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Abstract

Existing methods for object detection in UAV images ig-

nored an important challenge – imbalanced class distribu-

tion in UAV images – which leads to poor performance on

tail classes. We systematically investigate existing solutions

to long-tail problems and unveil that re-balancing methods

that are effective on natural image datasets cannot be triv-

ially applied to UAV datasets. To this end, we rethink long-

tailed object detection in UAV images and propose the Dual

Sampler and Head detection Network (DSHNet), which is

the first work that aims to resolve long-tail distribution in

UAV images. The key components in DSHNet include Class-

Biased Samplers (CBS) and Bilateral Box Heads (BBH),

which are developed to cope with tail classes and head

classes in a dual-path manner. Without bells and whis-

tles, DSHNet significantly boosts the performance of tail

classes on different detection frameworks. Moreover, DSH-

Net significantly outperforms base detectors and generic

approaches for long-tail problems on VisDrone and UAVDT

datasets. It achieves new state-of-the-art performance when

combining with image cropping methods. Code is available

at https://github.com/we1pingyu/DSHNet

1. Introduction

With the advance of unmanned aerial vehicles (UAVs),

collecting high-quality images from the air has become con-

venient. Object detection plays a crucial role in many UAV

applications, being a theme common to security and surveil-

lance, infrastructure inspection and emergency response,

among others. Although state-of-the-art deep learning-

based object detectors (e.g., Faster R-CNN [27], Cascade

R-CNN [3] and RetinaNet [20]) can be directly applied to

UAV datasets (e.g., VisDrone [35] and UAVDT [9]), previ-

ous studies [17, 31, 15] reveal that these detectors do not

perform well on drone-captured scenes due to two main

challenges: (1) targets appear very small in high-resolution
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Figure 1. UAV datasets (e.g., VisDrone [35] and UAVDT [9]) man-

ifest the long-tail distribution phenomenon. The green boxes in

these images denote the head-class objects and the red boxes de-

note the tail-class objects. The patches in the middle are generated

by the DMNet [17] cropping method. It can be observed that class

imbalance exists in both original images and cropped patches. In

other words, cropping methods only solve the problem of spatial

nonuniform distribution of targets, but does not take into account

the issue of class imbalance.

UAV images; (2) targets have a nonuniform spatial distribu-

tion in images. To address these challenges, a great amount

of effort has been witnessed on augmenting the input im-

ages, such as developing effective image cropping strate-

gies [17, 31, 15, 25]. For example, DMNet [17] generates a

density map for each image and utilizes it to crop the origi-

nal image to patches based on the object density. The goal

is to make objects evenly distributed in each cropped patch.

The detection results are fused from the global image and

cropped patches in the test phase.

Although cropping methods alleviate the issue caused by

uneven spatial distribution of the targets, they overlook an-

other critical problem of UAV images: object sample imbal-

ance among categories. As shown in Table 1, a few classes
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ped person bicycle car van truck tricycle awn. bus motor

Number of targets 79337 27059 10480 144867 24956 12875 4812 3246 5926 29647

Proportion (%) 23.1 7.9 3.1 42.2 7.2 3.8 1.4 0.9 0.7 8.6

FRCNN (average precision) 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7

Table 1. Imbalanced distributions of objects/targets in VisDrone [35] training set. Objects marked in red color belong to the tail classes

while those in blue belong to the head classes. Note: ped (pedestrian) and person are semantically the same, therefore we put person in

head classes as ped. In this table, we also show the average precision of each individual class based on Faster R-CNN [27] (FRCNN for

short). It is evident that there is a big performance gap between head classes and tail classes (e.g., car vs. awn. = 51.7 vs. 7.7).

in VisDrone [35] such as car, ped. and person account for

more than 70% of all the targets (these classes are known as

head classes), while other classes such as tricycle and awn.

have only a small number of samples (i.e., tail classes). This

is referred to as the long-tail distribution. Based on the de-

tection results of Faster R-CNN [27] in Table 1, we can eas-

ily notice the performance gap between head classes and

tail classes (e.g., car vs. awn. = 51.7 vs. 7.7 in terms of

average precision). Fig. 1 presents a few concrete examples

to reveal the imbalanced class distribution in UAV images.

The head-class objects (denoted by green boxes) dominate

the scene. Even with the state-of-the-art cropping approach

(DMNet [17]), the resulting patches still exhibit imbalanced

class distribution.

Tackling the long-tail distribution problem is important

and has been a hot research topic in general object detec-

tion. One common approach is to repeatedly sample targets

of tail classes [12] or discard some targets of head classes

on purpose [8]. However, these straightforward methods

suffer distortion of the original distribution which impairs

the representation learning [34, 32]. Therefore another line

of research [34, 32] aims to balance the class distribution by

using different input distributions for training representation

and classifier respectively in two phases (in the context of

object detection, representation refers to feature extraction

network and classifier refers to box head). These methods

effectively reduce the performance drop caused by long-tail

distribution on natural scene datasets (e.g., LVIS [11]).

However, there are unique challenges that make the long-

tail problem more difficult on UAV datasets than on general

object detection datasets. Several state-of-the-art methods

for long-tail visual recognition [28, 32] sample a balanced

set of targets in a batch based on the assumption that they

can use a relatively large batch-size. However, this assump-

tion may not be warranted on UAV datasets because the im-

ages are high-resolution (e.g., VisDrone dataset has many

images over the size of 2000×1500). Due to the memory

constraint, the typical batch-size is set to 1 or 2 for model

training on these UAV datasets. Moreover, there are often

hundreds of targets from head classes in one image (see the

UAV images in Fig. 1). As a result, image-level repeat sam-

pling [28] is not an effective solution on UAV datasets.

In light of these challenges, we propose a novel Dual

Sampler and Head Network (DSHNet) to address long-tail

distribution in UAV datasets for object detection. DSH-

Net consists of two key components including Class-Biased

Samplers (CBS) and Bilateral Box Heads (BBH). Differ-

ent from image-level re-sampling, CBS use the biased-

sampling strategy to sample tail-class and head-class pro-

posals separately with two samplers instead of a (default)

single sampler in existing object detectors. BBH then sep-

arate the sampled tail-class and head-class proposals and

process them with two box heads in the training phase to

compute their losses respectively. In the test phase, each

head of BBH only predicts results of the corresponding (tail

or head) classes.

Our main contributions can be summarized as follows:

• We unveil the long-tail distribution problem in UAV im-

ages, which greatly hinders the performance of object de-

tection. Previous works [31, 17, 33] mainly focus on re-

solving the nonuniform spatial distribution by cropping

the original images into small patches. However, the

cropped images still exhibit long-tail distribution.

• We analyze the unique challenges of object detection in

UAV images and uncover that the solutions to long-tail

distribution in natural images are not trivially applicable

to UAV images. In light of this, we propose a novel Dual

Sampler and Head Network (DSHNet) to handle head

classes and tail classes separately.

• DSHNet substantially outperforms the baseline models

and generic long-tail solutions on various object detectors

and network backbones. When coupled with image crop-

ping methods (e.g., DMNet [17]), DSHNet further im-

proves the detection performance, resulting in new state-

of-the-art results on VisDrone and UAVDT benchmarks.

2. Related work

General object detection. Deep learning-based object de-

tection frameworks are divided into anchor-free and anchor-

based ones. Anchor-free approaches [10, 16] focus on

detecting objects by locating and regressing key points.

Anchor-based methods can be further grouped into two-

stage [27, 3, 13, 7] and one-stage [20, 22, 26] detectors.

The two-stage methods separate the training phase of de-

tection into two steps: (1) using feature extraction network

and anchor generator to produce candidate regions (i.e., re-
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gion proposals); (2) utilizing box regression head to refine

the results of step (1) and compute the loss. After the first

step, the network usually adopts a sampler to sample some

objects instead of training all of them to keep a balance

between background and foreground proposals and to re-

duce computation. In one-stage methods, detectors directly

regress the location and bounding box from anchors without

candidate regions.

Object detection in UAV images. Compared with natu-

ral images, object detection in UAV images is more chal-

lenging. The performance of the generic object detectors

is degenerated due to the spatial nonuniform distribution of

targets and small target size. To tackle this issue, many ap-

proaches [17, 31, 15, 25] generate a set of sub-images based

on cropping methods. The general process of cropping-

based methods is first using a proposal sub-net to analyze

spatial information of objects and crop an image into small

patches, and then training existing detection models with

these patches. In the test phase, the final detection is ob-

tained by fusing the detection results of local patches and

global images with certain rules (e.g., non-maximum sup-

pression (NMS)).

Another fundamental challenge lies in the imbalanced

class distribution in UAV datasets, which leads to poor per-

formance on tail classes as shown in Table 1. Only a few

works [5, 33] have touched upon this problem, yet they

didn’t address it from the perspective of solving long-tail

distribution. For example, Zhang et al. [33] simply separate

all the classes into two sub-categories and train two net-

works individually, which harms the generalization of rep-

resentation and classifier due to discarding too many sam-

ples in training each network.

Long-tail object detection. Most methods for long-tail ob-

ject detection [28, 18, 29] come from long-tail classifica-

tion [32, 23, 34], because the idea of dealing with the im-

balanced class distribution is consistent. The following two

approaches are considered to be the most effective ones:

• Re-sampling [1, 2]: The main idea of re-sampling is

to over-sample tail classes or under-sample head classes

to balance the data distribution, thereby improving the

chance of tail classes being trained. But sometimes, with

re-sampling, duplicated samples of tail classes might lead

to over-fitting, while discarding samples of head classes

would impair the generalization ability of network.

• Re-weighting [6]: Re-weighting methods assign large

weights for training samples of tail classes or hard in-

stances in loss functions. However, re-weighting is not

able to handle large-scale datasets since it can cause op-

timization difficulty [24], leading to poor performance.

Beyond these methods, the authors of [32, 34] have

shown that re-balanced input distribution improves clas-

sifier learning but harms feature learning. Therefore,

many methods [34, 32, 28] adopt the two-phase training

paradigm: first train on the original data distribution nor-

mally; then fine-tune the classifier on a balanced data dis-

tribution with fixed representation. The current solutions to

long-tail distribution are generally based on this paradigm.

But if we simply regard the long-tail issue in detection

as the one in classification, then at least, we need to assume

that in each batch, the numbers of targets of different classes

are roughly the same in each image. Unfortunately, this

assumption is difficult to hold for object detection on UAV

datasets since there is a huge gap in the numbers of targets

of different classes as demonstrated in Fig. 1.

3. Methodology

3.1. Long­tailed object detection in UAV images

We observe that existing re-sampling approaches for

long-tailed object detection are based on the input of the

model, namely image-level. To avoid over-fitting, [34, 28,

32] propose to create a balanced input batch instead of sim-

ply repeating tail-class sampling or discarding head-class

samples in each training iteration. These methods seem to

alleviate the long-tail issue in general object detection, but

their effectiveness depends on two requirements: (1) these

methods require a relatively large batch-size so that there

are enough targets of different categories to keep a balanced

input batch; (2) they assume that each image contains a

similar number of targets of different categories, otherwise

the methods will degenerate to the simple repeat sampling

or under-sampling which results in over-fitting or wasting

training data. However, these two requirements are hard to

meet in UAV object detection.

To be more specific, SimCal [28], a representative re-

sampling approach, proposes to sample around 20% classes

in each batch (i.e., 16 out of 80 classes for MS COCO [21]),

so the batch-size is 16 where one image for each class.

However, UAV images are usually in high resolution (e.g.,

a common resolution of 2000×1500 for the VisDrone

dataset). Therefore, only 1 or 2 images can be fit into one

batch. Considering that the loss is computed by averag-

ing over all sampled classes in each batch, a relatively large

number of classes should be included in each batch. Even

if the first requirement can be met by sufficient comput-

ing resources, the second requirement cannot hold in most

UAV images. The long-tail issue in UAV images does not

only occur among images (i.e., inter-image) but also within

images (i.e., intra-image), because there are frequently too

many objects belonging to the head classes in one image

(see Fig. 1 for an example). It is not because there are more

head-class images than tail-class images as in general object

detection scenarios. In this case, even if these methods have

a balanced class distribution in terms of images, the objects

of different classes are still highly imbalanced.

The Multi-Model Fusion (MMF) method in [33] is a spe-
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Figure 2. The proposed DSHNet pipeline based on Faster R-CNN. RPN denotes region proposal network. CBS(*) denote tail(T)-biased

and head(H)-biased samplers, and BBH(*) represent their corresponding box heads. The part after BBH shows that each box in BBH

computes loss of all classes in the training phase, while only gives results of the corresponding (tail or head) classes in the inference phase.

cific solution to imbalanced class distribution in UAV im-

ages. It separates all the classes into two groups by the

amount of targets in the dataset. Then two detectors are

trained for the two groups of classes separately. In the test

phase, MMF fuses the results from two detectors. MMF

discards a lot of useful data in training each model, which

impairs the model representation capability. For example,

when the first model learns information about car, because

the corresponding ground truth does not include van, the

representation cannot learn the difference between the two

classes well. So the performance only improves slightly

over the base model (see Table 2).

3.2. Overview of DSHNet

The proposed DSHNet is a plug-and-play method for all

anchor-based one-stage or two-stage detectors. It has two

key components: Class-Biased Samplers (CBS) and Bi-

lateral Box Heads (BBH). The overall pipeline based on

Faster R-CNN is depicted in Fig. 2. Different from the

random sampler in Faster R-CNN, DSHNet has two biased

samplers. CBS(H) samples head classes in priority while

CBS(T) samples tail classes preferentially. After CBS, the

two groups of biased samples are fed into BBH(H) and

BBH(T) correspondingly. During training, BBH compute

the loss over all classes which is the same as the box head

in Faster R-CNN. While during inference, BBH only pre-

dict the results for the corresponding (head or tail) classes

and the predictions are fused to obtain the final results. The

feature extraction backbone and region proposal network

(RPN) are the same as Faster R-CNN.

3.3. Class­biased samplers

To handle intra-image object imbalance in UAV images,

we propose the Class-Biased Samplers (CBS) to perform

re-sampling on the object-level when generating object pro-

posals. The CBS module consists of two biased proposal

samplers. The first one is CBS(T) which samples tail

classes in priority. This means we first collect proposals

which belong to the tail classes. If the number of propos-

als is insufficient after collecting all the tail-class proposals,

CBS(T) continues to collect other classes. For example, in

Faster R-CNN, the sampler will randomly sample 512 pro-

posals, where 25% of them are positive samples and 75% of

them are negative samples. CBS(T) will sample tail classes

first. After that if the number of proposals is less than 128,

the sampler will continue to sample targets of head classes.

The second biased sampler is CBS(H), which works in the

same scheme as CBS(T) by changing tail classes to head

classes. Please refer to Alg. 1 for more details. It should

be noted that the performance improvement of CBS is not

due to the increased number of samples. As shown in the

ablation study in Sec.4.4, increasing the number of samples

in the random sampler can not benefit the performance.

3.4. Bilateral box heads

Since the CBS module generates two groups of biased

samples, we propose the Bilateral Box Heads (BBH) to pro-

cess the tail-biased and head-biased proposals respectively.

As demonstrated in [34, 32], the backbone network (for fea-

ture extraction) prefers the original data distribution to learn

well generalized representations. While the classifier tends

to perform better on the biased classes in the data. By in-

troducing BBH, we use two classifiers to cope with head

classes and tail classes respectively. This allows each clas-

sifier to perform better on corresponding classes. Besides,

CBS and BBH do not change the input distribution of the

backbone network, which helps the backbone network to

learn better generalized representations compared to exist-

ing image-level methods [34, 28, 29].
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Algorithm 1: Class-biased samplers

Input: samples of tail classes St, samples of head classes Sh,

samples of background Sb, number of required samples

Ns, positive fraction α

Output: Results of CBS(T) Rt, results of CBS(H) Rh

Random(set, num) means if num < length(set) randomly

return num elements from set; else return all the set ;

begin
⊲initialization

Rt ← {}, Rh ← {};
⊲compute numbers of required positive and negative samples

Np = Ns × α,Nn = Ns −Np;

⊲first add samples of background and tail classes to the

results of CBS(T)

Rt ← Rt ∪Random(Sb, Nn) ;

Rt ← Rt ∪Random(St, Np) ;

⊲then add samples of head classes to the results of CBS(T) if

needed

if length(St) < Np then

Rt ← Rt ∪Random(Sh, Np − length(St));
end

⊲repeat steps above for CBS(H)

Rh ← Rh ∪Random(Sb, Nn) ;

Rh ← Rh ∪Random(Sh, Np) ;

if length(Sh) < Np then

Rh ← Rh ∪Random(St, Np − length(Sh));
end

end

BBH can also re-weight the losses of head classes and

tail classes. First, in each head of BBH, there are more sam-

ples of corresponding (head or tail) classes than those in the

original box head, so the weight of corresponding classes

is improved. Second, we can manually adjust the ratio be-

tween the losses of two heads. The final loss function of

BBH is

L
BBH

= L
H
(p

H
, y) + λL

T
(p

T
, y), (1)

where L
T

and L
H

are the loss functions of BBH(T) and

BBH(H), respectively. p
T

and p
H

denote the predictions

of BBH(T) and BBH(H) respectively, including box regres-

sion and class score. y represents the label of bounding box

and class. λ is a balance coefficient.

During training, both BBH(T) and BBH(H) compute

losses on all classes since including other classes is benefi-

cial to the generalization of the classifier. During inference,

BBH(T) and BBH(H) only make predictions for its corre-

sponding classes (see Fig. 2), and the two predictions are

aggregated as the final results.

3.5. Plug­and­play on base models

Fig. 2 shows how to implement DSHNet on two-stage

detectors. DSHNet can be easily applied to other main-

stream detection pipelines including the one-stage and cas-

caded detectors without additional bells and whistles, as de-

scribed in the following.

• One-stage detectors: One-stage detectors directly per-

form regression and classification for every anchor in the

image instead of generating ROIs (region of proposal,

like Faster R-CNN [27]). Take RetinaNet [20] for exam-

ple, the final Retina head computes loss of all the targets.

In DSHNet, we use CBS to assign label weights as 1 to

sampled targets, so that other targets with label weights

as 0 will not be considered in computing the loss.

• Detectors with cascade architecture: Cascade architec-

ture means in the second stage of detection, networks

have multiple (usually 3) box heads to process ROIs.

Take Cascade R-CNN for example, in the second stage,

there are 3 samplers for each box head. In DSHNet, we

double all of them which means we have 6 samplers and

6 box heads (3 for tail classes and 3 for head classes). In

the training phase, CBS and BBH work as same as them

in Faster R-CNN. In the inference phase, class scores are

computed by averaging over the 3 heads of BBH while

box regressions are the results of the latest head of BBH

of corresponding classes.

4. Experiments

4.1. Datasets

To validate the effectiveness of DSHNet, we conduct ex-

tensive experiments on two popular benchmarks for object

detection in UAV images: VisDrone [35] and UAVDT [9].

• VisDrone: The dataset consists of 10,209 images (6,471

for training, 548 for validation and 3,190 for testing) with

rich annotations on ten categories of objects. The image

scale of the dataset is about 2,000 × 1,500 pixels. Since

the evaluation server is closed now, we cannot test our

method on the test set. Therefore, the validation set is

used to evaluate our method, which is a setting adopted

by previous methods as well.

• UAVDT: The UAVDT [9] dataset contains 23,258 images

for training and 15,069 images for testing. The resolution

of the image is about 1,080 × 540 pixels. The dataset is

acquired with an UAV platform at a number of locations

in urban areas. The categories of the annotated objects

are car, bus, and truck.

4.2. Implementation details

We implement DSHNet based on the MMdetection [4]

toolbox. Faster R-CNN (FRCNN) [27], RetinaNet

(Retina) [20] and Cascade R-CNN (CRCNN) [3] with Fea-

ture Pyramid Network (FPN) [19] which are representatives

of two-stage detectors, one-stage detectors and detectors

with cascade architecture, are adopted as the baseline de-

tection networks. The parameters of CBS are basically the

same as the original random sampler (RS, randomly sam-

ple the corresponding number of positives and negatives)

in the implementation of Faster R-CNN in MMdetection:
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Method backbone AP AP50 AP75 ped. person bicycle car van truck tricycle awn. bus motor

Comparison with base models

RetinaNet+RS R50 13.9 27.7 12,7 13.0 7.9 1.4 45.5 19.9 11.5 6.3 4.2 17.8 11.8

FRCNN+RS R50 21.7 39.8 21.0 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7

FRCNN+RS R101 21.8 40.2 20.9 20.9 14.8 7.3 51.0 29.7 19.5 14.0 8.8 30.5 21.2

FRCNN+RS X101 22.4 41.0 21.8 21.3 15.5 7.9 52.0 29.5 20.5 14.7 8.9 32.1 21.6

CRCNN+RS R50 23.2 40.7 23.1 22.2 14.8 7.6 54.6 31.5 21.6 14.8 8.6 34.9 21.4

RetinaNet+DSHNet R50 16.1 30.2 15.5 14.1 8.9 1.3 48.2 24.8 14.2 8.8 6.0 21.6 13.1

FRCNN+DSHNet R50 24.6 44.4 24.1 22.5 16.5 10.1 52.8 32.6 22.1 17.5 8.8 39.5 23.7

FRCNN+DSHNet R101 24.4 44.3 23.8 21.7 16.0 10.1 52.2 31.6 22.7 17.1 9.5 38.6 24.0

FRCNN+DSHNet X101 25.8 46.8 25.2 23.3 16.7 11.4 53.7 33.1 23.8 19.5 11.1 40.0 25.5

CRCNN+DSHNet R50 26.2 45.0 26.3 23.2 16.1 11.2 55.5 33.5 25.2 19.1 10.0 43.0 25.1

Comparison with solutions to long-tail problems

FRCNN+RS+MMF [33] R50 22.6 41.7 21.6 21.6 15.3 9.6 51.5 28.5 20.4 15.9 7.5 33.7 21.6

FRCNN+SimCal [28] R50 20.0 35.8 19.6 18.7 13.8 5.7 51.0 28.4 16.4 13.6 5.9 27.0 19.4

FRCNN+RS+BGS [18] R50 23.0 43.0 22.0 21.8 16.0 8.1 51.8 31.1 19.8 15.0 8.4 36.1 21.5

FRCNN+DSHNet R50 24.6 44.4 24.1 22.5 16.5 10.1 52.8 32.6 22.1 17.5 8.8 39.5 23.7

Based on the SOTA cropping method

DMNet (FRCNN+RS) [17] R50 28.1∗ 48.5 28.1 28.1 19.7 13.3 57.3 36.1 24.8 20.1 12.0 42.9 26.4

DMNet [17] cropping+DSHNet R50 30.3 51.8 30.9 28.5 20.4 15.9 56.8 37.9 30.1 22.6 14.0 47.1 29.2

* Note: we reproduce the DMNet [17] result using authors’ implementation and default settings since the original DMNet paper didn’t report the class-wise AP. Our

reproduced AP is 28.1, which is only 0.1 less than the result (28.2) in the original paper.

Table 2. The detection performance on VisDrone validation set. RS is short for random sampler.

the total number of samples is 512, and 25% of the sam-

ples are positive and 75% are negative. In VisDrone [35],

car, ped. (pedestrian) and people are considered as head

classes (noted that the boundary between ped. and people

in VisDrone is ambiguous, so we group them together),

while other object categories are regraded as tail classes. In

UAVDT [9], car is the head class and truck and bus are the

tail classes. The BBH is the same as the original box head

in Faster R-CNN which has 2 shared fully connected layers

and 1 fully connected layer for predicting class scores and

box regressions, respectively.

Training phase. The input size of the detector is 1,000 ×

600 pixels on both VisDrone [35] and UAVDT [9] datasets.

The batch-size is set to 2 (i.e., 2 images) on a single

NVIDIA 1080Ti GPU with 11GB memory. On VisDrone,

we set the base learning rate to 0.002 and the training

epochs to 18. After the 8th, 12nd and 16th epoch, the learn-

ing rate decreases by a factor of 10. On UAVDT, we set the

training epochs to 4 and fix the learning rate at 0.002.

Test phase. The input size of detector is the same as that in

the training phase. The maximum detection number is set to

500 by following the settings of VisDrone [35]. Following

the evaluation protocol on MS COCO [21], we use AP ,

AP50, and AP75 as metrics to measure the precision. AP50

and AP75 are computed at the single IoU threshold 0.5 and

0.75 over all categories. In addition, we report the average

precision of each object category.

4.3. Experimental results

Comparison with base models. We implement 3

base models: Faster R-CNN (FRCNN) [27], RetinaNet

(Retina) [20] and Cascade R-CNN (CRCNN) [3] accord-

ing to the same settings of DSHNet. For the backbone net-

work, we choose ResNet50 (R50), ResNet101 (R101) [14]

and ResNeXt101 (X101) [30], and use the default parame-

ters (including the feature pyramid network (FPN) [19]) in

MMdetection [4].

Table 2 reports the overall AP and AP s of all the 10

classes of VisDrone. DSHNet achieves consistent improve-

ments on all the base models. On the most representative

two-stage detector, Faster R-CNN, we conduct experiments

using 3 different backbone networks, and the performance

increases the most on ResNeXt101 (22.4 vs. 25.8). On

the state-of-the-art Cascade R-CNN (CRCNN) model, our

method also gains a considerable 3.0 overall AP (23.2 vs.

26.2). Moreover, in almost all the cases, AP of each class is

improved compared with the counterpart in the base mod-

els. This demonstrates that both head and tail classes can

benefit from DSHNet. For tail classes in particular, the de-

tection results are improved significantly. For example, our

DSHNet boosts the AP s of tail classes tricycle and bus by

about 29% (14.8 vs. 19.1) and 23.2% (34.9 vs. 43.0), re-

spectively, based on the CRCNN (R50). We also present

a visual comparison of the detection results on VisDrone

dataset (Fig. 3). In this example, the detection precision

of motor, one of the tail classes, is obviously improved by

DSHNet as compared to the base model.

On UAVDT, we conduct experiments based on Reti-

naNet [20] and Faster R-CNN [27]. Similar to the results

in VisDrone, DSHNet achieves remarkable improvements

over baseline models, and the precision of both head classes

and tail classes are largely improved. Specifically, the tail

class bus is dramatically improved from 3.4 to 14.7 on

FRCNN-R50 as shown in Table 3. This clearly validates
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Figure 3. Visualization of detection results on VisDrone. From the first to third columns are base model (Faster R-CNN (ResNet50)),

DSHNet on the base model, and ground truth (red boxes for tail classes and green boxes for head classes). The detection precision of

tail-class motor is greatly improved by DSHNet. (Best viewed on screen with zoom.)

Method backbone AP AP50 AP75 car truck bus

FRCNN+RS R50 11.0 19.9 11.2 28.3 1.4 3.4

FRCNN+RS R101 12.5 22.3 12.9 27.9 1.9 7.8

Retina+RS R50 14.5 28.5 12.9 30.0 3.7 9.7

FRCNN+DSHNet R50 16.0 28.5 16.3 29.4 3.9 14.7

FRCNN+DSHNet R101 17.0 30.0 18.1 29.8 3.4 17.9

Retina+DSHNet R50 17.8 30.4 19.7 32.1 4.2 17.0

Table 3. The detection performance on UAVDT validation set.

the effectiveness of our proposed DSHNet.

Comparison with existing solutions tackling long-tail

problems. We compare our DSHNet with state-of-the-art

methods for long-tail visual recognition. In MMF [33] and

BGS [18], tail and head classes are defined according to the

same rules as DSHNet (see Sec. 4.2 for detail). In Sim-

Cal [28], we choose class-agnostic method which has better

performance on overall AP. We assign 2 classes per batch

for training in order to keep the sample ratio unchanged

(2:10 on VisDrone [35] vs. 16:80 on MS COCO [21]).

We first compare our method with MMF [33], which also

addresses the imbalanced class distribution in VisDrone

dataset. The main idea of MMF is to divide the 10 classes to

2 sub-categories and train and test the model separately for

those two sub-categories.The feature network of each model

in MMF only gets a part of all the classes as input, instead

of getting the original distributed data like DSHNet, which

harms the generalization of representation. Therefore, this

method only slightly improves the base model from the re-

sults in Table 2 (21.7 vs. 22.6). And the overall AP is 2

points worse than our DSHNet (22.6 vs. 24.6).

As discussed in Sec. 2, most existing methods tackling

the long-tail problems on natural datasets do not work well

on UAV datasets. Here, we choose two recent methods rep-

resenting the re-sampling and re-weighting strategies, re-

spectively. SimCal [28] is improved from image-level re-

sampling which also uses class-aware sampler. However,

SimCal [28] needs to sample enough categories and col-

lect similar numbers of different targets to ensure a balanced

distribution in a batch. SimCal [28] is not trivially applica-

ble on UAV datasets, and the performance is even inferior

to that of the base model (20.0 vs. 21.7).

BGS [18] is the representative re-weighting method

which introduces the balanced group softmax to group cor-

responding classes together when computing loss. BGS

is currently the best re-weighting solution to long-tail is-

sue. However, BGS only achieve re-weighting in loss

function while does not change the distribution of box

head, which proved to effectively improve classifier learn-

ing [28, 32, 34]. Therefore, the imbalanced distribution of

input cannot be re-balanced as good as DSHNet. Despite its

better performance than the base model, BGS is still worse

than DSHNet (23.0 vs. 24.6).

How DSHNet performs with image patches? As shown

in Fig. 1, image cropping methods do not solve the long-tail

distribution problem. Since image cropping can be consid-

ered as a data pre-processing procedure, our DSHNet can

be equally applied to image patches, which could further

improve the performance of cropping-based approaches. To

evaluate DSHNet on image patches, we employ the state-of-

the-art DMNet [17] to generate cropped patches and train

DSHNet on them. The results in Table 2 (last two rows)

show that DSHNet also works on image patches and boosts

the overall AP by 2.2 points (30.3 vs. 28.1).

4.4. Ablation study

To validate the contributions of CBS and BBH to the

improvement of detection performance, we carry out ab-

lation experiments on VisDrone [35] dataset with Faster R-

CNN [27] and ResNet50 [14].
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Method backbone AP AP50 AP75 ped. person bicycle car van truck tricycle awn. bus motor

FRCNN+RS R50 21.7 39.8 21.0 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7

FRCNN+RS-DBL R50 21.6 40.1 20.3 20.9 15.4 6.6 52.1 27.4 18.9 13.5 8.0 32.2 21.5

FRCNN+RS-DBL+BBH R50 22.1 41.1 21.2 21.1 15.0 7.7 51.6 29.1 18.9 15.2 8.3 33.1 20.9

FRCNN+CES+BBH R50 24.1 43.7 23.7 21.9 15.8 9.4 52.1 30.8 22.0 17.7 9.7 39.5 22.5

FRCNN+CBS+BBH R50 24.6 44.4 24.1 22.5 16.5 10.1 52.8 32.6 22.1 17.5 8.8 39.5 23.7

Table 4. The ablation study of CBS on VisDrone dataset.

Method backbone AP AP50 AP75 ped. person bicycle car van truck tricycle awn. bus motor

FRCNN+RS R50 21.7 39.8 21.0 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7

FRCNN+CBS R50 21.7 40.2 20.8 20.5 14.8 6.9 51.6 29.0 19.1 13.9 8.3 31.6 20.7

FRCNN+CBS+BBH-ALL R50 22.6 40.0 22.7 16.2 14.5 10.1 47.8 32.0 19.6 17.1 8.8 37.2 23.4

FRCNN+CBS+BBH R50 24.6 44.4 24.1 22.5 16.5 10.1 52.8 32.6 22.1 17.5 8.8 39.5 23.7

Table 5. The ablation study of BBH on VisDrone dataset.

Effect of CBS. In order to verify that the performance of the

detector is not simply related to the number of samples gen-

erated by the sampler, we conduct two experiments. First,

we double the number of samples for the random sampler in

Faster R-CNN [27] (denoted by FRCNN+RS-DBL) in Ta-

ble 4. The performance is on par with the base model (21.6

vs. 21.7), indicating that simply increasing the number of

samples will not improve the performance when the sam-

ple size is adequate. Second, we remove the CBS module

and use the random sampler to obtain two groups of sam-

ples as input to BBH (denoted by FRCNN+RS-DBL+BBH

in Table 4). The performance is only slightly better than the

base model (22.1 vs. 21.7), which verifies the crucial role

of CBS in proposal re-sampling.

Another question we would like to answer is “which

sampler is better, class-biased or class-exclusive?”. Class-

exclusive sampler (CES) means that we only sample as-

signed classes without other classes. More concretely, af-

ter CBS(T) samples all the tail-class samples, if the number

of samples does not meet the requirement, it will continue

to sample head-class proposals, but CES will not. The per-

formance of CES is lower than CBS (24.1 vs. 24.6) which

shows that if not affecting the main classes, adding other

classes is beneficial to the generalization of the classifiers.

Effect of BBH. To show that BBH can enhance the discrim-

inative power of the classifiers, we remove BBH and simply

integrate the results of CBS as input to the original single

box head (FRCNN+CBS in Table 5). The performance of

the network without BBH drops considerably compared to

that of the complete DSHNet (21.7 vs. 24.6).

In the test phase, BBH(T) or BBH(H) only makes pre-

dictions for tail or head classes before the results aggrega-

tion. To validate the advantage of this prediction strategy in

BBH, we establish a comparison method by allowing both

BBH(T) and BBH(H) to generate predictions for all classes

(denoted by FRCNN+CBS+BBH-ALL in Table 5) and fus-

ing the predictions by NMS. The separate prediction strat-

egy improves the AP by 2 (22.6 vs. 24.6). It is because each

head of BBH is trained with class-biased samples and by

only considering the class predictions that they are good for

(i.e., tail-class predictions from BBH(T) and head-class pre-

dictions from BBH(H)) would achieve better performance.

Figure 4. The AP over dif-

ferent settings of λ in the

loss of BBH.

Effect of λ. The coefficient λ

in the loss function of BBH (see

Eq. 1) can be optimized for per-

formance. As shown in Fig. 4,

when λ < 1, the performance is

relatively poor because the tail

classes have less weight in the

training. Between 2.0 and 4.0,

the performance remains at the

highest AP (24.6). Then the performance declines when

λ > 4.0. In the experiments, we set λ = 2.0.

Inference speed. We report the inference speeds of base

models and DSHNet based on the implementations of

MMdetection [4] on one NVIDIA 1080Ti GPU (see Ta-

ble 6). DSHNet is only slightly slower than base models.

Model
base DSHNet

fps AP fps AP

RetinaNet [20] 22.5 13.9 16.4 16.1

Faster R-CNN [27] 20.1 21.7 15.7 24.6

Cascade R-CNN [3] 14.9 23.2 10.8 26.2

Table 6. The inference speed (frames per second) and AP of base

models and DSHNet with ResNet-50.

5. Conclusion

We proposed a novel Dual Sampler and Head detection

Network (DSHNet) to solve the long-tail distribution prob-

lem in UAV datasets. The Class-Biased Samplers (CBS)

are introduced to perform biased sampling on object pro-

posals for tail and head classes respectively. The Bilat-

eral Box Heads (BBH) use two classifiers to process the

tail-biased and head-biased proposals separately. Moreover,

BBH achieve loss re-weighting by computing the loss for

head and tail classes respectively. Experiments on two UAV

benchmarks show that our method significantly improves

the base models and achieves new state-of-the-art results.
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