (V) of current
frame is aggregated from the three pose proposals Pil (V) (blue),
Pj, (V) (green) and Py, (V) (yellow). 2) Selective temporal fil-
ter (bottom). The pose with a low confidence in the aggregated
sequence will be discarded.

can be predicted. But these methods may miss people in
low-resolution images, resulting in missing all the joints of
these people. According to the above analysis, by combin-
ing the results of both families of methods, we can reduce
the number of missing joints and obtain more stable and
higher-quality full-body keypoints. Therefore, we leverage
multiple expert pose estimation systems, including methods
from both families to extract poses for the same frame as
several pose proposals, and then aggregate them to recover
the missing keypoints. In this work, we select two top-down
estimation systems LCRNet++ [30] and AlphaPose [8] and
a bottom-up estimation system OpenPose [2] to provide the
pose proposals, which are then combined into an improved
pose sequence through our SST-A mechanism. Moreover,
our pose sequence is extracted frame by frame with the esti-
mators, so there is a certain lack of temporal continuity, re-
sulting in a static joint shaking in the video. This problem is
also an obstacle for the performance of action recognition.
Hence, our SST-A also uses a temporal filtering mechanism
to smooth the entire sequence by eliminating unstable val-
ues.

As shown in Fig. 3, we note all the N keypoints in one
bodyasasetV = {vy,va,...,vN}, the frames as a set F' =
{0,1,2,...,T} and the position of one joint v (v € V)
in the frame ¢t (¢ € F') estimated by the pose estimation
system Ky, (k€ K = {k1, ky, ...,k }) as P, (v), noted
that K is the ensemble of pose estimation systems. The
final aggregated pose sequence of the body V is noted as
PL(V) = {P4(v)|v € V,t € F} and our aggregation
system has two steps.

1) Joint-level aggregation. Each keypoint of the pose
is calculated from the prediction results of the three estima-

tors [2, 30, 8] in the current frame P%m (v) and the aggre-

gated result of the previous frame P, *(v). So this step is
to select the closest keypoint to the same part aggregated in
the previous frame. For the first frame, we select any one
of the two closest keypoints obtained by pose estimators.
Joint-level aggregation can be written as:

Pl (v), ift =0

(kako) = argmin  (D(P},(v), PL,(v)))
(kiskj) EK2, i)
PL (v), ift >0
ko = argmin (D(Pzi (v), Pf;l(v)))
k€K

Pi(v) =

(1
where D is the Euclidean distance between two key-points
in the image, noted as:

D(P1(v),Po(v)) =/ (P1(v) ~ Po(v)® @

2) Body-level aggregation. Followed by the first step
which can effectively solve the problem of missing key-
points, we define a confidence metric C' € (0, 1] that de-
scribes the likelihood that the aggregated pose is the real
pose in order to further smooth the pose sequence. We be-
lieve that when the average similarity between the aggre-
gated pose and the pose proposals is very high, the pose
proposals are also very similar, indicating that the pose pro-
posal itself is likely to be accurate, and the aggregation re-
sult will have a high confidence. This selective likelihood
filter is written as (3), which is to discard the abnormal
poses with a very low confidence in the whole sequence,

PL(V), if C(PL(V)) >=~

discard, if C(P%(V)) < v @

PL(V) = {
where C' (4) is defined to describe the confidence of this
aggregated pose. (Dy,ormai 18 the distance between the ag-

gregated head and neck while offset € = 10712 is to prevent
errors in case of Dy,ormar = 0)

) 1 D(P4%(v), Py, (v
C(P4(V)) =exp ( - NMZZ (;n(OTlal +e( )))
vV K
4)

v is a filtering parameter that represents a threshold. If
the confidence of the pose in the current frame is lower than
this threshold, it will be discarded from the sequence. Af-
ter this two-step SST-A is completed, we obtain a higher-
quality full-body skeleton sequence from a video, which
can be effectively used as pseudo ground-truth pose for our
self-training Pose Refinement system in Sec. 3.2.

3.2. Self-Training Pose Refinement System

SST-A can effectively integrate the advantages of [30),

, 8]. However, this aggregation method may increase the
workload in practice because we have to estimate the poses
several times with different systems. Hence, we propose a
self-training framework using the higher-quality 2D poses
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obtained from SST-A as supervised pseudo ground-truth, to
refine one of the pose estimation models. Once the model
is refined, the other models are not needed for inference.
In fact, we only need to run SST-A on a small part of the
dataset, and then it can be used for fine-tuning the network.
As shown in Fig. 2, we build our pose refinement model
(SSTA-PRS) based on LCRNet++ [30] owing to its partic-
ularity of its three branches (localization, classification and
regression), we do not have to provide truly accurate pose
labels but only fine-tune the localization and classification
branches with the pseudo ground-truth 2D poses.

3.2.1 Overview of SSTA-PRS architecture

As LCRNet++ [30], our SSTA-PRS framework also con-
tains 4 main components. 1) Localization: it leverages
a Faster R-CNN [28] like architecture with a ResNet-50
backbone [13]. Given an input image, a Region Proposal
Network (RPN) [28] extracts candidate boxes around hu-
mans. 2) Classification: these regions are then classified
into different ‘anchor-poses’ pre-defined by K-means clus-
tering that typically correspond to a person standing, a per-
son sitting, etc. In this paper, ’anchor-poses’ are defined
in 2D only, and the refinement occurs in this joint 2D pose
space. 3) Regression: a class-specific regression is applied
to estimate body joints in 2D. First, for each class of pose,
we define offline the ‘anchor-poses’, computed as the center
over all elements in the corresponding cluster. After fitting
all the 2D anchor-poses into each of the candidate boxes, we
perform class-specific regressions to deform these anchor-
poses and match the actual 2D pose in each box. 4) Post-
processing: for each individual, multiple pose candidates
can overlap and produce valid predictions. These pose can-
didates are combined by pose proposal integration [30], tak-
ing into account their 2D overlap and classification scores.
As the approach is holistic, it outputs full-body poses, even
in case of occlusions or truncation by image boundaries.

3.2.2 Weakly-supervised training

We train this model with a weakly-supervised setting, which
only refines the 2D localization and classification. The
reason is that firstly, our pseudo pose annotations are not
sufficiently accurate for regression while they are accurate
enough for localization and classification. Secondly, the
in-the-wild pre-trained model has good prediction perfor-
mance when the localization and classification are correct.
However, in low-resolution images, the bounding boxes of
people are usually very difficult to search, which may re-
sult in no estimated keypoint on the body, or an error in the
classification stage leading to inaccurate pose prediction.
Therefore, if the classification and localization branches are
correctly fine-tuned, the model should find the correct an-
chor class so that the final prediction can be more accurate.

Pseudo 2D pose ground-truth: it contains two parts,
the bounding box of people and the anchor class. Both are

calculated using the SST-A pose results. We take the maxi-
mum and minimum values of the pose in  and y directions
as the boundary of the initial bounding box. We then ex-
pand the box by 10% as ground-truth for the localization
branch, because the key-points do not correspond exactly to
the boundary of the person. The class label of pose P, noted
as Classp € {0,1, ..., B}, is set by finding the closest 2D
anchor-pose Anchorp according to the similarity S [30]
between the oriented 2D poses centered at the left-top cor-
ner of bounding box: Classp = argmin, S(Anchory, P).
This label is used by the classification branch as pseudo
ground-truth.

Loss function: our loss is the sum of the following two
losses, described as:

L= Lloc + Lclassif (5)

The loss of the localization component is the loss of the
region proposal network [28] (RPN):

Lioc = LrpN (6)

Same as [30], let u be the probability distribution estimated
by SSTA-PRS, obtained by the fully connected layers of
the classification branch after Rol pooling, followed by a
softmax function. The classification loss is defined using
the standard cross entropy loss:

Lejgssif(u, Classp) = —logu(Classp) ™

4. Experimental Setup

Our objective is to obtain high-quality poses from real-
world videos in order to understand human activities. We
conduct a wealth of experiments to evaluate our system
with two protocols: 1) Evaluation by the upstream pose
refinement task using pose ground-truth, which is to di-
rectly compare the accuracy of the poses obtained from the
pose estimators [30, 2, 8] with our proposed SSTA-PRS. 2)
Evaluation by the downstream action recognition task using
ground-truth action labels. We use the same action recog-
nition model [35], but processing different pose data with
and without refinement for comparing the action recogni-
tion (classification and detection) performances, which in-
directly demonstrates the effectiveness of our SSTA-PRS.

4.1. Datasets and Evaluation Protocols

Toyota Smarthome (Smarthome) [6] is a recent real-
world daily living dataset for action classification, recorded
in an apartment where 18 older subjects carry out tasks
of daily living during a day. The dataset contains 16,115
videos of 31 action classes, and the videos are taken from
7 different camera viewpoints. All the actions are per-
formed in a natural way without strong prior instructions.
This dataset provides RGB data and 3D skeletons which
are extracted from LCRNet++ [30]. In contrast, in our ex-
periments, we extract higher-quality 2D skeleton data with
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Figure 4. Comparison of the poses extracted on Charades by LCRNet++ [30] without refinement (top) with our SSTA-PRS (bottom).

our SSTA-PRS framework instead of the provided ones.
For the evaluation on this dataset, we follow cross-subject
(CS) and cross-view (CV1 and CV2) protocols. We use
Smarthome as our main dataset for ablations and additional
experiments'.

Smarthome-Pose: in order to evaluate directly the poses
extracted by our SSTA-PRS, we chose the middle frames
for randomly selected 1,400 videos of Toyota Smarthome
and we annotated the 2D poses to create a test set contain-
ing 1,400 images with 640 x 480 resolution and many oc-
clusions, truncations. We follow the PCKh @0.5 (percent of
keypoints within a threshold of 0.5 times head length) as the
pose evaluation protocol. We regard the distance in pixels
between head and neck as the head length.

NTU-Pose: NTU-RGB+D [32] is a large-scale multi-
modal dataset which consists of 56,880 sequences of high-
quality 2D/3D skeletons with 25 joints, associated with
depth maps, RGB and IR frames captured by the Microsoft
Kinect v2 sensor. We selected 60 videos (6,098 frames)
with the same subject performing different actions and we
took the 2D skeleton as the ground-truth for pose evalua-
tion. The dataset was recorded in a laboratory, so in this
work, we changed the original quality of the videos by re-
ducing the resolution to 320 x 180 and adding partial occlu-
sions to make it similar to our real-world settings. We use
the 2D MPJPE (mean per joint position error normalized by
head length) and PCKh @2.0 protocols.

Charades [36] is a challenging dataset due to large envi-
ronmental diversity. The videos were recorded in the homes
of 267 subjects. While performing the actions, the subjects
are usually occluded by objects or the furniture of the scene.
We apply SSTA-PRS on Charades to validate whether this
algorithm can extract robust skeletons even when subjects
are occluded. (Fig. 4) Note that there are 157 action classes
in the Charades dataset and most of them are relevant to ob-
jects but not to poses. As we only use the skeletons to rec-
ognize actions, we kept the 31 meaningful semantic verbs
as the action classes. These semantic verbs and additional

! Details of additional 5C-AGCN is in the supplementary material

results using the original class labels are provided in sup-
plementary material. We follow the localization setting of
the dataset, reporting the frame-based mAP.

Kinetics-50 is a subset of a large-scale real-world dataset
Kinetics-400 [3] that contains about 300,000 video clips for
400 action classes collected from YouTube and does not
contain pose information. We took the first 50 action cat-
egories in alphabetical order corresponding to 27,314 video
clips and we extracted the 2D poses with our SSTA-PRS
module. Following the evaluation method in [46], we train
the action recognition model on the training set (25,288
video clips) and report the top-1 and top-5 accuracy on the
validation set (2,026 video clips).

4.2. Implementation Details

Pose estimators: we select 1) OpenPose 18-joints [2],
2) AlphaPose Sample-Baseline [8] using YOLOv3 [27] as
detector and 3) LCRNet++ In-The-Wild [30] as three expert
pose estimation models and LCRNet++ In-The-Wild [30] as
the student model for refining the pose. The poses contain
the 13 main joints that all three estimators can detect.

Pose refinement: we select all the videos from NTU-
Pose, 10% of the videos from Smarthome and 9.0K videos
from Charades, and 10% of the frames for each video with
uniform sampling to get a large dataset containing 3.0/
images from NTU-Pose, 40.2K images from Smarthome,
and 65.9K from Charades. We then split 20% of the im-
ages as the validation set. We apply SST-A mechanism us-
ing [30, 8, 2] as k1, k2 and k3 and take 13 main keypoints
for aggregation with v = 0.18 as the confidence threshold
for temporal filter to generate pseudo ground-truth 2D poses
(Sec. 3.1). Then, we use In-The-Wild pre-trained model of
LCRNet++ [30], which sets 20 ’anchor poses’ and lever-
ages ResNet50 [13] as a backbone and we follow the stan-
dard setting values from [30]. We fine-tune this model us-
ing 4 images per batch, and 512 boxes per image. The re-
fined model is used to estimate 2D poses of the whole set of
Smarthome, Charades and also for Kinetics-50 although its
videos are not in the training set.
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5. Evaluation Using Pose Ground-Truth

To evaluate the performance of our upstream pose refine-
ment system (SSTA-PRS), we experiment on NTU-Pose
and Smarthome-Pose to directly compare the performance
of expert pose estimators with our SSTA-PRS.

5.1. Results And Discussion

SST-A: We estimate 2D poses using three expert es-
timators and then perform SST-A without discarding any
frames. The results in Tab. 1 show that SST-A is effec-
tive to integrate the advantages of the expert estimators
and achieves a better performance (+7.7% on NTU-Pose,
+1.3% on Smarthome-Pose).

Confidence metric: To analyze the reliability of the
confidence metric (Sec. 3.1) that filters the poses for pseudo
annotations, we analyse on the NTU-Pose the variation of
the MPJPE with the confidence C' and find that the con-
fidence decreases globally with an increase of the error.
We select v = 0.18 as the confidence threshold that can
keep most of the aggregated poses within the error of 3.0
(Visualization in the supplementary material). According
to this threshold, we analyze the frequency of the retained
(i.e. with C-high confidence) and discarded (i.e. with C-low
confidence) poses within different error intervals (Fig. 5).
Within the intervals of smaller errors, we keep the most of
the poses and remove the ones in the larger error intervals.
In order to have sufficient training samples, we still keep
some poses with a few errors (but high confidence), corre-
sponding to cases of complex scenes. Our fine-tuning sys-
tem is weakly-supervised training, these poses can still play
a positive role in localization and classification. Therefore,
the confidence metric is instrumental in our work.

SSTA-PRS: After this filtering stage, we can get higher-
quality pseudo 2D pose annotations for fine-tuning SSTA-
PRS. Compared with the three expert estimators (Tab. 1),
our fine-tuned SSTA-PRS is the most effective (+13.9% on
NTU-Pose and +9.3% on Smarthome-Pose).

u C-low(C<y) = C-high(C>=y)
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Figure 5. Histogram of pose frequency in function of MPJPE with
threshold v = 0.18 (i.e. high confidence when C > ).

6. Evaluation Using Action Ground-Truth

We conduct several experiments on Toyota Smarthome,
Charades and Kinetics-50 for the downstream action recog-

Methods NTU-Pose Smarthome-Pose
PCKh @2.0 (%) PCKh @0.5 (%)
LCRNet++ [30] 54.1 64.4
AlphaPose [§] 53.2 55.5
OpenPose [2] 454 58.9
SST-A only(ours) 61.8 65.7
SSTA-PRS(ours) 68.0 73.7

Table 1. PCKh of poses from different pose estimators and pro-
posed SSTA-PRS using SST-A only (Sec. 3.1) and using both SST-
A and self-training (Sec. 3.2) on NTU-Pose and Smarthome-Pose.

nition task to evaluate the poses extracted through the pro-
posed SSTA-PRS. We perform an ablation study to validate
the effectiveness of our pose refinement system. Then, we
compare our system with other state-of-the-art methods.

6.1. Action Recognition Approach

We compare the performance of the best state-of-the-art
action recognition model on Smarthome, AGCN [35], with
and without our pose refinement module.

Action Classification: Unless stated, we only use 2D
poses for action recognition, which reduces the computa-
tion costs without losing performance as we have accu-
rate enough 2D poses. We call the implemented model
2s-AGCN+SSTA-PRS. We also expand the channels of 2s-
AGCN [35] to five as 5C-AGCNI1, which concatenates the
centered 3D poses to handle relative motion dynamics and
2D poses to obtain the global trajectory information.

Action Detection: Similar to other action detection
models [10, 26, 16], the input to the baseline models is
the segment-level video encoding. In this work, we uti-
lize AGCNs [35] to encode the skeleton stream. The model
is fine-tuned on the training set. To extract the features, a
video is divided into 7" non-overlapping segments, each seg-
ment consisting of 16 continuous poses. These segments are
sent to the fine-tuned AGCNs model to extract the segment-
level features. This video representation is the input se-
quence to the action detection models [10, 26, 16].

6.2. Ablation Study

We analyze the impact of our two components for pose
refinement. Performance is reported as mean per-class ac-
curacy on Smarthome using only joint data.

Impact of pose refinement: we verify the effective-
ness of the proposed pose refinement system using SST-
A only or both SST-A and self-training (full). The results
on Smarthome [0] are shown in Tab. 2. We test the 2s-
AGCN [35] with the original 2D and 3D pose data extracted
from LCRNet++ [30], and 2D pose refined by our SSTA-
PRS including or excluding the self-training step. Note that
the 3D refined pose data is obtained by VideoPose3D [24]
over the corresponding 2D poses. It shows that both com-
ponents can improve the performance on action classifica-
tion (+1 ~ 2% brought by SST-A and +2 ~ 5% by self-
training). In addition, we show in Tab. 3 the results for two
training modes, with either weak or strong supervision (i.e.
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with or without joint positions). We find that the results un-
der strong supervision are below the ones using SST-A only.
It suggests that the refined joint positions are too noisy to
improve the regression branch. It shows also that SST-A
significantly improves the upstream localization and classi-
fication performance of SSTA-PRS, which is sufficient to
improve action classification.

. Smarthome
2s-AGCN-Joint [35] CS(%) CV2A%)
+2D-original [6] 52.9 47.5
+2D SSTA-PRS (SST-A only) 53.5 47.9
+2D SSTA-PRS (full) 55.7 49.0
+3D-original [6] 49.1 49.6
+3D SSTA-PRS (SST-A only) 51.2 50.6
+3D SSTA-PRS (full) 54.0 53.3

Table 2. Mean per-class accuracy on Smarthome dataset using
2s-AGCN-Joint [35] with the skeleton data obtained by LCR-
Net++ [30] (original), SSTA-PRS using SST-A only (Sec. 3.1) and
using both SST-A and self-training(full) (Sec. 3.2).

SSTA-PRS Training Methods Smarthome CS(%)
Strong-supervision 514
Weak-supervision 54.0

Table 3. Mean per-class accuracy on Smarthome dataset using the
3D skeleton data obtained by SSTA-PRS (2D) and VideoPose [24]
(3D reconstruction over 2D skeleton)

6.3. Comparison With State-of-the-art

Toyota Smarthome: we compare the final model, 2s-
AGCN+SSTA-PRS, with the state-of-the-art methods on
the Toyota Smarthome dataset. The results shown in Tab. 4
demonstrate that high-quality pose is a good modality for
real-world action classification and our method achieves
state-of-the-art performance with a large margin (+3.8% on
CS and on CV2) over the Pose-based methods. Moreover,
we apply our module for VPN [7] as VPN+SSTA-PRS to
show that the refined poses can also improve RGB-and-pose
methods (+4.4% on CS and +0.6% on CV2).

Charades: we are the first to use only skeleton data
on Charades, so we only compare the frame-based mAP
of the same baseline methods using different poses as in-
put to validate the effectiveness of the pose estimation al-
gorithm. In this work, we use three types of input: 1)
LCRNet3D poses extracted from LCRNet++ [30], 2) LCR-
Net2D+VideoPose3D which uses video-based pose esti-
mation system VideoPose3D [24] to reconstruct the LCR-
Net2D poses to 3D poses, 3) SSTA-PRS 2D poses re-
fined by our proposed algorithm. We utilize three baseline
methods to evaluate these poses: Bidirectional-LSTM [10],
Dilated-TCN [16] and TGM [26]. As shown in Tab. 5,
SSTA-PRS is consistently better than image-based LCR-
Net3D poses and video-based LCRNet2D+VideoPose3D
poses for these three baselines (up to +1.7%, +0.6% w.r.t.
LCRNet3D and LCRNet2D+VideoPose3D respectively).

Kinetics-50: we compare the final model with the state-
of-the-art skeleton-based action recognition methods on the

Kinetics-50 dataset (Tab. 6). The methods used for com-
parison are the graph-based methods [35, 34] using Open-
Pose [2] skeleton data extracted by Yan et al. [46]. Our
model based on SSTA-PRS refined poses achieves state-of-
the-art performance (44.7% on Topl and 73.1% on Top5).

Smarthome

Methods RGB Pose CS@%) CVI(%) CV2%)
DT [42] v X 41.9 20.9 23.7
13D [3] v X 53.4 349 45.1
I3D+NL [43] v X 53.6 34.3 439
AssembleNet++ [31](+object) v X 63.6 - -
P-I3D [5] v v 542 35.1 50.3
Separable STA [0] v v 54.2 35.2 50.3
VPN [7] v v 60.8 43.8 535
VPN+SSTA-PRS(ours) v v 65.2 - 54.1
LSTM [21] X v 42.5 13.4 17.2
MS-AAGCN [34] x v 56.5 - -
2s-AGCN [35] X v 57.1 22.1 49.7
25-AGCN+SSTA-PRS(ours) X v 60.9 22.5 53.5
5C-AGCN+SSTA-PRS(ours)1 X v 62.1 22.8 54.0

Table 4. Mean per-class accuracy comparison against state-of-the-
art methods on the Toyota Smarthome dataset.

Charades
Methods Bi-LSTM[10] Dilated-TCN [16] TGM [26]
LCRNet 3D [30] 176 18.0 189
LCRNet 2D+VideoPose [24] 18.9 18.7 20.1
SSTA-PRS (ours) 05 5 206

Table 5. Action detection performance on Charades using frame-
based mAP.

Kinetics-50

Methods Top-1(%) Top-5(%)
25AGCN 03] 200 718
MS-AAGCN [34] 410 724
25-AGCN+SSTA-PRS (ours) 47 1

Table 6. Classification accuracy comparison against state-of-the-
art methods on the Kinetics-50 dataset.

7. Conclusion

In this work, we propose a novel method to extract pose
sequences from challenging real-world videos. Owing to
the proposed novel aggregation mechanism (SST-A) and
weakly-supervised self-training framework, our method can
be applied on 1) videos in low-resolution and 2) videos
containing human body occlusions and truncations. When
applied on a real-world activity recognition dataset (e.g.
Smarthome), the poses extracted from our model can be
used to achieve the best results which show the effective-
ness of our method. However, it still has limitations since
we mainly focus on improving the quality of poses. For
the tasks concerning human-object interactions (e.g. Cha-
rades), our method does not bring too much boosting. One
of the future directions could be combining our method with
RGB-based methods together to further improve the recog-
nition results.
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