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Abstract

Oriented object detection in aerial images is a challeng-

ing task as the objects in aerial images are displayed in

arbitrary directions and are usually densely packed. Cur-

rent oriented object detection methods mainly rely on two-

stage anchor-based detectors. However, the anchor-based

detectors typically suffer from a severe imbalance issue be-

tween the positive and negative anchor boxes. To address

this issue, in this work we extend the horizontal keypoint-

based object detector to the oriented object detection task.

In particular, we first detect the center keypoints of the ob-

jects, based on which we then regress the box boundary-

aware vectors (BBAVectors) to capture the oriented bound-

ing boxes. The box boundary-aware vectors are distributed

in the four quadrants of a Cartesian coordinate system for

all arbitrarily oriented objects. To relieve the difficulty of

learning the vectors in the corner cases, we further classify

the oriented bounding boxes into horizontal and rotational

bounding boxes. In the experiment, we show that learning

the box boundary-aware vectors is superior to directly pre-

dicting the width, height, and angle of an oriented bound-

ing box, as adopted in the baseline method. Besides, the

proposed method competes favorably with state-of-the-art

methods. Code is available at https://github.com/yijingru/

BBAVectors-Oriented-Object-Detection.

1. Introduction

Object detection in aerial images serves as an essen-

tial step for numerous applications such as urban planning,

traffic surveillance, port management, and maritime rescue

[1, 28]. The aerial images are taken from the bird’s-eye

view. Detecting objects in aerial images is a challenging

task as the objects typically have different scales and tex-

tures, and the background is complex. Moreover, the ob-

jects are usually densely packed and displayed in arbitrary

directions. Consequently, applying the horizontal bounding

boxes to oriented object detection would lead to misalign-
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Figure 1. Oriented bounding box (OBB) descriptions for (a) base-

line method, termed Center+wh+θ, where w, h, θ are the width,

height and angle of an OBB. Note that w and h of the OBBs are

measured in different rotating coordinate systems for each object;

(b) the proposed method, where t, r, b, l are the top, right, bottom

and left box boundary-aware vectors. The box boundary-aware

vectors are defined in four quadrants of the Cartesian coordinate

system for all the arbitrarily oriented objects; (c) illustrates the

corner cases where the vectors are very close to the xy-axes.

ment between the detected bounding boxes and the objects

[2]. To deal with this problem, oriented bounding boxes are

preferred for capturing objects in aerial images.

Current oriented object detection methods are mainly de-

rived from the two-stage anchor-based detectors [5, 4, 19].

Generally, in the first stage, those detectors spread anchor

boxes on the feature maps densely and then regress the off-

sets between the target box and the anchor box parameters
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in order to provide region proposals. In the second stage,

the region-of-interest (ROI) features are pooled to refine the

box parameters and classify the object categories. Notably,

they use the center, width, height, and angle as the descrip-

tions of an oriented bounding box. The angle is learned

either in the first stage or in the second stage. For instance,

R2CNN [7], Yang et al. [25], and ROI Transformer [2]

regress the angle parameters from the pooled horizontal re-

gion proposal features in the second stage; similarly, R2PN

[28], R-DFPN [24] and ICN [1] generate oriented region

proposals in the first stage. These oriented object detection

methods share the same drawbacks with the anchor-based

detectors. For example, the design of the anchor boxes is

complicated; and the choices of aspect-ratios and the size

of the anchor boxes need to be tuned carefully. Besides,

the extreme imbalance between the positive and negative

anchor boxes would induce slow training and sub-optimal

performance [3]. Moreover, the crop-and-regress strategies

in the second stage are computationally expensive [30]. Re-

cently, the keypoint-based object detectors [9, 30, 3] have

been developed to overcome the disadvantages of anchor-

based solutions [19, 12, 27] in the horizontal object detec-

tion task. In particular, these methods detect the corner

points of the bounding boxes and then group these points by

comparing embedding distances or center distances of the

points. Such strategies have demonstrated improved per-

formance, yet with one weakness that the grouping process

is time-consuming. To address this issue, Zhou’s Center-

Net [29] suggests detecting the object center and regressing

the width (w) and height (h) of the bounding box directly,

which achieves faster speed at comparable accuracy. Intu-

itively, Zhou’s CenterNet can be extended to the oriented

object detection task by learning an additional angle θ to-

gether with w and h (see Fig. 1a). However, as the param-

eters w and h are measured in different rotating coordinate

systems for each arbitrarily oriented object, jointly learning

those parameters may be challenging for the model.

In this paper, we extend Zhou’s CenterNet to the ori-

ented object detection task. However, instead of regress-

ing the w, h and θ at the center points, we learn the box

boundary-aware vectors (BBAVectors, Fig. 1b) to capture

the rotational bounding boxes of the objects. The BBAVec-

tors are distributed in the four quadrants of the Cartesian

coordinate system. Empirically we show that this design

is superior to directly predicting the spatial parameters of

bounding boxes. In practice, we observe that in the cor-

ner cases, where the vectors are very close to the bound-

ary of the quadrants (i.e., xy-axes in Fig. 1c), it would be

difficult for the network to differentiate the vector types.

To deal with this problem, we group the oriented bounding

box (OBB) into two categories and handle them separately.

Specifically, we have two types of boxes: horizontal bound-

ing box (HBB) and rotational bounding box (RBB), where

RBB refers to all oriented bounding boxes except the hori-

zontal ones. We summarize our contributions as follows:

• We propose the box boundary-aware vectors

(BBAVectors) to describe the OBB. This strategy

is simple yet effective. The BBAVectors are measured

in the same Cartesian coordinate system for all the

arbitrarily oriented objects. Compared to the baseline

method that learns the width, height and angle of the

OBBs, the BBAVectors achieve better performance.

• We extend the center keypoint-based object detector to

the oriented object detection task. Our model is single-

stage and anchor box free, which is fast and accurate.

It achieves state-of-the-art performances on the DOTA

and HRSC2016 datasets.

2. Related Work

2.1. Oriented Object Detection

The horizontal object detectors, such as R-CNN [14],

fast R-CNN [4], faster R-CNN [19], SSD [12], YOLO [17],

are designed for horizontal objects detection. These meth-

ods generally use the horizontal bounding boxes (HBB) to

capture the objects in natural images. Different from the

horizontal object detection task, oriented object detection

relies on oriented bounding boxes (OBB) to capture the ar-

bitrarily oriented objects. Current oriented object detection

methods are generally extended from the horizontal object

detectors. For example, R2CNN [7] uses the region pro-

posal network (RPN) to produce the HBB of the text and

combines different scales of pooled ROI features to regress

the parameters of OBB. R2PN [28] incorporates the box ori-

entation parameter into the RPN network and develops a ro-

tated RPN network. R2PN also utilizes a rotated ROI pool-

ing to refine the box parameters. R-DFPN [24] employs

the Feature Pyramid Network (FPN) [11] to combine multi-

scale features and boost the detection performance. Based

on the DFPN backbone, Yang et al. [25] further propose

an adaptive ROI Align method for the second-stage box re-

gression. RoI Transformer [2] learns the spatial transforma-

tion from the HBBs to OBBs. ICN [1] develops an Image

Cascade Network that enhances the semantic features be-

fore adopting R-DFPN. RRD [10] uses active rotation fil-

ters to encode the rotation information. Gliding Vertex [23]

glide the vertex of the horizontal bounding boxes to cap-

ture the oriented bounding boxes. All these methods are

based on anchor boxes. Overall, the anchor-based detectors

first spread a large amount of anchor boxes on the feature

maps densely, and then regress the offsets between the tar-

get boxes and the anchor boxes. Such anchor-based strate-

gies suffer from the imbalance issue between positive and

negative anchor boxes. The issue would lead to slow train-

ing and sub-optimal detection performances [9].
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Figure 2. The overall architecture and the oriented bounding box (OBB) descriptions of the proposed method. The input image is resized

to 608 × 608 before being fed to the network. The architecture is built on a U-shaped network. Skip connections are adopted to combine

feature maps in the up-sampling process. The output of the architecture involves four maps: the heatmap P , offset map O, box parameter

map B, and orientation map α. The locations of the center points are inferred from the heatmap and offset map. At the center points,

the box boundary-aware vectors (BBAVectors) are learned. The resolution of the output maps is 152 × 152. HBBs refer to the horizontal

bounding boxes. RBBs indicate all oriented bounding boxes except the HBBs. The symbols t, r, b, l refer to the top, right, bottom and left

vectors of BBAVectors, we and he are the external width and height of an OBB. The decoded OBBs are shown in red bounding boxes.

2.2. Keypoint­Based Object Detection

The keypoint-based object detectors [9, 30, 29, 26] cap-

ture the objects by detecting the keypoints and therefore

provide anchor-free solutions. Keypoint detection is ex-

tensively employed in the face landmark detection [15] and

pose estimation [16, 21]. In the horizontal object detection

task, the keypoint-based detection methods propose to de-

tect the corner points or the center points of the objects and

extract the box size information from these points. Cor-

nernet [9] is one of the pioneers. It captures the top-left

and bottom-right corner points of the HBB using heatmaps.

The corner points are grouped for each object by compar-

ing the embedding distances of the points. Duan’s Center-

Net [3] detects both corner points and center points. Ex-

tremeNet [30] locates the extreme and center points of the

boxes. These two methods both use the center informa-

tion to group the box points. However, the post-grouping

process in these methods is time-consuming. To address

this problem, Zhou’s CenterNet [29] proposes to regress the

width and height of the bounding box at the center point

without a post-grouping process, which makes the predic-

tion faster. The keypoint-based object detectors show ad-

vantages over the anchor-based ones in terms of speed and

accuracy, yet the keypoint-based detectors are barely ap-

plied to oriented object detection task.

Baseline method. In this paper, we extend Zhou’s Cen-

terNet to the oriented object detection task. In particular,

we first build a baseline method that directly regresses the

width w and height h as well as the orientation angle θ
of the bounding boxes. We term this baseline method as

Center+wh + θ (see Fig. 1a). We compare the proposed

method with Center+wh+θ to demonstrate the advantages

of box boundary-aware vectors.

3. Method

In this section, we first describe the overall architecture

of the proposed method, and then explain the output maps

in detail. The output maps are gathered and decoded to gen-

erate the oriented bounding boxes of the objects.

3.1. Architecture

The proposed network (see Fig. 2) is built on a U-shaped

architecture [20]. We use the ResNet101 Conv1-5 [6] as

the backbone. At the top of the backbone network, we up-

sample the feature maps and output a feature map that is 4
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times smaller (scale s = 4) than the input image. In the up-

sampling process, we combine a deep layer with a shallow

layer through skip connections to share both the high-level

semantic information and low-level finer details. In partic-

ular, we first up-sample a deep layer to the same size of

the shallow layer through bilinear interpolation. The up-

sampled features map is refined through a 3 × 3 convolu-

tional layer. The refined feature map is then concatenated

with the shallow layer, followed by a 1 × 1 convolutional

layer to refine the channel-wise features. Batch normaliza-

tion and ReLU activation are used in the latent layers. Sup-

pose an input RGB image is I ∈ R
3×H×W , where H and

W are the height and width of the image. The output feature

map X ∈ R
C×

H
s
×

W
s (C = 256 in this paper) is then trans-

formed into four branches: heatmap (P ∈ R
K×

H
s
×

W
s ), off-

set (O ∈ R
2×H

s
×

W
s ), box parameter (B ∈ R

10×H
s
×

W
s ),

and the orientation map (α ∈ R
1×H

s
×

W
s ), where K is the

number of dataset categories and s = 4 refers to the scale.

The transformation is implemented with two convolutional

layers with 3× 3 kernels and 256 channels.

3.2. Heatmap

Heatmap is generally utilized to localize particular key-

points in the input image, such as the joints of humans and

the facial landmarks [15, 16, 21]. In this work, we use

the heatmap to detect the center points of arbitrarily ori-

ented objects in the aerial images. Specifically, the heatmap

P ∈ R
K×

H
s
×

W
s used in this work has K channels, with

each corresponding to one object category. The map at each

channel is passed through a sigmoid function. The predicted

heatmap value at a particular center point is regarded as the

confidence of the object detection.

Groundtruth Suppose c = (cx, cy) is the center point

of an oriented bounding box, we place a 2D Gaussian

exp(−
(px−cx)

2+(py−cy)
2

2σ2 ) (see Fig. 2) around each c to

form the groundtruth heatmap P̂ ∈ R
K×

H
s
×

W
s , where

σ is a box size-adaptive standard deviation [29, 9], point

p̂ = (px, py) indexes the pixel points on P̂ .

Training Loss When training the heatmaps, only the cen-

ter points c are positive. All the other points including the

points in the Gaussian bumps are negative. Directly learn-

ing the positive center points would be difficult due to the

imbalance issue. To handle this problem, following the

work of [9], we decrease the penalty for the points inside

the Gaussian bumps and use the variant focal loss to train

the heatmap:

Lh = −
1

N

∑

i

{

(1− pi)
α log(pi) if p̂i = 1

(1− p̂i)
βpαi log(1− pi) otherwise,

(1)

where p̂ and p refer to the ground-truth and the predicted

heatmap values, i indexes the pixel locations on the feature

map, N is the number of objects, α and β are the hyper-

parameters that control the contribution of each point. We

choose α = 2 and β = 4 empirically as in [9].

3.3. Offset

In the inference stage, the peak points are extracted from

the predicted heatmap P as the center point locations of

the objects. These center points c are integers. However,

down-scaling a point from the input image to the output

heatmap generates a floating-point number. To compen-

sate for the difference between the quantified floating cen-

ter point and the integer center point, we predict an offset

map O ∈ R
2×H

s
×

W
s . Given a ground-truth center point

c̄ = (c̄x, c̄y) on the input image, the offset between the

scaled floating center point and the quantified center point

is:

o = (
c̄x
s

− ⌊
c̄x
s
⌋,

c̄y
s

− ⌊
c̄y
s
⌋), (2)

The offset is optimized with a smooth L1 loss [4]:

Lo =
1

N

N
∑

k=1

SmoothL1
(ok − ôk), (3)

where N is the total number of objects, ô refers to the

ground-truth offsets, k indexes the objects. The smooth L1

loss can be expressed as:

SmoothL1
(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise.
(4)

3.4. Box Parameters

To capture the oriented bounding boxes, one natural and

straightforward way is to detect the width w, and height h,

and angle θ of an OBB from the center point. We term

this baseline method as Center+wh+ θ (see Fig. 1a). This

method has several disadvantages. First, a small angle vari-

ation has marginal influence on the total loss in training,

but it may induce a large IOU difference between the pre-

dicted box and the ground-truth box. Second, for each ob-

ject, the w and h of its OBB are measured in an individual

rotating coordinate system that has an angle θ with respect

to the y-axis. Therefore, it is challenging for the network

to jointly learn the box parameters for all the objects. In

this paper, we propose to use the box boundary-aware vec-

tors (BBAVectors, see Fig. 1b) to describe the OBB. The

BBAVectors contain the top t, right r, bottom b and left l

vectors from the center points of the objects. In our design,

the four types of vectors are distributed in four quadrants of

the Cartesian coordinate system. All the arbitrarily oriented

objects share the same coordinate system, which would fa-

cilitate the transmission of mutual information and there-

fore improve the generalization ability of the model. We
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intentionally design the four vectors instead of two (i.e., t

and b, or r and l) to enable more mutual information to be

shared when some local features are obscure and weak.

The box parameters are defined as b = [t, r, b, l, we, he],
where t, r, b, l are the BBAVectors, we and he are the exter-

nal horizontal box size of an OBB, as described in Fig. 2.

The details of we and he are explained in Section 3.5. To-

tally, the box parameter map B ∈ R
10×H

s
×

W
s has 10 chan-

nels with 2 × 4 vectors and 2 external size parameters. We

also use a smooth L1 loss to regress the box parameters at

the center point:

Lb =
1

N

N
∑

k=1

SmoothL1
(bk − b̂k), (5)

where b and b̂ are the predicted and ground-truth box pa-

rameters, respectively.

3.5. Orientation

In practice, we observe that the detection would fail in

situations where the objects nearly align with xy-axes (see

Fig. 4b). The reason would be that at the boundary of the

quadrant, the types of the vectors are difficult to be differen-

tiated. We term this problem as corner cases (see Fig. 1c).

To address this issue, in this work we group OBBs into two

categories and process them separately. In particular, the

two types of boxes are HBB and RBB, where RBB involves

all the rotation bounding boxes except the horizontal ones.

The benefit of such a classification strategy is that we trans-

form the corner cases into the horizontal ones, which can be

dealt with easily. When the network encounters the corner

cases, the orientation category and the external size (we and

he in Fig. 2) can help the network to capture the accurate

OBB. The additional external size parameters also enrich

the descriptions of an OBB.

We define the orientation map as α ∈ R
1×H

s
×

W
s . The

output map is finally processed by a sigmoid function. To

create the ground-truth of the orientation class α̂, we define:

α̂ =

{

1 (RBB) IOU(OBB, HBB) < 0.95

0 (HBB) otherwise,
(6)

where IOU is the intersection-over-union between the ori-

ented bounding box (OBB) and the horizontal bounding

box (HBB). The orientation class is trained with the binary

cross-entropy loss:

Lα = −
1

N

N
∑

i

(α̂i log(αi) + (1− α̂i) log(1− αi)), (7)

where α and α̂ are the predicted and the ground-truth orien-

tation classes, respectively.

4. Experiments

4.1. Datasets

We evaluate our method on two public aerial image

datasets: DOTA [22] and HRSC2016 [13].

DOTA. We use DOTA-v1.0 [22] dataset for the oriented

object detection. It contains 2,806 aerial images with a wide

variety of scales, orientations, and shapes of objects. These

images are collected from different sensors and platforms.

The image resolution ranges from 800×800 to 4000×4000.

The fully-annotated images contain 188,282 instances. The

DOTA-V1.0 has 15 categories: Plane, Baseball Diamond

(BD), Bridge, Ground Track Field (GTF), Small Vehicle

(SV), Large Vehicle (LV), Ship, Tennis Court (TC), Bas-

ketball Court (BC), Storage Tank (ST), Soccer-Ball Field

(SBF), Roundabout (RA), Harbor, Swimming Pool (SP)

and Helicopter (HC). The DOTA images involve the crowd

and small objects in a large image. For accurate detection,

we use the same algorithm as ROI Transformer [2] to crop

the original images into patches. In particular, the images

are cropped into 600×600 patches with a stride of 100. The

input images have two scales 0.5 and 1. The trainval set and

testing set contain 69,337 and 35,777 images after the crop-

ping, respectively. The trainval set refers to both training

and validation sets [2]. Following the previous works [1, 2],

we train the network on the trainval set and test on the test-

ing set. The detection results of cropped images are merged

as the final results. Non-maximum-suppression (NMS) with

a 0.1 IOU threshold is applied to the final detection results

to discard repetitive detection. The detection performance

on the testing set is evaluated through the online server.

HRSC2016. Ship detection in aerial images is important

for port management, cargo transportation, and maritime

rescue [24]. The HRSC2016 [13] is a ship dataset col-

lected from Google Earth, which contains 1,061 images

with ships in various appearances. The image sizes range

from 300 × 300 to 1500 × 900. The dataset has 436 train-

ing images, 181 validation images, and 444 testing images.

We train the network on the training set and use the valida-

tion set to stop the training when the loss on the validation

set no longer decreases. The detection performance of the

proposed method is reported on the testing set.

4.2. Implementation Details

We resize the input images to 608 × 608 in the training

and testing stage, giving an output resolution of 152× 152.

We implement our method with PyTorch. The backbone

weights are pre-trained on the ImageNet dataset. The other

weights are initialized under the default settings of PyTorch.

We adopt the standard data augmentations to the images in
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Method mAP Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC

YOLOv2 [18] 25.49 52.75 24.24 10.6 35.5 14.36 2.41 7.37 51.79 43.98 31.35 22.3 36.68 14.61 22.55 11.89

FR-O [22] 54.13 79.42 77.13 17.7 64.05 35.3 38.02 37.16 89.41 69.64 59.28 50.3 52.91 47.89 47.4 46.3

R-DFPN [24] 57.94 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88

R2CNN [7] 60.67 80.94 65.75 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22

Yang et al. [25] 62.29 81.25 71.41 36.53 67.44 61.16 50.91 56.60 90.67 68.09 72.39 55.06 55.60 62.44 53.35 51.47

ICN [1] 68.16 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23

ROI Trans. [2] 67.74 88.53 77.91 37.63 74.08 66.53 62.97 66.57 90.5 79.46 76.75 59.04 56.73 62.54 61.29 55.56

ROI Trans.+FPN [2] 69.56 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67

BBAVectors+r 71.61 88.54 76.72 49.67 65.22 75.58 80.28 87.18 90.62 84.94 84.89 47.17 60.59 65.31 63.91 53.52

BBAVectors+rh 72.32 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70

BBAVectors+rh∗ 75.36 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96

Table 1. Detection results on the testing set of DOTA-v1.0. The performances are evaluated through the online server. Symbol ∗ shows the

result with a larger training batch size (i.e., 48 on 4 Quadro RTX 6000 GPUs). Red and Blue colors label the best and second best detection

results in each column.

the training process, which involve random flipping and ran-

dom cropping within scale range [0.9, 1.1]. We use Adam

[8] with an initial learning rate of 1.25 × 10−4 to optimize

the total loss L = Lh + Lo + Lb + Lα. The network is

trained with a batch size of 20 on four NVIDIA GTX 1080

Ti GPUs. We train the network for about 40 epochs on the

DOTA dataset and 100 epochs on the HRSC2016 dataset.

We additionally report an experiment with a larger batch

size 48 on 4 NVIDIA Quadro RTX 6000 GPUs, we mark

the results with symbol ∗ in Table 1. The speed of the pro-

posed network is measured on a single NVIDIA TITAN X

GPU on the HRSC2016 dataset.

4.3. Testing Details

To extract the center points, we apply an NMS on the

output heatmaps through a 3×3 max-pooling layer. We pick

the top 500 center points from the heatmaps and take out the

offsets (o), box parameters (b), and orientation class (α) at

each center point (c). The heatmap value is used as the de-

tection confidence score. We first adjust the center points by

adding the offsets c̃ = c+ o. Next, we rescale the obtained

integer center points on the heatmaps by c̄ = sc̃, s = 4. We

obtain the RBB when α > 0.5, and we get the HBB oth-

erwise. We use the top-left (tl), top-right (tr), bottom-right

(br) and bottom-left (bl) points of the bounding box as the

final decoded points. Specifically, for a center point c̄, the

decoded RBB points are obtained from:

tl = (t + l) + c̄, tr = (t + r) + c̄

br = (b + r) + c̄, bl = (b + l) + c̄. (8)

For a HBB, the points are:

tl = (c̄x − we/2, c̄y − he/2), tr = (c̄x + we/2, c̄y − he/2)

br = (c̄x + we/2, c̄y + he/2), bl = (c̄x − we/2, c̄y + he/2).
(9)

We gather the RBBs and HBBs as the final detection results.

4.4. Comparison with the State­of­the­arts

We compare the performance of the proposed method

with the state-of-the-art algorithms on the DOTA and

HRSC2016 datasets. To study the impact of orienta-

tion classification, we define two versions of the the

proposed method: BBAVectors+r and BBAVectors+rh.

BBAVectors+r only learns the box boundary-aware vec-

tors to detect OBB, which contains box parameters b =
[t, r, b, l]. BBAVectors+rh additionally learns the orienta-

tion class α and the external size parameters (we and wh).

DOTA. The detection results on the DOTA dataset are

illustrated in Table 1. YOLOv2 [18] and FR-O [22] are

trained on HBB [22] and their performances are compa-

rably lower than the other methods. Notably, although

the one-stage detector YOLOv2 runs faster, its accuracy

is lower than the two-stage anchor-based detectors. R-

DFPN [24] learns the angle parameter from faster R-CNN

[19] and improves performance from 54.13% to 57.94%.

R2CNN [7] pools multiple sizes of region proposals at the

output of RPN and improves the accuracy from 57.94%

to 60.67%. Yang et al. [25] use the adaptive ROI align

to extract objects and achieve 1.62% improvement over

60.67%. ICN [1] adopts the Image Cascaded Network

to enrich features before R-DFPN and boost the perfor-

mance from 62.29% to 68.16%. ROI Transformer [2] trans-

fers the horizontal ROIs to oriented ROIs by learning the

spatial transformation, raising the accuracy from 68.16%

to 69.56%. Different from these methods, the proposed

method offers a new concept of oriented object detection,

a keypoint-based detection method with box boundary-

aware vectors. As shown in Table 1, Without orienta-

tion classification, the BBAVectors+r improves 2.05% over

69.59% of ROI Transformer+FPN [11] and 3.87% over

67.74% of ROI Transformer without FPN. As the pro-

posed method is single-stage, this result demonstrates the

detection advantages of the keypoint-based method over

the anchor-based method. With the orientation classifi-
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Figure 3. Visualization of the detection results of BBAVectors+rh on DOTA dataset.

cation and additional external OBB size parameters (we

and he), the proposed BBAVectors+rh achieves 72.32%

mAP, which exceeds ROI Transformer+FPN by 2.76%.

Besides, BBAVectors+rh runs faster than ROI Trans-

former (see Table 2). With a larger training batch size,

the BBAVectors+rh∗ achieves about 3 points higher than

BBAVectors+rh. The visualization of the detection results

of BBAVectors+rh on DOTA dataset is illustrated in Fig. 3.

The background in the aerial images is complicated and

the objects are arbitrarily oriented with different sizes and

scales. However, the proposed method is robust to capture

the objects even for the tiny and crowd small vehicles.

HRSC2016. The performance comparison results be-

tween the proposed method and the state-of-the-arts on

HRSC2016 dataset is illustrated in Table 2. The R2PN [28]
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Method Backbone Image Size GPU FPS AP

R2PN [28] VGG16 - - - 79.6

RRD [10] VGG16 384× 384 - - 84.3

ROI Trans. [2] ResNet101 512× 800 TITAN X 5.9 86.2

BBAVectors+r ResNet101 608× 608 TITAN X 12.88 88.2

BBAVectors+rh ResNet101 608× 608 TITAN X 11.69 88.6

Table 2. Detection results on the testing dataset of HRSC2016.

The speed of the proposed method is measured on a single

NVIDIA TITAN X GPU.

learns the rotated region proposals based on VGG16 back-

bone, achieving 79.6% AP. RRD [10] adopts activate rotat-

ing filters and improves the accuracy from 79.6% to 84.3%.

ROI Transformer [2] without FPN produces 86.2%, while

BBAVectors+r achieves 88.2%. BBAVectors+rh performs

slightly higher (0.4% over 88.2%) than BBAVectors+r. In

the inference stage, the proposed method achieves 12.88

FPS on a single NVIDIA TITAN X GPU, which is 2.18x

faster than ROI Transformer.

(a) Input Image (b) BBAVectors+r (c) BBAVectors+rh

Figure 4. Comparison of BBAVectors+r and BBAVectors+rh.

4.5. Ablation Studies

We compare the performances of the proposed

BBAVectors+r and BBAVectors+rh to study the impact

of orientation classification. As we mentioned before,

BBAVectors+r refers to box parameters b = [t, r, b, l].
BBAVectors+rh corresponds to b = [t, r, b, l, we, he, α].
BBAVectors+r has 274.01MB parameters with 25.82×109

FLOPs, while BBAVectors+rh has 276.28MB parameters

and 27.68× 109 FLOPs.

As can be seen in Fig. 4, the BBAVectors+r can hardly

capture the bounding boxes that nearly align with the xy-

axes. These are the corner cases as discussed above. The

reason for the failure detection would be that it is difficult

for the network to differentiate the type of vectors near the

quadrant boundary (i.e., classification boundary). To ad-

dress this problem, we separate the OBB into RBB and

Method Dataset Backbone mAP

Center+wh+θ HRSC2016 ResNet101 83.40

BBAVectors+r HRSC2016 ResNet101 88.22

Center+wh+θ DOTA ResNet101 68.87

BBAVectors+r DOTA ResNet101 71.61

Table 3. Comparison between baseline method Center+wh+θ and

the proposed method BAVectors+r.

HBB by learning an orientation class α and we use the ex-

ternal parameters (we and wh) to describe HBB. As illus-

trated in Fig. 4, the BBAVectors+rh excels in capturing the

oriented bounding box at the corner cases. On the DOTA

dataset (see Table 1), the BBAVectors+rh improves 0.71%

over BBAVectors+r. On the HRSC2016 dataset (see Ta-

ble 2), BBAVectors+rh achieves 0.4% improvement over

BBAVectors+r.

4.6. Comparison with Baseline

To explore the advantage of the box boundary-aware

vectors, we also compare our method with the baseline

Center+wh+θ (see Fig. 1a), which employs the width (w),

height (h) and angle (θ ∈ (−90◦,−0◦]) as the descriptions

of OBB. Note that the baseline method shares the same ar-

chitecture as the proposed method except for the output box

parameter and orientation map. The training procedure is

the same as the proposed method. Here we do not explicitly

handle the corner cases for a fair comparison. From Ta-

ble 3, we can see that the proposed method performs 4.82%

and 2.74% better than Center+wh+θ on HRSC2016 and

DOTA datasets, respectively. The results suggest that the

box boundary-aware vectors are better for oriented object

detection than learning the w, h, θ of OBB directly. The

reason would be that the box boundary-aware vectors are

learned in the same Cartesian coordinate systems, while

in the baseline method, the size parameters (w and h) of

an OBB are measured in different rotating coordinate sys-

tems that have an angle θ with respect to the y-axis. Jointly

learning those parameters would be difficult for the baseline

method.

5. Conclusion

In this paper, we propose a new oriented object detection

method based on box boundary-aware vectors and center

points detection. The proposed method is single-stage and

is free of anchor boxes. The proposed box boundary-aware

vectors perform better in capturing the oriented bound-

ing boxes than the baseline method that directly learns the

width, height, and angle of the oriented bounding box. The

results on the HRSC2016 and DOTA datasets demonstrate

the superiority of the proposed method over the state-of-the-

arts.
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