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Abstract

Despite significant progress, controlled generation of

complex images with interacting people remains difficult.

Existing layout generation methods fall short of synthesiz-

ing realistic person instances; while pose-guided genera-

tion approaches focus on a single person and assume simple

or known backgrounds. To tackle these limitations, we pro-

pose a new problem, Persons in Context Synthesis, which

aims to synthesize diverse person instance(s) in consistent

contexts, with user control over both. The context is spec-

ified by the bounding box object layout which lacks shape

information, while pose of the person(s) by keypoints which

are sparsely annotated. To handle the stark difference in in-

put structures, we proposed two separate neural branches to

attentively composite the respective (context/person) inputs

into shared “compositional structural space”, which en-

codes shape, location and appearance information for both

context and person structures in a disentangled manner.

This structural space is then decoded to the image space us-

ing multi-level feature modulation strategy, and learned in

a self supervised manner from image collections and their

corresponding inputs. Extensive experiments on two large-

scale datasets (COCO-Stuff [6] and Visual Genome [19])

demonstrate that our framework outperforms state-of-the-

art methods w.r.t. synthesis quality.

1. Introduction

Learning to synthesize complex scenes with multiple

persons and objects is one of the core problems in computer

vision. Such technology may fundamentally revolutionize

image search, as well as provide insights for visual infer-

ence problems. Many recent works tackle the problem us-

ing layouts, which is a powerful structured representations

for encoding the classes and locations of objects. For ex-

ample, [3, 17] use layout as an intermediate representation

between scene graphs and images. Alternatively, [29, 36]

directly take layout as input to generate images. While be-

ing able to generate limited objects with simple structures,

existing works fail to model ‘person’ faithfully, see Fig. 1-

left. This observation is also supported in [5], where GANs

fail to reconstruct the person of the original image. Presum-

ably the challenge is the diversity of human articulation and

appearance.

In separate research thread, [4, 10, 23, 28] focus on syn-

thesizing persons with pose as a powerful guidance. Most

of these works take raw image containing background as

input. They then manipulate the original person(s) in that

image towards provided pose(s). There are several draw-

backs for these methods: 1) they do not model the context

for corresponding person, thus either the background is sim-

ple or is provided as part of the input image. 2) they can

only model one person per image, lacking the interactions

between different person instances.

To overcome these limitations, we propose a new task

called Persons in Context Synthesis, which aims to syn-

thesize diverse person instance(s) in the specified layout

context (see Figure 1 for illustration). By specifying the

input layout and keypoints inside each person box, our ap-

proach is able to generate a high-resolution realistic image

that contains the desired context and compatible person in-

stance(s). In this manner, we jointly model the interactions

between and among persons and objects, within a unified

framework.

Several unique challenges arise with this new task. First,

layouts and keypoints are fundamentally different modali-

ties. Previous works only deal with single input modality.

Naive combination of these two research streams does not

yield satisfactory results. Second, the information conveyed

by layouts and keypoints is limited. Unlike semantic image

generation tasks that leverage masks, the input here contains

limited spatial information. The actual shape and appear-

ance of object(s) and person(s) should be determined by not

only the locations, labels and keypoints, but also their inter-

actions and compatibility in the scene. A good generative

model should take all of these factors into consideration.

In this work, we address the above challenges by

modeling layouts and keypoints using two separate neu-

ral branches, namely context and person branch respec-

tively, which attentively composite the respective inputs

into shared compositional structural space. This learned
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Figure 1: Generative Settings. An illustration of the difference between layout to image synthesis, pose guided synthesis

and person in context synthesis (proposed). First column illustrates an example from [29]; The second column illustrates

result from [26]. In third column and onward we illustrate our results.

structural space is beneficial for final synthesis in many as-

pects. First, the shape, location and appearance of each

person, or context object, is represented and encoded in a

disentangled manner. Second, the person and context struc-

tures are compatible with each other and can be compos-

ited in this mid-level space with simple linear summation.

Third, the compositional structural space can be learned in

a self supervised manner from image collections and cor-

responding inputs, with proposed multi-level feature mod-

ulation strategy and person-context discriminator. Finally,

it enables high-quality and high-resolution image synthesis,

and shows performance boost in FID on proposed ‘person

split’ test set.

Contributions. Our contributions are three-fold: 1) We

propose a new task called persons in context synthesis,

which takes both keypoints and layouts as input, and aims

to synthesize diverse person instances as well as vary-

ing contexts that are visually compatible with the synthe-

sized person(s). 2) To handle the stark difference in input

structures,we proposed two separate neural branches to at-

tentively composite the respective (context/person) inputs

into shared “compositional structuralspace”, which encodes

shape, location and appearance information for both con-

text and person structures in a disentangled manner. 3) We

performed extensive evaluations on two large-scale datasets

(COCO-Stuff [6] and Visual Genome [19]) to demonstrate

that our framework outperforms state-of-the-art methods in

synthesis quality and diversity.

2. Related Work

Conditional Image Generation. Conditional image gener-

ation approaches generate images conditioned on additional

input information, including semantic maps [16, 26, 31],

image captions [20, 33], sketches [7, 22] and input images

[21, 37, 38]. Generating images from layout is also a spe-

cific kind of conditional image generation task. Layout

is often used as an intermediate representation during the

generation process, e.g., when generating from text [20] or

scene graphs [17]. However, such approaches fail to gener-

ate images of high quality. In contrast, [17] generate images

from provided semantic map, achieving high quality results

at the expense of very laborious pixel-level user input. Dif-

ferent from these works, we try to generate images directly

from the given layout and keypoints, which is a novel and

fundamentally different paradigm for image generation.

Pose Guided Image Synthesis. Recently, several GAN-

based models [4, 10, 23, 28] have been proposed for pose

guided image synthesis. Most of these works take raw im-

age as input and generate images with different pose by bor-

rowing information from the raw input image. In contrast,

[24] use sampling, in the disentangled latent space, to gen-

erate person images. However, these approaches learn to

predict a person in a new pose on top of the specified train-

ing background or even require empty, white background.

Instead, our method models both complex background con-

text and persons jointly in a unified framework.

Feature Modulation Techniques. Conditional normaliza-

tion layers [15, 8] were first proposed in the task of style

transfer, and then applied to other kinds of tasks. Most

of these conditional normalization layers work by first nor-

malizing the layer activations into zero mean and unit vari-

ance. Then they are denormalized into different mean and

variance using learned affine transformaitons conditioned

on external data such as class labels. The earlier normal-

ization techniques produce uniform normalization param-

eters across spatial locations, washing away class infor-

mation across different spatial locations. For these rea-

sons we adopt the spatial adaptive normalization layer [26].

In our work, the normalization parameters are generated

from compositional structural canvas to provide guidance
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Figure 2: Overview of our framework. The input to our model (in training) is the ground truth image with its layout and

keypoints. High level feature maps are first extracted from ground truth using ResNet50. Then we use ROIAlign to crop

out feature maps for different instances including persons and objects. Style embedding for each object is generated using

VAE given the cropped feature map, then fed into person branch and context branch respectively. These two branches project

layout and keypoint annotations into shared compositional structural space conditioned on the style embeddings. Finally, we

perform multi-level feature modulation to decode this structural space to a final image.

towards final image synthesis. Thus we preserve the struc-

tural information during the generation process.

Attention Mechanisms. Attention was first proposed in

machine translation and then widely applied in various vi-

sion tasks such as classification [14, 30], image captioning

[2] and generative models [25, 34]. Most attention mecha-

nisms work by generating attention masks and then aggre-

gating features with these provided masks. The resulting

dynamic feature aggregation strategies enhance traditional

neural networks. In this work, we proposed instance-level

attention to better model the diverse shapes and varying ap-

pearances of different objects.

3. Our Approach

Our goal is to develop a model which takes as input the

context and person representations and synthesizes realis-

tic image correspondingly. The context is represented by

layout consisting of bounding boxes and their class labels

while person(s) are specified by keypoints in correspond-

ing bounding boxes. The primary challenges are as follows:

First, the layout as context representation is coarse and syn-

thesized images need to respect the location of bounding

boxes, class labels and style embeddings specified by the

input. Second, the synthesized person instances need to be

diverse and respect the pose(s). Finally, the synthesized im-

age of person in context need to be compatible and realistic

with natural interactions between and among person(s) and

object(s).

To address these challenges, we introduce two key com-

ponents in our framework, namely person branch and con-

text branch. These two branches are used to model two

different types of annotations separately and project them

into the same compositional structural space, which under-

goes multi-level feature modulation in decoding to obtain

a synthesized image. See Figure 2 for illustration. No-

tably, all components are differentiable and trained end-to-

end without any extra supervision needed, except for the

ground truth images with aforementioned annotations. We

will introduce components in detail in following sections.

3.1. The Construction of Compositional Structural
Space

Person in Context Layout. The input to our model

is person in context layout. It consists of two parts,

namely context layout and multiple poses. During train-

ing, ground truth image is also needed. Specifically, given

a set of object categories C, a person in context lay-

out L is a tuple (O,B,K) where O = {c1, . . . , cn} is

a set of objects with class types ci ∈ C, and B =
{b1, . . . ,bn} is a set of coordinates, bi ∈ R

4, of the

form (x1, y1, x2, y2), where (x1, y1), (x2, y2) is the up-

per left corner and lower right corner of the correspond-

ing bounding boxes respectively. Bounding boxes are di-

vided into two types, where Bo = {bo1, . . . ,bono
} do not

contain person and Bp = {bp1, . . . ,bpnp
} contain per-

son; no + np = n and B = {Bo, Bp}. For each bpi we

have corresponding keypoints K = {k1, . . . ,knp
}, where

ki = {(x̂1, ŷ1), (x̂2, ŷ2), ..., (x̂m, ŷm)} ∈ R
2m.

Object Embeddings from RoIAlign. Given the

ground truth image, we first extract feature map using

ResNet50 [12]. Then object embeddings corresponding to

all bounding boxes, including person and context objects,

are cropped using ROIAlign [11] from the extracted feature

map. The object embeddings oi ∈ R
512 are used to model

and control appearance (color/texture) of different objects.

Diverse Style Embeddings. The extracted object embed-

dings, by default, do not follow any distribution that can be

easily sampled at test time. To be able to sample diverse im-

ages with different styles of objects, we introduced a VAE
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Figure 3: Illustration of person branch. The inputs to

person branch are instance-level keypoints, style embed-

dings and cropped context structure. These inputs are con-

verted into instance-level person structure. All instance-

level structures are put into locations specified by bounding

boxes using differentiable bilinear warpping.

[18] which takes extracted object embeddings oi as input

and generate corresponding style embeddings eoi by sam-

pling from the posterior Q(·|oi). At test time we sample

from Gaussian prior instead to get diverse appearances for

both persons and objects. KL loss is introduced to regular-

ize the network:

LKL = E[DKL(Q(·|oi)‖N (0, I))]. (1)

Location Retargeting by Bilinear Warping. To put dif-

ferent instance-level structures into locations specified by

bounding boxes B in a fully differentiable manner, we used

differentiable bilinear warpping. This module is shared by

person branch and context branch. Given an instance-level

structure fi with shape D × Sf × Sf and the location spec-

ified by bi = {xi
1, y

i
1, x

i
2, y

i
2}, the warped output Fi is of

size D×SF ×SF (note Sf < SF ). At each spatial location

Fi(x, y), the output feature vector is calculated as

Fi(x, y) =
∑

(x′,y′)∈Ni(x,y)

(1− |αi
xx+ βi

x − x′|)

(1− |αi
yy + βi

y − y′|)fi(x
′, y′)

(2)

where αi
xx + βi

x ∈ (0, Sf ), α
i
yy + βi

y ∈ (0, Sf ) and αi
x =

Sf

xi
2
−xi

1

, βi
x =

Sfx
i
1

xi
1
−xi

2

, αi
y =

Sf

yi
2
−yi

1

, βi
y =

Sfy
i
1

yi
1
−yi

2

. Ni(x, y)

denotes the four neighbors of (αi
xx + βi

x, α
i
yy + βi

y) in fi.

For other locations of (x, y) we simply pad with zeros.

After bilinear warping of M instance-level structures,

we get a tensor F of shape M × D × SF × SF . Then

we sum along the first dimension to compose these fea-

tures together, resulting in the structural space of shape

D × SF × SF .

Context Branch. The inputs to context branch are style

embeddings eoi with corresponding label embeddings eci

for each bounding box boi that do not contain person.

As is shown in Figure 4, instead of filling each bound-

ing boxes with [eoi, eci], we first generate an instance-

level sparse attention mask for each context object mi =
max(0, Gm(eci)) using a mask generator Gm. Given M =

no objects, the attention masks Ma = {m1, . . . ,mno
}

are of shape M × Sf × Sf where Sf is spatial size of

each mask. Then we fill them with embeddings E =
{[eo1, ec1], . . . , [eono

, ecno
]} of shape M × D by cross

product and the outputs are M = no instance-level struc-

tures each of shape D × Sf × Sf . Then we use bilinear

warping module to put them into correct locations and the

output forms context structural space, which is of shape

D × SF × SF .

Person Branch. Given M = np (with slight abuse of no-

tation) bounding boxes of person Bp = {bp1, . . . ,bpnp
}

with corresponding keypoints K = {k1, . . . ,knp
} inside

each box, our goal is to construct person structural space

from these inputs similar to that in context branch. To

achieve this goal, we first convert the keypoints K into pose

heatmaps H = {h1, . . . ,hnp
} with size M × Sf × Sf .

The keypoint at each location goes through Gaussian fil-

ter with small sigma. To make persons compatible with

given context, we also crop out context structures at loca-

tions Bp for different persons. Shown in Figure 4, given

pose heatmaps, cropped context structures and style embed-

dings for each person, we concatenate them together and

introduce a neural person structure generator to get con-

verted person representation Cp of shape M×D×Sf ×Sf

and sparse attention masks for every person as Mp of

shape M × 1 × Sf × Sf . Instance-level person structure

is constructed as C ′

p = Cp × Mp. Given C ′

p of shape

M × D × Sf × Sf and bounding boxes Bp, we use the

same bilinear warping module to put them into correct lo-

cations, and the constructed person structural space is of

shape D × SF × SF .

The person and context structural spaces from two

branches are merged into compositional structural space

with simple linear summation.

3.2. Image Synthesis from Compositional Struc­
tural Space

Multi-Level Feature Modulation. We get compositional

structural space Is from two neural branches. Then we

perform multi-level feature modulation to convert the struc-

tural space into image space. Specifically, given Is of shape

D×So×So, we downsample it into multiple different scales

{IS1

s , . . . , ISn
s }. At each scale Si the output from previous

module first goes through BatchNorm to obtain output Fi.

Then we denormalize Fi:

F
′

i = γi(I
Si
s ) ∗ Fi + µi(I

Si
s ) (3)

using two convolutional layers γi and µi which takes Si as

input. Then the denormalized output is fed into next Resid-

ual block as input. Thus the final image is synthesized as

I
′ = Gimg(Is).

Person-Context Discriminators. The realistic output

images are generated by jointly training the two neural
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Figure 4: Illustration of context branch. The input to con-

text branch are label and style embeddings for different in-

stances. Then instance-level sparse attention mask is gen-

erated and filled with corresponding embeddings, named as

instance-level context structure.

branches and feature modulation parameters against two

discriminators Dcxt and Dperson. Dcxt operates on the

whole image while Dperson operates on cropped person

image patches to provide more training signal for person

branch. We used the same patch-based discriminator as

pix2pixHD[31] at three different scales. The adversarial

loss LGAN for two discriminators are both calculated as

LGAN = E‘I∼preal
logD(I) + EI′∼pfake

log[1−D(I′)] (4)

3.3. Learning

Training Objectives. We jointly train the two branches,

feature modulation parameters Gimg and the discriminators

Dcxt, Dperson. The generation network is trained to mini-

mize the weighted sum of following losses:

1. Feature matching loss: Lfeat = ‖F (I′) − F (I)‖ pe-

nalizing the L1 difference between feature vectors of

generated images and real images. The features are

extracted from discriminator and VGG network.

2. KL divergence loss: LKL penalizing the KL diver-

gence of posterior distribution Q(·|oi) obtained from

object embedding network and the normal distribution

N (0, I) prior.

3. Image adversarial loss: LGAN from discriminator en-

couraging the generated image patches to appear real-

istic. We use a hinge loss, which is a variant of GAN

loss.

4. Attention TV loss: Lattn =
∑

i ‖∇Φxi‖2 + ‖∇Φyi‖2

on instance level sparse attention mi both for per-

son and context to regularize the attention mask to be

smooth with fewer holes.

Implementation Details. We train all models using Adam

with learning rate 2× 10−4 for 100 epochs both on COCO

and Visual Genome dataset. We use batch size 8 for each

GPU at 256 resolution and 32 at 128 resolution. We use 4

Tesla P100 in parallel and the model converges in 5 days at

256 and 1 day at 128 resolution. We use LeakyReLU for

both generator and discriminator.

4. Experiments

We evaluated our model at two different resolutions on

Visual Genome and COCO-Stuff datasets. In our experi-

ments we aim to show that our method generates images of

complex layouts which respect the input bounding boxes,

class labels and keypoints. As there’s no existing methods

that specifies both layouts and keypoints as input, we divide

our comparison into two sections. In the first section we

compare with all standard baselines. In the second section

we compare with state-of-the-art variants and ablations that

specify both layout and person annotation as input for a de-

tailed analysis. We will release the code upon acceptance.

4.1. Benchmark Results

Datasets. We perform experiments on the 2017 COCO-

Stuff [6] dataset, which augments a subset of the COCO

dataset with additional stuff categories. The dataset anno-

tates 40K train and 5K validation images with bounding

boxes for 182 categories in total.

We set the maximum number of bounding boxes to ap-

pear in one image as 12. In practice, we sort the bounding

boxes in a descending order of area and keep the top 12

bounding boxes with largest area, removing the rest. We

also remove images with objects covering less than 70% of

the area, and those without any bounding boxes contain-

ing keypoints, leaving around 55K images for training. For

COCO, Nmax = 12. To evaluate the performance of all

models under person-in-context setting, we remove images

in the validation/test set that do not contain any person. We

name it as “person split” for COCO which gives us around

1K images. We will release the corresponding splits.

We also used Visual Genome [19] version 1.4 which

comprises around 110K images annotated with bounding

boxes. We divide the data into 80% train, 10% val and 10%
test using same splits as [17]. Also we use the same label

set as [17], except that we use one label ‘person’ for all in-

stances of ‘woman’, ‘man’, etc. We remove small bounding

boxes and images with little object coverage following the

same procedure as for COCO. Finally, we use AlphaPose

[9, 32] to detect keypoints automatically in all images. The

original split gives us around 60K images for training and

5K for testing. And similarly, we evaluate on the “person

split” of Visual Genome which contains around 2K images.

Standard Comparison Methods. We compare our ap-

proach with several existing state-of-the-art image synthesis

methods. Scene Generation(SG) [3] generate images from

scene graphs. For fair comparison, we use ground truth lay-

out for them to generate images. The [3] requires mask an-

notation so only results on COCO-Stuff are available for

this method. LostGAN [29] generate images directly from

given layout. As different methods work under different

resolutions, we report results for two different resolutions

at 128×128 and 256×256. Sg2im[17] and Layout2Im[36]

only works under 64× 64 resolution so we did not compare

with those quantitatively.

Evaluation Metrics. We adopt multiple evaluation metrics

for evaluating the generated images. Frechet Inception Dis-
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Figure 5: Examples of generated images from complex layouts. Results on COCO-Stuff and Visual Genome obtained by

our method and the baselines. For each example we show input layout with keypoints, ground truth, 64 × 64 images generated

by Layout2im [36], 128 × 128 images generated by LostGAN [29] and 256 × 256 images by Scene Generation [3] and our

method. Note that [3] only have results on COCO-Stuff.

Table 1: A quantitative comparison using various image generation scores on person split of COCO-Stuff and Visual Genome

dataset.

Datasets COCO-Stuff Visual Genome Param Num

Resolution Method IS FID Acc DS Inception FID Acc DS G D

128x128

Real Im 17.30±0.14 0.00 58.51 - 17.41±0.16 0.00 63.24 - - -

SG[3] 9.17±0.66 85.83 39.92 0.35±0.08 - - - - 183.07 1.50

LostGAN[29] 9.35±0.52 78.20 41.10 0.40±0.09 8.26±0.35 62.10 40.94 0.43±0.09 36.30 57.88

Ours 8.95±0.15 77.80 50.17 0.33±0.12 7.68±0.46 58.74 57.49 0.32±0.09 22.70 4.40

256x256

Real Im 20.22±0.77 0.00 61.77 - 22.63±0.23 0.00 65.82 - - -

SG[3] 10.33±0.43 103.80 37.84 0.48±0.09 - - - - 183.07 1.50

Ours 10.92±0.41 76.10 51.08 0.38±0.09 10.61±0.43 60.86 58.88 0.36±0.10 35.10 4.40

tance (FID) [13] is employed to measure the distribution

distance between generated images and real images. The

lower the better. Diversity Score(DS) [35] is used to mea-

sure the distance between pairs of images generated given

same input. It is based on the perceptual similarity between

two images. The higher the better. Inception Score (IS) [27]

is also used to evaluate the quality of generated images. It

uses an ImageNet classification model to encourage recog-

nizable objects within images and diversity across images.

Classification Accuracy (Acc) is used to evaluate whether

the generated objects are recognizable. The higher the bet-

ter. We trained a ResNet50 classifier on real images with

two different scales to serve as an oracle.

Qualitative Results. Figure 5 shows generated images us-

ing our method as well as the baselines. As can be seen

we can generate complex images with multiple objects at

high resolution and with realistic details. For example, in

column two our method generates three persons with di-

verse textures, and different parts of the person are recog-

nizable, such as heads, hands, legs and shoes. The other
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Figure 6: Examples of generated images from different style embeddings and the corresponding visualized structural space.

The first three columns are ground truth layouts, keypoints and images. The next three columns are synthesized images at

256 resolution from different style embeddings(two randomly sampled and one extracted from ground truth images). The

last three columns are visualized context, person and compositional structural space respectively.

methods failed to produce recognizable person appearances.

These examples also show that our method generates im-

ages which respect the location constraint, class constraint

and keypoints constraint. This is due to the superiority

of our combination of compositional structural space and

feature modulation techniques, which projects annotations

with different modalities into shared structural space such

that they are compatible during generation process.

Diverse Sampling from Style Embeddings. In Figure 6

we demonstrate our method’s ability to generate a diverse

set of images given the same layout, by sampling from dif-

ferent style codes which follow Gaussian prior. Since we

used VAE to construct the latent space of style codes, we

can easily manipulate the style of different objects by pro-

viding different style codes. For example, in column “Sam-

ple 1” and “Sample 2”, the sampled style embeddings from

Gaussian prior are completely different from each other.

And the “Sample with GT Embedding” column use embed-

dings extracted from ground truth images, resulting in out-

put images that possess similar appearances as ground truth

while maintaining same structures. This disentanglement is

enabled by compositional structural space.

Quantitative Results. Table 1 compares our method with

other baselines and the real test images using person splits

on COCO-Stuff and Visual Genome. Our method outper-

forms other method in terms of FID and Classification Ac-

curacy. We noticed that LostGAN achieved comparable

performance as our model, and even better in terms of In-

ception Score. This is due to their discriminator which has

an order of magnitude higher number of parameters. As

is shown in Table 1, their discriminator has 57.88 millon

parameters, which does not scale up to higher resolutions.

Instead, SG and our work borrow discriminator from patch-

GAN which requires significantly less parameters (1.5 and

4.4 million respectively). As a result, our method is more

stable during training, requires less computational cost and

scales to higher resolutions. With the same patchGAN

based discriminator, our method beats SG by a large mar-

gin. Our diversity score is not as good as some of the other

baselines. This is because our method respects the input

specified by compositional structural space, and the diver-

sity sampling will only change the texture of generated im-

ages instead of the structure as is shown in Figure 6.

4.2. Comparison with State­of­the­Art Variants and
Ablations

State-of-the-Art Variants. There is no existing method

that addresses the problem of person in context synthesis,

which specifies both layout and keypoint as input. Thus

we proposed several variants, which require both layout

annotations and person annotations such as keypoints or

densepose masks[1]. Two variants([26]+[29],[26]+[3]) are

proposed based on existing state-of-the-art. GauGAN [26]

specifies one pose heatmap as input and synthesizes one sin-

gle person each time. We trained it from scratch for key-

point guided pose synthesis. Then we combine results with

[29] and [3], respectively, by blending the synthesized per-

son image patches with synthesized images from layout at
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Table 2: Qualitative results on proposed person split and person crop dataset. 1 only use layout as input. 2 use both layout

and keypoint. 3 use both layout and densepose mask.

Method [29]1 [3]1 [29]+[26]2 [3]+[26]2 psp→kp2 psp→dp3 w/o ia 2 ours2 ground truth

Person Split
FID↓ 78.20 85.83 98.07 100.27 99.75 100.43 94.74 77.80 0

IS↑ 9.35±0.52 7.39±0.27 7.08±0.37 6.03±0.34 6.52±0.34 7.53±0.51 7.50±0.04 8.95±0.15 17.00±0.28

Person Crop
FID↓ 80.60 81.44 86.84 86.84 77.74 75.26 77.57 52.81 0

IS↑ 5.82±0.19 5.99±0.10 4.09±0.06 4.09±0.06 6.01±0.13 5.77±0.03 5.92±0.05 6.19±0.25 7.92±0.35

corresponding person box locations using Poisson blending.

We also demonstrate that a naive combination of con-

text and pose annotations does not succeed, neither for

sparse keypoints nor dense segmentation masks, by pro-

viding three ablations that take both of these annotations.

“psp→kp” replaces person structural space with keypoints,

which is concatenated directly on top of context struc-

tural space. Similarly, “psp→dp” replaces person structural

space with densepose masks, which is a series of 2d seg-

mentation masks that annotates the shape of different body

parts. Densepose masks are available on COCO dataset.

Note that these masks are more powerful and expensive an-

notations as compared with 2d keypoints used by us. “w/o

ia” removes the instance-level sparse attention during con-

struction process of compositional structural space.

Person Crop Datasets. To evaluate the synthesize qual-

ity of person images, we construct another dataset named

‘person crop’. It is constructed from COCO images and

each person crop is resized into 64×64 patch. The training

and testing split for person crop is same as COCO. We use

the training split for GauGAN to learn from scratch, and the

testing split to evaluate different methods. To compare with,

we crop out persons from generated images at 128 resolu-

tion and resize them into 64 × 64 patches. Results are in

Table 2.

Effectiveness of Compositional Structural Space. As is

shown in Table 2, where our method achieves the lowest

FID on both ‘person split’ and ‘person crop’. If we look

at the performance difference between [29] and [29]+[26],

or [3] and [3]+[26], there is a performance drop with [26]

added. This leads to the conclusion that modeling layouts

and keypoints separately in image space will decrease the

performance after blending. By projecting them into the

same compositional structural space, we get more coherent

and compatible results when it is decoded into an image.

Effectiveness of Person Structural Space. We observe

that in Table 2, our method achieves the lowest FID and

Table 3: User Study Results on COCO-Stuff Dataset at

128×128 resolution.

Method
Global

Coherence

Visual Quality

of Persons

LostGAN [29] 35% 15%

Scene Generation [3] 20% 10%

Ours 45% 75%

highest IS score compared with these ablations. This val-

idates the conclusion that stronger annotations (such as

densepose mask) does not necessarily produce higher qual-

ity results. Person keypoint annotations lie in a different

structural spaces from context. Naive concatenation of key-

points on top of context structural space leads to perfor-

mance drop.

We visualized person structural spaces with heatmaps

using L1 norm of corresponding feature vectors in Figure 6.

The visualized person features are dense around relevant

body parts, highly activated around head (shown in red) and

joints (shown in green) and not activated in irrelevant re-

gions. This learned representation has richer structures than

raw annotations such as keypoints or densepose masks, and

are more compatible with context representations.

Effectiveness of Instance Level Sparse Attention. As is

shown in Figure 6, each instance structure (context and per-

son), is zero at irrelevant regions. As shown in Table 2,

the removal of this sparse attention mask will lead to per-

formance drop, because: 1) different bounding boxes can

affect each other in overlapping areas and 2) the shape of

the instances is less accurate.

User Study. We perform a user study to compare with other

baselines. 20 volunteers were involved. Each volunteer was

shown the synthesized images from COCO-Stuff dataset at

256 resolution and was asked to select the preferable im-

ages in terms of the global coherence of both context and

persons, and the visual quality of persons respectively. The

results reported in Table 3 show that our method signifi-

cantly outperforms other methods, especially in terms of

visual quality of synthesized persons.

5. Conclusion

We proposed a novel problem called Persons in Con-

text Synthesis, which aims to synthesize 1) diverse person

instances, as well as 2) varying contexts that are visually

compatible with the synthesized persons. The context is

specified by bounding box object layout, while pose of the

person(s) by keypoints. This difference in input modalities

motivate the use of separate neural branches that attentively

project the respective (context/person) inputs into “compo-

sitional structural space”, where person and context repre-

sentations are compatible with each other. Extensive exper-

iments on two large-scale datasets (COCO-Stuff and Visual

Genome) demonstrate that our approach outperforms state-

of-the-art in synthesis quality and diversity.
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