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Abstract

One of the most promising approaches for automated

detection of guns and other prohibited items in aviation

baggage screening is the use of 3D computed tomography

(CT) scans. However, automated detection, especially with

deep neural networks, faces two key challenges: the high

dimensionality of individual 3D scans, and the lack of la-

belled training data. We address these challenges using

a novel image-based detection and segmentation technique

that we call the slice-and-fuse framework. Our approach

relies on slicing the input 3D volumes, generating 2D pre-

dictions on each slice using 2D Convolutional Neural Net-

works (CNNs), and fusing them to obtain a 3D prediction.

We develop two distinct detectors based on this slice-and-

fuse strategy: the Retinal-SliceNet that uses a unified, single

network with end-to-end training, and the U-SliceNet that

uses a two-stage paradigm, first generating proposals us-

ing a voxel labeling network and, subsequently, refining the

proposals by a 3D classification network. The networks are

trained using a data augmentation approach that creates a

very large training dataset by inserting weapons into 3D

CT scans of threat-free bags. We demonstrate that the two

SliceNets outperform state-of-the-art methods on a large-

scale 3D baggage CT dataset for baggage classification, 3D

object detection, and 3D semantic segmentation.

1. Introduction

Computed tomography (CT) has many favorable proper-

ties over other 3D scanning techniques: non-intrusive, ca-

pable of high-resolution at sub-millimeter scale, and largely

occlusion free scans [25], which enables highly accurate ob-

ject detection and segmentation. This has led to success-

ful usage in medical diagnostics [1] as well as detection of

threats such as guns and knives [9, 7, 8, 26, 6].

Despite the success of deep learning in many computer

vision tasks, there are few results that use deep neural net-

works to detect objects from CT baggage scans. The pri-

mary reason for this can be attributed to the very high-

dimensionality of individual 3D scans. For example, a typi-

cal scan that we deal with in this paper has a dimensionality

of 560× 560× 560; for data of such a high resolution, it is

difficult to leverage complex deep neural networks, due to

computation and memory constraints.

Recent work in 3D object detection has concentrated on

point clouds [18, 42, 5, 19, 2, 29, 30, 32, 28, 41], but unfor-

tunately these techniques are not easily applied to dense 3D

data. A typical point cloud in KITTI 3D dataset [10] con-

tains ∼10K points, while a typical luggage CT scan con-

tains ∼175M voxels. Moreover, cluttered background is

easier to handle in point clouds as neighboring objects in

point clouds are usually separate; in contrast, in baggage

scans target objects are often inlaid with others in close

proximity. We empirically show that these disadvantages

of point cloud detection methods yield unsatisfactory per-

formance on dense 3D data.

There are many strategies [40, 38, 3, 35, 37] that

are commonly used for training neural nets on high-

dimensional data. The most successful among them ap-

plies fully-convolutional networks (FCN) on portions of the

training data [3, 35, 37], thereby alleviating the need to

process the high-dimensional volume in a single instance.

While this strategy works well with compact objects, it is

not particularly effective for largely two-dimensional ob-

jects like guns, knives and rifles, which have thin elongated

structures; the randomness of the pose of such objects nat-

urally requires networks with large 3D reception fields. For

the same reasons, strategies that rely on downsampling the

volume [40, 38] tend to eliminate thin, but distinctive, struc-

tures like the knife blade and the gun barrel.

We adapt a slice-and-fuse strategy [36, 16, 14, 27] to

weapon detection and segmentation in high-resolution 3D

baggage scans that significantly reduces the computation

complexity while maintaining a high detection accuracy. As

is shown in Figure 1(a), the slice-and-fuse strategy is com-

prised of three distinct steps. First, a 3D scan is sliced into

multiple 2D slices along all three cardinal directions. Sec-

ond, each 2D slice is individually processed using a deep

network with the goal of 2D object detection and segmen-

tation. Third, the processed 2D slices are fused back into a

3D volume for subsequent post-processing. This strategy is
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(a) Slice-and-fuse strategy.
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(b) Object detection and segmentation on a 3D baggage CT scan.
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Figure 1. Proposed slice-and-fuse strategy. (a) Slice-and-fuse works by encoding the input 3D volume into XY, YZ, XZ slices, applying

image-based CNN models on each slice individually and extruding 2D predictions to 3D space. (b) Detection and segmentation on a 3D

CT scan of a bag. The yellow masks are predicted target region, and the red box is the predicted target bounding box.

based on two main observations. First, guns and knives, the

two object categories of interest, are easily recognized from

their 2D silhouettes, and hence information in a 2D slice

is ample for detection. Second, working with 2D slices al-

lows us to train complex and accurate models, without any

of the computational and memory bottlenecks present in 3D

processing pipelines.

Contributions. This paper provides a novel approach for

detection of guns and knives from 3D CT scans and makes

the following contributions.

• [Retinal-SliceNet] We design a one-stage object detec-

tor based on the RetinaNet architecture [21] for detecting

bounding boxes around weapons.

• [U-SliceNet] We design a two-stage algorithm based on

the UNet architecture [23] that performs semantic seg-

mentation on the 2D slices. The segmentations are used

to propose 3D regions for classification.

• [Data augmentation using threat insertion] We use a

data augmentation strategy wherein 3D scans of isolated

weapons are inserted into threat-free bags. This provides

a large dataset for training that produces remarkable im-

provements in detection performances.

The contributions above are tested on a real-scanned

dataset containing guns and sharp objects. At a false alarm

rate of 5%, the proposed strategy produces detection rates

upwards of 98.71% for guns and 61.27% for sharps, taking

as little as five to ten seconds per bag.

2. Prior Work

In this section, we discuss some of the key related work

in 2D and 3D object detection, including those used in the

context of point clouds and CT scans.

2D Object Detection. Existing 2D object detectors can be

categorized into one-stage and two-stage detectors. One-

stage object detection techniques use a single network to

estimate the bounding box locations and class labels for a

fixed set of region proposals on the input image. YOLO [33]

divided an input image into grid cells and used a unified

convolutional network to regress bounding boxes and class

probabilities for each grid cell. To handle objects of differ-

ent scales, SSD [22] introduced feature pyramids as well as

anchor boxes of different aspect ratios and scales for each

feature map location. More recently, Lin et al. [21] pro-

posed RetinaNet that utilized focal loss to handle the ex-

treme imbalance between the background and target object

bounding boxes, which led to the state-of-art detection per-

formance in object detection.

Two-stage techniques first generate a small set of can-

didate regions and subsequently refine the class labels as

well as locations of these regions. The most representative

two-stage object detection algorithm is the R-CNN family

of techniques [12, 11, 34, 13]. In this context, Faster R-

CNN approach proposed by Ren et al. [34] introduced the

concept of a region proposal network for filtering out a large

number of background candidates; it then used a second

network to accurately predict class labels and coordinates

for each proposal. The work by Lin et al. [20] improved the

detection accuracy further by introducing multi-scale fea-

ture pyramids into Faster R-CNN.

3D Object Detection. Convolutional Neural Networks

(CNNs) have brought significant progress in 3D object

detection. Most of the previous works including 3D-

FCN [18], VoxelNet [42] and Vote3Deep [5] converted
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point cloud into volumetric representation and generalized

CNNs to 3D CNNs for object detection. However, these

3D-based algorithms are extremely expensive when applied

directly to detect objects in high-resolution 3D volumes.

To alleviate the computational complexity of 3D object

detection, a common approach is to encode and process the

3D data as a 2D image. VeloFCN [19] projected the 3D

point cloud to obtain a 2D depth map and then applied a

2D detection network to localize vehicles. AniProb [31]

used enlongated kernels to encode a 3D volume to a 2D

slice and then performed object detection on the 2D slice.

Chen et al. [2] proposed utilizing a bird-eye-view for region

proposals and fused the features from front-view, bird-eye-

view, and RGB images to predict object classes and bound-

ing boxes locations. Frustum-PointNet [29] first detected

objects on RGB images and extruded the proposals into 3D

frustums for subsequent segmentation. Despite their high

efficiency, the use of a fixed viewpoint for region proposal

and projection of the entire volume is tuned specifically to

sparse depth maps. When applied to dense 3D CT scanes,

such approaches face the problem of severe occlusion be-

tween target objects and cluttered background.

Object Detection in Point Cloud. More recent work [30,

32, 28] resorts to the sparse and irregular feature of point

clouds and directly detects 3D objects in raw point clouds.

PointNet [30] took n points as input and extracted global

and local features and outputed per point scores. Point-

Net++ [32] recursively applied PointNet on learned par-

titions of input point sets. [15, 39] further exploit local

dependency by dividing a point cloud into slices or paral-

lel beams and fusing local features to a final segmentation

mask. More recently, VoteNet [28] and its successor ML-

CVNet [41] achieve the state-of-the-art results. They first

extracted a subset of ”seed” points to generate votes for the

center of target object, and then clustered these votes to ob-

tain 3D bounding boxes. These methods implicity assumed

that objects are placed seperately. However in highly clut-

tered baggage scans, target objects are tightly inlaid with or

even inside other objects, and thus pose additional chanl-

lenges in accurate object detection.

3D Object Detection in CT Scans. Despite the success

of deep neural networks in 3D point clouds, few methods

use deep neural networks to detect and segment objects in

baggage CT scans. Most existing object detection algo-

rithms [9, 7] simplified the detection problem to a template-

based matching problem. For example, a 3D extension to

the classical SIFT descriptor [24] and matching was used in

[9] to detect objects in the CT scan. This approach was ex-

tended in [7] for other keypoint descriptors, including den-

sity histogram, density gradient histogram, and RIFT [17].

However, template-based matching can be extremely slow

when we need to match candidate objects against multi-

ple target objects and diverse poses. One plausible solu-

tion to object detection in 3D baggage CT scans is to ap-

ply an accurate 3D classifier in a sliding-window approach.

[8, 26, 6] applied classifiers to hand-crafted feature descrip-

tors such as density histogram and density gradient his-

togram, and led to sub-optimal performance. Moreover, us-

ing a sliding window is often computationally expensive,

precluding processing of very large volumes.

Closely related to our work, [36, 16, 14, 27] exploited

2D slices and view aggregation to segment medical CT

scans. Our work is different from them in two significant

ways. First, we focus on the application of weapon detec-

tion in baggage CT; Second, while these work tackle se-

mantic segmentation task, we extend their applicability to

3D object detection and classification.

3. SliceNets

The proposed slice-and-fuse strategy leverages 2D

CNNs to accelerate object detection and segmentation in

high-resolution dense 3D volumes. Our strategy relies on

two key operations: the slice operation that effectively en-

codes 3D volumes into a collection of 2D images, and

the fuse operation that decodes 2D predictions to recover

volumetric estimation. With these two operations, the

most computationally intensive components — namely, the

learning-based formulation for detection, and segmentation

— are only carried out in the 2D space, while the rest of the

processing of the 3D data is computationally lightweight. In

the following paragraphs, we will introduce slice operation

and fuse operation in detail.

The slicing operation. Slicing generates a set of 2D

slices for a single 3D scan. Suppose that the three axes of

the 3D scan are denoted using X, Y, and Z. Slicing along the

Z direction produces a collection of XY slices. To generate

an XY slice from a dense 3D volume V ∈ R
Nx×Ny×Nz ,

we first crop out a sub-volume of size Nx × Ny × n and

then apply max-operator along z-axis to get a 2D projection

of size Nx × Ny . We apply similar operations to Y and

X directions to get a collection of XZ and YZ slices. This

generates in total Nx/n + Ny/n + Nz/n 2D slices when

there is no overlap between two slices in one direction.

Processing each slice. Each slice is then individually

processed using a 2D image-based CNN to obtain 2D score

maps in terms of object/segmentation labels. Further de-

tails will be described in Sections 3.1 and 3.2. Once we

obtain predictions at each slice, we apply the fusing opera-

tor to construct a 3D volume. Note that the 2D image-based

CNN is the only component that needs to be trained in the

proposed framework, which significantly reduces computa-

tional and memory burden. In the training step, we generate

2D slices and their labels by slicing the density volumes and

corresponding ground-truth volumes.
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Figure 2. SliceNet architectures. (left) Retinal-SliceNet is a one-stage 3D object detector. It incorporates RetinaNet [21] into slice-and-

fuse framework to directly predict the location of target objects. (right) U-SliceNet is a two-stage object detector with 3D volumetric

segmentation followed by a 3D classification network.

The fusing operation. To aggregate XY, YZ, and XZ

slices predictions, we first linearly interpolate slices from

the same direction to obtain one volumetric prediction for

each direction. Specifically, for XY direction, we linearly

interpolate Nz/n XY slices along z-axis to construct a 3D

prediction V̂XY ∈ R
Nx×Ny×Nz . Similarly we construct

V̂Y Z and V̂XZ for YZ and XZ directions. To fuse the

multi-view 3D predictions, we average the k largest values

from three directions voxel by voxel, where k is a hyper-

parameter for different classes.

Advantages of the slice-and-fuse strategy. Compared

to other image-based 3D object detection algorithms, the

slice-and-fuse pipeline offers three advantages for improv-

ing detection accuracy. First, cropping out sub-volumes

before projection effectively avoids the heavy occlusion

caused by projecting the whole volume into a single 2D

image. Second, since we know the location each slice is

extracted from, we retain the 3D voxel information. This

enables us to accurately estimate full 3D volumes in the fuse

operation. Third, averaging all three or the two maximum

predictions in the fusion stage explicitly ensures spatial con-

sistency across multiple views, making the 3D prediction

for each voxel more reliable.

The slice-and-fuse strategy can be easily incorporated

into state-of-the-art pipelines for 3D object detection and

segmentation. We show two distinct approaches based on

one-stage and two-stage detection pipelines.

3.1. Retinal­SliceNet — A One­Stage Detector

Retinal-SliceNet, adopted from the RetinaNet architec-

ture [21], uses a single network to regress target objects lo-

cations. As shown in the left part of Figure 2, after produc-

ing XY, YZ and XZ slices from an input 3D volume, each

slice is processed individually using a RetinaNet that pre-

dicts bounding boxes and their corresponding confidence

scores. Each 2D prediction can be decoded into a continu-

ous score map, where the bounding box regions are filled

with the value of corresponding scores. After obtaining

all 2D scores maps from three directions, we feed them to

the fuse-operation to get a single 3D volumetric estimation,

which is further thresholded to be the final 3D estimation.

We defer the details of 2D object detection to [21], and pro-

vide implementation details in the supplementary material.

3.2. U­SliceNet — A Two­Stage Detector

As shown in the right part of Figure 2, the proposed U-

SliceNet follows the two-stage detector paradigm and con-

sists of three components: a voxel-wise labeling network

that operates over 2D slices, a 3D region proposal module

on fused 3D labels, and a subsequent classifier of the pro-

posed 3D regions.

Voxel-wise labeling network. The voxel-wise labeling

network is designed by adapting the 2D-UNet [23] to the

proposed slice-and-fuse strategy. Each 2D slice is then pro-

cessed using a standard UNet architecture with the objective

of producing pixel-level labeling. After the fusing opera-

tion, we obtain a coarse 3D voxel-labeling for each volume.

Region proposal. We select the anchor points with a

spatial interval of m voxels among the valid voxels. At

each anchor point, we propose a set of anchor boxes that

center around the anchor point. To achieve accurate de-

tections, the anchor boxes are designed to have 5 different

scales and 8 different aspect ratios, yielding a maximum of

155 anchors at each location. The region proposals are then

back-projected to input volumes to crop out corresponding

sub-volumes.

Proposal classification. We train one 3D CNN to select

region proposals that have large overlaps with target guns

and one for target sharps. The network takes in cropped

sub-volumes from region proposal stage and resizes them

to a unified resolution of 32× 32× 32. The locations of se-

lected proposals are used as predicted bounding boxes; the

max score among all region proposals for each class is used

as the bag-level score for that class. We further apply the se-

lected proposals to the coarse voxel-labeling and generate a

final semantic segmentation mask for target objects.
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4. Dataset

While our SliceNet architectures address the formidable

computational challenges posed by the high-dimensionality

of CT scans, training the underlying model still requires a

large training dataset. Collecting such datasets is extremely

time consuming as we not only need to assemble a plethora

of distinct bags, but also painstakingly label them to get

voxel-level segmentation masks.

We address the challenges in assembling a large dataset

using a simple and effective data augmentation strategy in-

spired by [4]. Our strategy relies on having access to a

large number of CT scans of weapons-free bags, which can

be easily obtained from the stream of commerce, i.e., bags

that pass through the checkpoint at an airport. Once we have

these bags, we can take CT scans of weapons in isolation,

rotate them and insert them into free spaces in the bags.

This provides us with a rich dataset where the weapons are

inserted into a rich set of backgrounds. Further, we can

transfer the segmentation mask of the weapon into the final

bag to get a precise voxel-level labeling.

With this data augmentation procedure, we build a mix

of real and simulated threat dataset for training and evalua-

tion of our approach. We organize this dataset into multiple

subsets, which are described in Table 1. On the whole, we

assembled a dataset that has 1001 real scans of bags with

weapons in them during scanning, and nearly 15, 700 sim-

ulated threat bags where we digitally insert weapons. In

addition, we collected a set of 11, 400 threat-free bags from

the stream of commerce.

Our data augmentation strategy has some limitations.

We can only insert weapons into bags that have ample clear

spaces and so the training data has lesser background clut-

ter. To address this, we include a portion of the weapons-

free bags as negative examples in the training process. A

second limitation is that a single weapon could potentially

be inserted in multiple bags (although under different rota-

tions) and hence, the threats themselves are correlated. This

is a point of concern for articulated objects like scissors that

are likely to occur in many configurations.

5. Experiments

We evaluate the proposed SliceNets on 3D Baggage-CT

dataset for three different tasks — baggage classification,

3D object detection, and 3D semantic segmentation. We

train our models on simulated datasets as well as 10% bags

from the clearbag dataset, and test on all five simulated

datasets and two real-scan datasets.

Training set generation. In order to train SliceNets, we

prepare the 2D training samples in advance. Specifically,

for target baggage, we select nine slices around each target

object from each baggage. The slices are selected by first

finding the centroid of target objects and generating 3 XY

slices, 3 YZ slices, and 3 XZ slices around it. For the clear

baggage, we randomly pick nine slices from each baggage.

This results in a training set of 118,790 target slices and

11,879 clear slices.

Comparison methods. We compare the proposed

SliceNets with five baselines. The first baseline is 3D-

UNet, which is adapted from the classic 2D FCN [23] by

replacing the 2D covolution with 3D convolution. Due

to the memory burden of the high dimensionality of the

original input volumes, we downsample the volumes to

256 × 256 × 256. During training, we further crop out

small volumes of size 64 × 64 × 64 from each bag, five

volumes that have large overlap and five volumes that have

no or small overlap with the target objects. The second

baseline is Anisotropic Probing Network [31], denoted

as AniProb, which uses a set of 1 × 1 kernels to encode

the input volume to a 2D slice, and feed the 2D slice

to a RetinaNet [21]. We further modify AniProb [31]

to AniProb++ as a third baseline. Instead of learning a

single slice, AniProb++ encodes the volume into multiple

slices. We learn slices from XY, YZ, XZ directions and

fuse the predicted bounding boxes from the three different

directions to obtain the 3D bounding boxes. Lastly, we

compare SliceNets with the state-of-the-art 3D object

detection methods VoteNet [28] and MLCVNet [41], which

takes the coordinates and features of points as input and

outputs 3D bounding boxes. To covert our volumetric data

into point clouds, we record all voxels by their (X,Y, Z)
coordinates and physical densities and then remove voxels

with trivial densities. During training and inference, we

further subsample each point cloud to 12K points.

Baggage classification. We first evaluate the performance

of SliceNets on 3D baggage classification, where we only

seek to predict whether or not a baggage contains weapons.

To perform this task using Retinal-SliceNet, we consider

the largest predicted value of the 3D prediction as a bag-

level score. For U-SliceNet, we use the largest bounding

boxes score as the bag-level score. Figure 3 (a-g) shows the

Receiver Operating Characteristic (ROC) curves on seven

subsets, and Table 2 summarizes the recall for each subset

at 5% false alarm rate. The proposed SliceNets outperform

the state-of-the-art point cloud methods by a large margin

on all datasets. Retinal-SliceNet also achieves the best clas-

sification performance of 98.71% for real guns subset and

61.27% for real sharps subset.

Table 3 compares the performances of SliceNets with

different slice thickness n. Both Retinal-SliceNet and U-

SliceNet work best with n = 28 voxels for most subsets.

Note that for Retinal-SliceNet, slice with thickness n = 40
outperforms thinner slices on both “Full Rotation” dataset
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Name Description # Bags
R

ea
l 

D
a
ta Clear Scan Weapons-free bags (true negatives) 11400

Real Scan Bags with guns and knives. Some bags have two weapons 1001

S
im

u
la

te
d

 

T
h

re
a
t 

D
a
ta

Limited Angle Base bag has low clutter and orientation of inserted weapon is limited 1600

Full Rotation Full range of angles in the inserted weapon 7200

Multiple Guns Multiple guns were inserted 686

Heavy Clutter Base bag has heavy electronics whose density is high 2400

Simulated Sharps Inserted weapon belongs to sharps -- knives, scissors, and other blades 3900

Table 1. Description of the dataset used for 3D weapons detection.
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Figure 3. Results for 3D baggage classification. (a-g) are ROC curves for each subset. The horizontal axis is false positive rate and the

vertical axis is true positive rate.

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps

R. S.

Guns

R. S.

Sharps

AniProb [31] 47.39 66.67 40.42 79.69 23.64 41.42 10.78

AniProb++ 71.84 76.24 67.50 76.56 44.94 62.30 8.82

3D-UNet 96.46 97.52 97.10 100.00 49.35 95.47 1.96

VoteNet [28] 74.49 64.54 86.25 67.21 55.47 53.02 39.71

MLCVNet [41] 61.66 53.90 84.58 84.58 42.93 62.81 33.82

Retinal-SliceNet 98.48 98.94 98.75 100.00 83.90 98.71 61.27

U-SliceNet 98.99 97.87 97.51 100.00 78.18 97.41 50.00

Table 2. A summary of classification recall for each subset at

false alarm rate 5%.

and “Simulated Sharp” dataset, since thick slices capture

larger fractions of rotated guns and thin blades that are more

characteristic to the detector.

3D object detection. We compare the performance of the

proposed SliceNets and that of AniProb++ , VoteNet and

MLCVNet on 3D object detection task. We use Average

Precision in 3D (AP3D) as evaluation metrics, together with

three different Intersection over Union (IoU) thresholds.

Table 4 shows the detection performance for five subsets

and the average performance. Note that the average AP3D

of Retinal-SliceNet is consistently better than VoteNet and

MLCVNet under different IoU thresholds. And both our

SliceNets outperfom the VoteNet and MLCVNet by a large

margin on Heavy Clutter subset. When cluttered objects

with similar densities present in close proximity with the

target objects, point cloud detection methods fail to accu-

rately regress the bounding box locations.

3D segmentation using U-SliceNet. Lastly, we compare

the proposed U-SliceNet with baseline 3D-UNet on 3D se-

mantic segmentation task. We predict a score between 0

and 1 for each voxel to indicate the probability of the voxel

belongs to a target object. The ground truth for each voxel

is a binary label for whether being background or targets.

We use Mean IoU and the accuracy for the target class as

evaluation metrics. Table 5 shows that the proposed method

achieves higher accuracies on all subsets, and better Mean

IoU on subsets except ”Full Rotation” subset.

The performance of SliceNets on sharps subsets is worse

than that on guns subsets. This can be attributed to three rea-
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Slice

Thickness

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps

Real

Guns

Real

Sharps

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps

Real

Guns

Real

Sharps

in voxels Retinal-SliceNet U-SliceNet

n = 10 97.64 97.16 97.10 100.00 71.69 97.09 42.65 96.46 96.81 97.93 100.00 71.69 96.44 43.14

n = 28 98.48 98.94 98.75 100.00 83.90 98.71 61.27 98.99 97.87 97.51 100.00 78.18 97.41 50.00

n = 40 97.98 99.29 97.93 100.00 84.42 97.41 55.88 87.02 95.74 93.78 100.00 76.10 91.91 50.00

Table 3. Results for 3D baggage Classification using different slice thickness.

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps Avg.

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps Avg.

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps Avg.

AP3D (IoU≥0.3) AP3D (IoU≥0.4) AP3D (IoU≥0.5)

AniProb++ 8.20 22.03 6.56 15.86 1.43 10.82 0.64 2.66 0.33 2.41 0.14 1.24 0.02 0.22 0.00 0.01 0.00 0.25

VoteNet [28] 80.18 90.54 69.00 70.01 50.24 71.99 66.49 87.80 47.42 48.28 39.97 57.99 49.84 70.62 30.00 34.71 30.13 43.06

MLCVNet [41] 80.21 89.20 66.52 64.63 47.23 69.55 64.39 81.35 50.62 49.21 34.97 56.10 47.97 57.06 33.37 29.94 25.39 38.74

Retinal-SliceNet 91.08 90.55 90.85 66.82 38.82 75.62 83.25 87.64 75.19 58.22 28.09 66.48 68.54 80.72 56.90 50.99 16.40 54.71

U-SliceNet 90.75 85.63 91.93 59.17 58.92 77.28 76.73 74.11 76.36 39.24 29.12 59.11 37.59 33.74 36.56 14.98 6.94 25.96

Table 4. Results for 3D Object Detection.

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps Avg.

Ltd.

Rot.

Full

Rot.

Heavy

Clutter

Multi

Guns

Simu.

Sharps Avg.

Mean IoU Accuracy (%)

3D-UNet 0.4913 0.5096 0.5052 0.4440 0.2623 0.4425 63.06 61.41 63.68 53.31 45.79 57.45

U-SliceNet 0.5078 0.4901 0.5153 0.4511 0.3099 0.4548 79.73 80.94 80.96 76.83 50.60 73.81

Table 5. Results for 3D semantic segmentation.

sons: First, as shown in Figure 4, sharps category contains a

large variance of shapes including folded/unfolded knives,

scissors, and some unique weapons. Second, the training

samples of sharps are much fewer than that of guns. And

third, the typical size and thickness of sharps is very small

compared to the cluttered background, resulting in severe

imbalance during detection and segmentation.

Qualitative Results. The upper two rows in Figure 4

showcase the detection performance of Retinal-SliceNet,

and the lower two rows demonstrate the detection and seg-

mentation performance of U-SliceNet for ”Real Scan” guns

and sharps subsets. Note that both Retinal-SliceNet and U-

SliceNet are able to detect multiple instances from the same

class or from different classes in the same baggage.

Timing comparison. We compare the training and infer-

ence time complexity of SliceNets with baseline methods

in Table 6. All experiments are conducted on one Nvidia

TITAN Xp and Intel Xeon CPU E5-2640. Note that 3D-

UNet are much more expensive to train and test compared

to SliceNets. During inference, the memory footprint for

Retinal-SliceNet and U-SliceNet are 5.10 Gb and 9.64 Gb.

Training

time (s)

Inference

time (s)

AniProb [31] 2992 1.19

AniProb++ 2992 1.66

3D-UNet 16126 35.53

VoteNet [28] 1170 6.75

MLCVNet [41] 2018 7.94

Retinal-SliceNet 1765 7.89

U-SliceNet 5386 18.87

Table 6. Timing comparison. For each method, we measure the

training time for one epoch, the inference time and GPU memory

footprint given an input volume 560× 560× 560.

Limitations. Slice-and-fuse strategy is effective for ob-

jects that retain their distinctive shapes in their silhouettes

or local projections. For objects that do not satisfy this

property, 2D processing of slices would invariably lead to

reduced performance. A triangle pyramid, for example, is

hard to be distinguished from a triangular prism using a sin-

gle 2D projection. For this reason, some of the choices we

make may not be amenable for other volumetric signals.

That said, our approach relies critically on having slices that

have distinctive object appearances. Examples of this in-
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Figure 4. Qualitative results from SliceNets. The upper two rows show bounding boxes from Retinal-SliceNet and the lower two rows

show bounding boxes as well as semantic segmentation masks from U-SliceNet. The red boxes are predicted bounding boxes, the yellow

regions are predicted segmentation masks, and the green boxes are the ground-truth boxes.

clude CT and Magnetic Resonance Imaging (MRI) scans in

medical imaging.

6. Conclusion

In this paper, we present slice-and-fuse strategy, a

generic framework for object detection and segmentation in

high-resolution 3D volumes that encodes 3D volumes into

multiple 2D slices and leverages fast image-based models

to obtain volumetric predictions. Based on this strategy, we

further design two algorithms, called SliceNets, that exploit

cutting-edge image-based CNNs for object detection and

segmentation in 3D baggage CT scans. By training deep

neural networks solely on lower-dimensional slices, our ap-

proach provides a scalable and effective way for training ex-

pressive classification and segmentation modules for high-

dimensional signals.
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