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Abstract

Deep learning holds a great promise of revolutionizing

healthcare and medicine. Unfortunately, various inference

attack models demonstrated that deep learning puts sensi-

tive patient information at risk. The high capacity of deep

neural networks is the main reason behind the privacy loss.

In particular, patient information in the training data can

be unintentionally memorized by a deep network. Adver-

sarial parties can extract that information given the ability

to access or query the network. In this paper, we propose a

novel privacy-preserving mechanism for training deep neu-

ral networks. Our approach adds decaying Gaussian noise

to the gradients at every training iteration. This is in con-

trast to the mainstream approach adopted by Google’s Ten-

sorFlow Privacy, which employs the same noise scale in

each step of the whole training process. Compared to ex-

isting methods, our proposed approach provides an explicit

closed-form mathematical expression to approximately esti-

mate the privacy loss. It is easy to compute and can be use-

ful when the users would like to decide proper training time,

noise scale, and sampling ratio during the planning phase.

We provide extensive experimental results using one real-

world medical dataset (chest radiographs from the CheX-

pert dataset) to validate the effectiveness of the proposed

approach. The proposed differential privacy based deep

learning model achieves significantly higher classification

accuracy over the existing methods with the same privacy

budget.

1. Introduction

Deep learning holds great promise in improving health-

care and medicine. Examples include but not limited to:

i) deep neural networks have exceeded expert performance

on referral recommendation of sight-threatening retinal dis-

eases [6]; ii) convolutional neural networks trained with

more than 100,000 radiographs have shown competitive di-

agnostic accuracy compared to six board-certified radiolo-

gists while being two orders of magnitude faster [28]. Ac-

centure estimates that artificial intelligence, in which deep

learning is a crucial component, could save the healthcare

industry $150 billion annually by 2026. For deep neu-

ral networks to work well, they need to be trained with

a large number of examples. Unfortunately, sensitive in-

formation, including patient images and electronic health

records, can be reconstructed with high fidelity from deep

neural networks using privacy attacks during or after the

network training process. To make the situation worse, the

common strategy of data anonymization is not safe enough

because adversarial parties can re-identify individuals in

anonymized datasets by combining the data with back-

ground information. A notable experiment shows that com-

bining public anonymized medical records and voter regis-

tration records can successfully identify the personal health

information of a former Massachusetts governor, which is

called linkage attack [32].

There are several popular types of attacks, such as (i) at-

tribute attacks [44] which infer sensitive pieces of informa-

tion (e.g, whether a patient has cancer) given the patient’s

public record and the ability to query the machine learning

model; (ii) membership inference attacks [30] whose goal

is to find out if a patient record is in the pool of the data

used to train the machine learning model; and (iii) model

inversion attacks [14] which attempt to reconstruct the en-

tire patient data given only access to an intermediate layer of

the deep network. As the medical records contain patients’

sensitive data, realizing the full potential of deep learning

in healthcare requires an innovative approach for building

and deploying deep neural networks without sacrificing pa-

tients’ privacy.

Differential privacy (DP) [12] as a golden standard of

privacy provides strong guarantees on the risk of compro-

mising the sensitive users’ data in machine learning ap-
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plications. Intuitively, it works by adding random noise

to the model parameters so that an adversary with arbi-

trary background knowledge cannot confidently conclude

whether a users’ data is used in training a model or not.

There are many papers focusing on designs for differen-

tially private machine learning algorithms including em-

pirical risk minimization and deep neural networks. The

approaches to achieve private empirical risk minimization

mainly include: output perturbation [5, 35, 36, 10] (add

DP noise to model parameter obtained after the training),

objective perturbation (add DP noise to objective function)

[5, 17, 11], and gradient perturbation [3, 37, 7, 41] (add DP

noise to the gradient). Note that the output and objective

perturbation methods require the (strong) convexity of the

objective function, which makes them impossible to apply

in deep learning problems. Hence, injecting differentially

private noise into gradient is a proper way to obtain a pri-

vate deep learning model. The first work employed gradient

perturbation method to achieve differential privacy on deep

learning is called differentially private stochastic gradient

descent (DPSGD) algorithm [1], which is also adopted by

Google’s TensorFlow Privacy. Since the gradient norm is

usually unbounded in deep network optimization, gradient

perturbation can be used after manually clipping the gradi-

ents at each iteration. [1] utilized norm gradient clipping to

bound the effects of an individual data sample on the gradi-

ents, which is required for generating noise in the gradient

perturbation method. Then, the differentially private noise

is injected into the clipped gradient. As we can update the

gradient of each step differentially privately, it is guaranteed

that the overall deep learning model is private. Although [1]

utilizes the moments accountant method to achieve a tight

analysis of the privacy loss over the large number of itera-

tions, the classification performance of DPSGD is still far

inferior to the original SGD.

In this paper, we aim to build an accurate deep learning

model without compromising medical data privacy. To be

specific, we first clip the gradient with l2 norm and then

inject linear decaying Gaussian noise to the gradient of each

step. Our salient contributions are summarized as follows.

• We propose a novel adaptive differentially private deep

learning algorithm to protect medical training data. In-

tuitively, compared with the DPSGD algorithm, the

advantages of the proposed algorithm include: a) We

carefully adjust the scale of noise in each iteration con-

trolled by a decay rate to reduce the negative noise ad-

dition and guarantee the convergence property of deep

learning algorithm; b) instead of using the moments

accountant applied in DPSGD [1], we adopt the trun-

cated concentrated differential privacy (tCDP), which

provides a simple, explicit, and tight privacy bound

analysis on adaptive noise injection while avoiding the

numerical computation of log moments. Moreover,

tCDP can provide privacy amplification via random

sampling compared with zero concentrated differential

Privacy (zCDP) [45].

• We evaluate the performance of the proposed adaptive

DP deep learning algorithm based on real-world chest

radiographs. As far as we know, this is the first work

focusing on multi-label classification tasks on medical

datasets. We compare the performance of the proposed

model with DPSGD on the same privacy preserving

level. Our extensive experimental results show that

the convergence of the proposed model is faster and

the accuracy is higher. Moreover, our hyperparameter

settings may pave the way for further the application

of differentially private deep learning in medical do-

mains.

The rest of paper is organized as follows. In Section 3,

we present the differential privacy background. In Sec-

tion 4, we propose our adaptive differentially private deep

networks. In Section 5, we analyze the performance evalua-

tion with CheXpert dataset. We illustrate the privacy threats

in machine learning and review the related work of privacy

preserving machine learning methods in Section 2. Finally,

we draw conclusions in Section 6.

2. Related Work

2.1. Privacy threats in machine learning

Many attack models have been proposed in the literature.

The membership inference attack [30] is proposed to infer

whether the training dataset consists of a specific data sam-

ple. Fredrikson et al. introduced model inversion attack in

[14], where the adversary can reconstruct training samples

with some known features and the access to the machine

learning model. In [40], the authors proposed a power side-

channel attack model to recover the input data. Tramer et

al. proposed the model stealing attack [33], where the ad-

versary only has the access to a target model but not has any

other knowledge of the model, and aims to generate a model

that has similar performance of a target model. Moreover,

other works focus on inferring the hyperparameters of the

learning model [25, 34].

2.2. Privacy preserving empirical risk minimization

Recently, many researchers focus on private empirical

risk minimization (ERM) problems [42, 38]. In [2], the au-

thors designed a differentially private algorithm for online

linear optimization problems with optimal regret bounds.

The authors in [39] investigated the relationships between

learnability and stability and privacy and concluded that a

problem is privately learnable only when existing a private

algorithm that can asymptotically minimize the empirical

risk. [20] proposed private incremental regression and a
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private incremental ERM problem combining continual re-

lease to analyze the utility bound of several algorithms. In

[18], the authors provided small excess risk in the general-

ized linear model with sampling based method for entropy

regularized ERM. There are also some papers targeting at

private ERM learning on high dimensional datasets. The

authors in [21] provided differentially private algorithms

for sparse regression problems in high-dimensional settings.

Smith et al. [31] used an algorithm based on a sample effi-

ciency test of stability to extend and improve the results. In

[19], the authors introduced Gaussian width of the param-

eter space in the random projection to derive a risk bound

by using a private compress learning method in ERM algo-

rithms. In distributed machine learning, [7, 8, 9] proposed

differentially private alternating direction method of multi-

pliers (ADMM) algorithms with Gaussian mechanism.

2.3. Privacy preserving deep learning

As differential privacy can provide strong privacy guar-

antee, differentially private deep learning models have at-

tracted enormous attentions. Abadi et al. [1] proposed the

differentially private stochastic gradient descent (DPSGD)

algorithm and adopted moments accountant (MA) to calcu-

late the overall privacy budget. However, there is no closed-

form mathematical expression to estimate privacy budget.

In order to improve the utility of the DPSGD while preserv-

ing privacy, the authors in [45, 24] designed several adaptive

differentially private deep learning models by allocating dif-

ferent privacy budgets to each iteration and employed zero-

concentrated differential privacy (zCDP) to analyse the pri-

vacy loss during the training. The difference between this

paper and our proposed model is the design of the decay

function and the DP definition. In our work, we adopted

tCDP for privacy bound analysis. The tCDP is the relax-

ation of zCDP, which can provide privacy amplification via

random sampling compared with zCDP. In [26], the au-

thors trained an ensemble teacher model by combining a set

of teacher models, which are trained over disjoint training

datasets and the author also trained the differentially private

student model by querying the ensemble teacher to label

public data. Furthermore, Xie et al. [43] and Zhang et al.

[46] focused on achieving differential privacy on Generative

Adversarial Nets (GAN). In [10, 46], the authors injected

differentially private noises to the loss function based on

the functional mechanism. However, none of these works

provide utility guarantees for their algorithms.

3. Background on Differential Privacy

Differential privacy (DP) [12] that provides a strong

standard privacy guarantee is being widely applied to

many research areas. Basically, it is used to protect data

providers’ privacy when the statistical information of a

database is publishing. Its wide acceptance is based on its

merits of effectively protecting the data providers’ privacy

while publishing the statistical information of the databases.

DP indicates that the participation of one patient in the train-

ing phase has an inconsiderable effect on the final deep net-

work model. In our setting, we consider the medical image

dataset can be represented as a dataset D = {xi, yi}mi=1.

The randomized algorithm M is the algorithm used to train

the deep neural network, and the parameter space (also

called weights or coefficients) of deep neural network is de-

noted as Range(M). The definition of DP is described as

follows.

Definition 3.1 (Differential Privacy). A randomized algo-

rithm M satisfies (ǫ, δ)-differential privacy if for any two

adjacent datasets D and D̂ that differ in only a single record,

the absolute value of the privacy loss random variable of

an output o ∈ Range(M), Z(o) = log Pr[M(D)=o]

Pr[M(D̂)=o]
is

bounded by ǫ, with probability at least 1− δ.

The privacy budget ǫ controls the privacy preservation

level and δ is the broken probability, and if δ = 0, the ran-

domized algorithm M is said to have ǫ-differential privacy.

A larger ǫ means lower privacy level, and implies that there

is a higher possibility to distinguish the outputs of the ran-

domized algorithm M with two different input datasets. In-

tuitively, smaller ǫ means higher privacy preservation level.

δ is the broken probability. Differential privacy indicates

that the participation of one patient in the training phase has

an inconsiderable effect on the final deep network model.

A generic method of achieving (ǫ, δ)-differential privacy

is Gaussian mechanism [13] that adds Gaussian noise, cali-

brated to the query function’s sensitivity, to the output. The

sensitivity captures the maximum difference of the query

function by a single record in the worst case. We define the

sensitivity as follows.

Definition 3.2 (Sensitivity). The sensitivity of a query

function f(·) that takes as input a dataset D is defined as

∆f = max
D,D̂

‖f(D)− f(D̂)‖2, (1)

where D and D̂ are any two neighboring datasets differing

in at most one record.

In this paper, we consider the gradient perturbation

method to provide privacy guarantee of deep neural net-

work. Thus, the query function f is the gradient of deep

neural network. We can easily enforce a specific sensitivity

value ∆f by clipping the L2-norm of gradient value. Based

on the definition of sensitivity, we show the Gaussian mech-

anism in the following theorem.

Theorem 1 (Gaussian Mechanism [13]). For a query

function f : D → Rd with sensitivity ∆f , the Gaus-

sian Mechanism that adds noise generated from the Gaus-

sian distribution N (0, σ2
I) to the output of f satisfies
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(ǫ, δ)-differential privacy, where ǫ, δ ∈ (0, 1) and σ ≥√
2 ln(1.25/δ)∆f

ǫ .

When applying gradient perturbation method in training

phase of deep neural network, due to the large number of

iterations, the composition property of differential privacy

is important to estimate the privacy loss. Hence, we adopt

truncated concentrated differential privacy (tCDP) [4], a

new relaxation of differential privacy, to provide sharper

and tighter analysis on the privacy loss for multiple itera-

tive computations compared to (ǫ, δ)-DP. The definition of

tCDP is defined as follows.

Definition 3.3 (tCDP). For all τ ∈ (1, ω), a randomized

algorithm M is (ρ, ω)-tCDP if for any neighboring datasets

D and D̂ and all α > 1, we have

Dτ (M(x)||M(x′)) ≤ ρα, (2)

where Dτ (·||·) is the the Rényi divergence of order τ de-

fined as follows.

Given two distributions µ and ν on a Banach space

(Z, ‖ · ‖), here, we consider the Rényi divergence distance

between them:

Definition 3.4 (Rényi Divergence [29]). Let 1 < α < ∞
and µ, ν be measures with µ ≪ ν. The Rényi divergence of

order α between µ and ν is defined as

Dτ (µ‖ν) .
=

1

α− 1
ln

∫
(

µ(z)

ν(z)

)α

ν(z) dz.

Here we follow the convention that 0
0 = 0. If µ 6≪ ν, we

define the Rényi divergence to be ∞. Rényi divergence of

orders α = 1,∞ is defined by continuity.

In this paper, we mainly utilize the following properties

of tCDP, shown in [4].

Lemma 1. The Gaussian mechanism, in Theorem 1, satis-

fies (∆2
f/(2σ

2),∞)-tCDP.

Lemma 2. If randomized mechanisms M1 and M2 sat-

isfy (ρ1, ω1)-tCDP, and (ρ2, ω2)-tCDP, their composition

defined as (M1,M2) is (ρ1 + ρ2,min(ω1, ω2))-tCDP.

Lemma 3. If a randomized mechanism M satisfies (ρ, ω)-
tCDP, then for any δ ≥ 1/ exp((ω − 1)2ρ), M satisfies

(ρ+ 2
√

ρ ln(1/δ), δ)-differential privacy.

Lemma 4. If a randomized mechanism M satisfies

(ρ, ω)-tCDP, then for any n-element dataset D, ex-

ecuting M on uniformly random sn entries ensures

(13s2ρ, log(1/s)/(4ρ))-tCDP, with ρ, s ∈ (0, 0.1],
log(1/s) ≥ 3ρ(2 + log(1/ρ)) and ω ≥ log(1/s)/(2ρ).

Lemma 1 connects the Gaussian mechanism to the

new differential privacy definition, i.e., tCDP. It intuitively

shows that by injecting the same Gaussian noise the differ-

ences between (ǫ, δ)−DP and (ρ, ω)-tCDP. Lemma 2 indi-

cates the composition theorem of two randomized mecha-

nisms under tCDP. Lemma 3 establishes the link between

two differential privacy criteria, and Lemma 4 provides the

privacy amplification via random sampling. These lemmas

will serve as the basics for the proof of our adaptive random

noise mechanism in the later section.

4. Adaptive Differentially Private Deep Net-

works

4.1. Threat model

Before presenting the adaptive differentially private deep

learning model, we first describe the threat model. As DP

can provide strong privacy guarantee, it is a worst-case no-

tion of privacy. DP ensures that although attackers can have

all information from the training dataset except one data

sample, they still cannot get this data sample after launch-

ing attacks [12]. Specifically, in this work, we consider

the white-box attack [15] where the adversary has the full

knowledge of our deep networks, including their architec-

tures and parameters. In other words, attackers can access

to the published model instead of the training process. The

goal of the proposed scheme is that even though the attack-

ers have the ability to obtain other data samples in the train-

ing dataset, they cannot infer the target training data sample.

4.2. Privacy preserving deep learning model

We assume there are m training data samples and each

data sample is denoted by {xi, yi}, where yi is the la-

bel. The loss function of the training model with param-

eter w is defined as L(w, x). The gradient of the loss

function ∇L(w, x) is updated by stochastic gradient de-

scent (SGD) during each iteration. In order to preserve pri-

vacy of the training data, the differentially private noise is

supposed to add to the gradient in each iteration. Based

on Theorem 1, when calculating how much noise needs

to be injected into the gradient, it is supposed to have

the sensitivity of the gradient, which is difficult to char-

acterize. Therefore, we control the sensitivity by clip-

ping the gradient in l2 norm. With a clipping thresh-

old C, we can replace the gradient gt of each step by
1
s

∑

i∈St

(

∇L(wt, xi, yi)/max(1, ||∇L(wt)||2
C )

)

, where s

is the batch size. Then, we can add Gaussian noise to the

clipped gradient. Consequently, each SGD step is consid-

ered as differentially private. Based on the composition the-

orem of differential privacy, the overall model is supposed

to be differentially private with accumulated privacy budget.

When injecting Gaussian noise to the gradient, the pri-

vacy budget will be accumulated due to the iterations within
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each epoch as described in Lemma 2. If the total privacy

budget is certain, we need to allocate it to each training step.

The noise scale of Gaussian mechanism is decided by the

privacy budget allocated to each epoch, which influences

the final model accuracy. Our purpose is to achieve better

accuracy of the differentially private training model with-

out compromising data privacy. Therefore, we propose the

adaptive differentially private deep learning model, which

is inspired by the adaptive learning rate strategy. During

the practical training processes, the learning rate is recom-

mended to be decreased instead of fixed, in order to improve

the model performance. Hence, in the DP learning model,

we propose to reduce the injected noise along with the train-

ing iterations. In other words, in order to increase the accu-

racy, it is intended to add smaller and smaller noise to the

gradients through the training time. Therefore, we propose

the adaptive differentially private deep networks by inject-

ing linear decaying Gaussian noise to the gradient during

the training.

The overall procedure of our mechanism is shown in Al-

gorithm 1. Note that we adopt tCDP in our algorithm in-

stead of approximately differential privacy since its com-

position property is more straightforward for our adaptive

noise addition. In each iteration of our algorithm, a batch

of examples St with size s is sampled from the training

dataset, and the algorithm computes the gradient of the loss

on the examples in the batch and uses the average in the

gradient descent step. The gradient clipping bounds per-

example gradients by l2 norm clipping with a threshold

C. After gradient clipping, the sensitivity of the average

gradient is 2C
s . We next inject linear decaying Gaussian

noise to the gradients at every training iteration with a de-

cay rate R. This is in contrast to the mainstream approach

adopted by Google’s TensorFlow Privacy, which employs

the same noise scale in each step of the whole training pro-

cess. Specifically, we apply the Gaussian mechanism to add

random noise following N (0, σ2
t I) distribution to the net-

work’s gradients. The noise variance varies with a linear

decay model as σ2
t+1 = Rσ2

t , where R ∈ (0, 1). Moreover,

by considering the privacy composition between iterations

and privacy amplification by sampling, the privacy guaran-

tee of Algorithm 1 is provided in the next section.

4.3. Privacy guarantee

We employ the composition theorem of Truncated Con-

centrated Differential Privacy (tCDP) to analyze the cumu-

lative privacy loss of differentially private stochastic gradi-

ent descent (DPSGD), which was developed to accommo-

date a larger number of computations and provides a sharper

and tighter analysis of privacy loss than the strong compo-

sition theorem of (ǫ, δ)-DP. One popular way to track the

privacy loss of DPSGD is the Moments Accountant (MA)

method [1], which is adopted by Google’s TensorFlow Pri-

vacy. As for the proposed approach, a Gaussian mechanism

with a linearly decaying variance is applied to DPSGD to

improve the model accuracy.

Theorem 2. Algorithm 1 provides (ǫ, δ)-differential pri-

vacy.

Proof. Since the utilization of Gaussian Mechanism, each

iteration is ρt = 2C2/(s2σ2
t )-tCDP (Lemma 1). By Lemma

2 and Lemma 41, and the decay rate R of noise scale, we de-

rive that the total privacy loss is (ρtotal, ωtotal)-tCDP with

ρtotal =
13(s/m)2C2(1−RT )

2σ2
0(R

T−1 −RT )
, (3)

ωtotal =
log(m/s)σ2

0R
T

2C2
, (4)

where s is the batch size, m is the total number of pri-

vate training dataset, C is the clipping threshold. By

utilizing Lemma 3, we can say that our algorithm satis-

fies (ρtotal + 2
√

ρtotal log (1/δ), δ)-DP, which means ǫ =

ρtotal + 2
√

ρtotal log (1/δ).

Algorithm 1 Adaptive Differentially Private Deep Learning

1: Input: Private training dataset {xi, yi}mi=1, loss func-

tion L, learning rate η, gradient norm bound C, decay

rate R ∈ (0, 1), batch size s.

2: Output: Differentially private model wT .

3: Initialize w0, σ2
0 .

4: t = 0.

5: for t = 0, · · · , T − 1 do

6: Randomly take a batch of data samples St from

the training dataset with |St| = s.

7: Compute the gradient with gradient clipping gt =
1
s

∑

i∈St

(

∇L(wt, xi, yi)/max(1, ||∇L(wt)||2
C )

)

.

8: Add adaptive Gaussian noise gt = gt +N (0, σ2
t I)

with σ2
t+1 = Rσ2

t .
9: Update the model parameter wt+1 = wt − ηgt.

10: end for

Compared with MA, our proposed approach provides an

explicit closed-form mathematical expression to approxi-

mately estimate the privacy loss. It is easy to compute and

can be useful when the users would like to decide proper

training time, noise scale, and sampling ratio during the

planning phase.

5. Performance Evaluation

In this section, we demonstrate the experimental results

of our proposed scheme on one medical dataset CheXpert,

and two popular image datasets MNIST, and CIFAR10.

1Several conditions for privacy amplification via sampling (Lemma 4)

are required.
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(a) Atelectasis (b) Cardiomegaly

(c) Consolidation (d) Edema

(e) Pleural effusion

Figure 1: Comparison between non-private model, DPSGD and our adaptive DP model.

5.1. Experiment settings

CheXpert. We conduct experiments on the CheXpert

dataset [16], which is a large dataset containing 224,316

chest X-rays of 65,240 patients. There are 5 classes cor-

responding to different thoracic pathologies: (a) Atelecta-

sis, (b) Cardiomegaly, (c) Consolidation, (d) Edema, and

(e) Pleural Effusion. The images with size 320×320 pix-

els are fed into the pre-trained DenseNet-121. We only re-

initialize the fully connected layer and fix the other convolu-

tional layers, which will not have influences on the privacy

leakage [1]. For illustrative purposes, we use 10,000 radio-

graphs for training and 234 for testing. We use the test set

provided by Stanford CheXpert to make our results com-
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(a) decay rate (Fixed parameters: σ = 2.8, C = 1, δ = 10
−4).

(b) initial noise scale (Fixed parameters: R = 0.99, C = 1, δ = 10
−4).

(c) clip threshold (Fixed parameters: R = 0.99, σ = 2.8, δ = 10
−4).

Figure 2: The impact of parameters on the training model performance (Red curve is tesing AUC, black curve is training

AUC and the blue curve is epoch number).

parable to those in the literature. The test set is small be-

cause each sample requires manual annotations by 3 board-

certified radiologists to create the ground truth label. For

this reason, we cannot mix up noisy labels from the training

set with well-validated labels from the test set [16].

Here, we introduce the default values of different param-

eters in the proposed adaptive differentially private deep

learning model. We set the batch size s as 100, and the

sample rate s
m = 0.01. We assume that the gradient norm

clipping threshold C is 1, the initial noise scale σ0 is 2.8,

the noise decay rate R is 0.99, and the broken probability δ
is 10−4. Recall the analysis in Section 4.3, we can obtain

the relationship between these parameters and the privacy

with equations (3) and (4). As long as we have fixed the

privacy budget ǫ, we can easily calculate the other param-

eters with these equations. We employ the area under the

curve (AUC) to evaluate the non-private and private deep

learning models.

MNIST The handwritten digits dataset [23] consists of

60000 training images and 10000 testing images, which are

28×28 gray scale images. We stack two convolutional lay-

ers with max-pooling and two fully-connected layers. In-

stead of using ReLU as the activation functions, we use tanh

in the MNIST model as suggested in [27], which can pro-

vide better performance.

CIFAR10 The CIFAR10 [22] dataset consists of 10

classes 32×32 color images. There are 50000 training ex-

amples and 10000 testing examples. We use the pretrained

ResNet18 as the training model for this dataset and re-

initialize the fully connected layer. Then, we train the model

with the proposed mechanism.

5.2. Experiment results

CheXpert. As introduced in section 5.1, there are 5 la-

bels of each data sample in the dataset. Hence, we show five

figures for each experiment. Firstly, we compare the test-
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Dataset
Privacy Accuracy

Budget (ǫ, δ) DPSGD Proposed

MNIST

Non-Private 99%

(1.19, 10−5) 96.61% 97.7%

(3.01, 10−5) 97.82% 98.07%

(7.1, 10−5) 97.97% 98.17%

CIFAR10

Non-Private 88.67%

(3.02, 10−5) 77.16% 83.15%

(7.03, 10−5) 81.42% 84.3%

Table 1: Summary results on MNIST and CIFAR10.

ing AUC of the proposed adaptive model with DPSGD and

non-private model in Figure 1. In the experiment, we set

the epoch number as 8. The privacy budget ǫ varies accord-

ing to different initial noise scales in the DPSGD and the

proposed adaptive DP model. The figure shows that with

a higher epsilon value, the model accuracy is lower, since

a larger epsilon means less noise injected to the gradient.

We can also observe that our proposed adaptive DP model

outperforms the DPSGD model for all thoracic conditions

across different privacy budgets. More specifically, with the

same privacy budget ǫ = 2 and 8, the adaptive DP model

can reach the average of 80% testing AUC for all of the five

labels, while the DPSGD only can achieve approximately

60% testing AUC. We can conclude that with adaptive DP

model, the performance will not drop too much and the pa-

tient’s privacy is preserved.

In Figure 2, we demonstrate the impact of different pa-

rameter settings of the proposed adaptive differentially pri-

vate deep learning model. We explore the influences of four

parameters, noise decay rate R, initial noise scale σ0, and

clipping threshold C on the performance of the adaptive

DP model. In the experiments, we keep the privacy bud-

get fixed as ǫ = 8. When the experiment is focusing on

a specific parameter, we only vary values of this parame-

ter and adjust the number of epochs to maintain the fixed

privacy budget. In other words, only the discussed param-

eter and epoch number change in each experiment. With

a larger noise decay rate, a higher initial noise scale, or a

lower clipping threshold, it costs less privacy budget during

each iteration. Therefore, we can achieve more epochs dur-

ing training as shown as the blue solid curve in Figure 2.

Moreover, we can observe that the model performance is

better with a higher decay rate, a higher initial noise scale,

and a smaller clip threshold, since the privacy budget spends

slower as the number of training epochs increases.

MNIST and CIFAR10. We repeat the experiments on

MNIST and CIFAR10 datasets and the experimental results

are shown in Table 1. We compare the test accuracy by ap-

plying DPSGD and the proposed adaptive model. We first

train the DPSGD model under a desired epoch number, keep

the privacy budget ǫ value and calculate the parameters of

the adaptive model with equations (3) and (4). For MNIST

dataset, the test accuracy of non-private model can reach

99%. With the privacy budget ǫ equal to 1.19, 3.01, and

7.1, test accuracy of the proposed adaptive model is 1.09%,

0.25% and 0.2% higher than that of DPSGD. For CIFAR10

dataset, the non-private model can get to 88.67% test accu-

racy in 90 epochs. Compared with the DPSGD model, with

the privacy budget ǫ of 3.02 and 7.03, test accuracy of the

proposed adaptive model is promoted by 5.99% and 2.88%.

6. Conclusion

In this paper, we propose the adaptive differentially pri-

vate deep learning model. Intuitively, we first clip the

gradient to bound the sensitivity, inject differentially pri-

vate noise with a specific decay rate based on the Gaussian

mechanism into the clipped gradient, and update the gra-

dient with SGD. The proposed algorithm is easy to imple-

ment and significantly improve the performances on vari-

ous well-known datasets. Because of the large number of

iterations in deep learning model, we adopt tCDP to ob-

tain a tight bound of privacy leakage, since tCDP can pro-

vide a tighter and closed-form mathematical expression to

estimate privacy budget compared with MA. Furthermore,

tCDP can provide privacy amplification via random sam-

pling compared with zCDP. We also conduct experiments

on the public CheXpert dataset to verify the effectiveness of

our adaptive differentially private deep learning model. We

aim to explore the potential of adaptive differentially pri-

vate deep learning applications in medicine. Moreover, we

used the CheXpert that is a multi-label classification task.

As far as we know, there are no works focusing on medical

datasets with multi-label classification tasks.
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