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Abstract

Existing few-shot learning (FSL) methods assume that

there exist sufficient training samples from source classes

for knowledge transfer to target classes with few training

samples. However, this assumption is often invalid, espe-

cially when it comes to fine-grained recognition. In this

work, we define a new FSL setting termed scarce-source

few-shot learning (SSFSL), under which both the source and

target classes have limited training samples. To overcome

the source class data scarcity problem, a natural option is to

crawl images from the web with class names as search key-

words. However, the crawled images are inevitably corrupt-

ed by large amount of noise (irrelevant images) and thus

may harm the performance. To address this problem, we

propose a graph convolutional network (GCN)-based label

denoising (LDN) method to remove the irrelevant images.

Further, with the cleaned web images as well as the orig-

inal clean training images, we propose a GCN-based FSL

method. For both the LDN and FSL tasks, a novel adaptive

aggregation GCN (AdarGCN) model is proposed, which dif-

fers from existing GCN models in that adaptive aggregation

is performed based on a multi-head multi-level aggregation

module. With AdarGCN, how much and how far informa-

tion carried by each graph node is propagated in the graph

structure can be determined automatically, therefore alle-

viating the effects of both noisy and outlying training sam-

ples. Extensive experiments demonstrate the superior per-

formance of our AdarGCN under both the new SSFSL and

the conventional FSL settings.

1. Introduction

Few-shot learning (FSL) [22, 5] aims to recognize a set

of target classes by learning with sufficient labeled sam-

ples from a set of source classes and only few labeled
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Figure 1. Illustration of the adaptive aggregation strategy included

in our AdarGCN which is realized based on a multi-head multi-

level module. In a GCN layer, each head performs aggregation for

different iterations and all the heads are weighted concatenated to

update the node feature, followed by an edge updating module.

samples from the target classes. Existing FSL methods

[33, 37, 6, 47, 50, 48, 1, 34, 38, 21, 29, 11] employ deep

neural networks (DNNs) [18, 56, 13]. They thus make the

implicit assumption that there are sufficient training sam-

ples from at least the source classes for knowledge trans-

fer to the target. However, this assumption is often in-

valid in practice especially when it comes to fine-grained

recognition. For this problem, the source classes are also

fine-grained, so collecting and labeling sufficient samples

for each source class is challenging. For example, in the

widely-used CUB dataset [51], each bird class has less than

60 samples. Without sufficient labeled samples from each

source class, it becomes harder to recognize the target class-

es by knowledge transfer from source classes.

In this work, we define a new setting termed scarce-

source few-shot learning (SSFSL), where only few labeled

samples from both source and target classes are available

for training. To overcome the source class data scarcity

problem under this new setting, a natural solution would

be to crawl sufficient images from the web by searching

with the name of each source class. However, although the

crawled data contains extra relevant training images, it al-

so inevitably consists of large quantities of irrelevant ones.

To fully exploit the crawled noisy images of each source

class for SSFSL, label denoising (LDN) is required as a

preprocessing stage. Once the web images are cleaned by

a LDN model, a SSFSL problem becomes a conventional
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many-shot few-shot learning (MSFSL) problem for which

a plethora of existing methods can be applied. However, no

matter how strong the LDN method is, some wrongly la-

beled images will remain which pose additional challenges

to the subsequent FSL stage. Dealing with noisily-labeled

images thus becomes the key for solving the SSFSL prob-

lem in both stages.

We thus propose to use graph convolutional networks

(GCNs) [17, 4, 46, 8] for both the LDN and FSL stages.

This is because, treating each image as a graph node and

using edges between nodes to represent their visual similar-

ity in a feature space, a graph model is intrinsically suited

for enforcing visual and label consistency across training

samples (i.e., images of the same class labels should be vi-

sually similar and vice versa). Those nodes that do not con-

form to the consistency constraint can thus be flagged out

for denoising. Their negative effects for label propagation

on the graph can also be reduced for the 2nd stage few-shot

recognition. Both tasks benefit from multiple GCN layers

which learn better node and edge representations. Indeed,

GCNs have been employed for both LDN [17, 14, 23] and

FSL [41, 15, 10] (albeit without considering label noise).

However, existing GCNs are intrinsically limited for both

stages. In particular, they lack mechanisms to control how

the information carried by a node (especially the noisy ones)

can be propagated to the rest of the graph. Such a con-

trol ideally should be introduced in an instance-dependent

and adaptive manner. This shortcoming also partly explains

why in practice a GCN with more than three layers often

becomes ineffective due to over-smoothing in the top layers

[24]. Therefore, we propose a novel adaptive aggregation

GCN (AdarGCN) which can perform adaptive aggregation

based on a multi-head multi-level aggregation module (see

Fig. 1). With AdarGCN, how much and how far the infor-

mation carried by each node is propagated to the rest of the

graph is determined by each head, making the propagation

controllable and adaptive to each instance. An aggregation

gate with learnable parameters is then used to dynamical-

ly determine the weight of each head when fusing multi-

ple heads together. In this way, the negative impact of a

noisy training sample can be limited to a small neighbor-

hood of the corresponding node, thus effectively diminish-

ing its detrimental effect.

As shown in Fig. 2, our AdarGCN is used in both stages

of our SSFSL framework because dealing with noisy train-

ing images is the key for both. Importantly, we also em-

pirically observe that with AdarGCN, (1) the GCN can be

deeper than existing ones which are typically limited by the

depth of layers due to over-smoothing, bringing additional

performance gain, and (2) it beats the state-of-the-art alter-

natives even under the conventional FSL setting where no

label noise is present. This indicates that AdarGCN can al-

so be used to deal with the clean but outlying training sam-

ples. These samples are particularly harmful for FSL as

each class is only represented with few samples.

Our contributions are: (1) We define a new FSL setting

termed SSFSL, which is more challenging yet more realistic

than the conventional FSL setting. (2) A two-stage solution

is proposed for SSFSL: i) crawling sufficient source class

training images from the web and performing label denois-

ing on them; ii) solving the FSL problem after merging the

cleaned web images with the original training samples. (3)

Both the LDN and FSL tasks involved in our SSFSL set-

ting are addressed by a novel GCN model termed AdarGC-

N. Extensive experiments show that our AdarGCN achieves

state-of-the-art results under both FSL settings.

2. Related Work

Few-Shot Learning: Meta-learning based methods [33,

37, 6, 47, 50, 48, 32, 1, 19, 40, 54, 25, 27, 53] have domi-

nated the recent FSL research. Apart from metric learning

solutions [47, 50, 48, 1, 54, 25, 27, 53], another promis-

ing approach is learning to optimize [37, 6, 19, 40]. More

recently, methods based on feature hallucination and syn-

thesis [12, 44, 7, 52, 57, 49] or predicting parameters of the

network [36, 35, 10, 9] have been developed. However, the

promising performance of existing FSL methods is highly

dependent on the assumption that there exist sufficient train-

ing samples from source classes. Note that this assumption

is often invalid in practice, especially when it comes to fine-

grained recognition. In this work, we thus focus on a new

SSFSL setting (only with a few labeled samples per source

class). Even though our AdarGCN model is designed for

this new SSFSL setting, it is found to be extremely compet-

itive under the conventional FSL setting (see Table 4). This

suggests that the outlying samples problem, largely ignored

by existing FSL methods so far, should also be addressed

even if the source class data is ample.

Graph Convolutional Networks: GCN is designed to

work directly on graphs and leverage their structural infor-

mation [17, 4, 46, 8]. Recently, GCN has been employed

in various problems [59, 58, 45, 31, 55, 42, 20, 26, 28, 60].

In particular, label denoising with GCN [14, 10] has attract-

ed much attention. In [14], its focus is on fully exploiting

sufficient noisily labeled samples from target classes for F-

SL (which is against the standard FSL setting), and the core

transfer problem in FSL remains untouched. To overcome

these drawbacks, we choose to study a new SSFSL setting

in our current work. In [10], a GCN-based denoising au-

toencoder is proposed to generate the classification weights

for both source and target classes under generalized FSL

[43], but no GCN-based label denoising problem is con-

cerned in [10]. Moreover, although GCN has been directly

used in a number of recent FSL methods [41, 15, 10, 14],

our AdarGCN is different in that it can perform adaptive ag-

gregation for FSL and is able to cope with both noisy and
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Figure 2. Schematic of our AdarGCN for scarce-source few-shot learning (SSFSL). A) We crawl sufficient images from the web by

searching with the name of each source class. B) We use our GCN-based LDN model to clean the crawled web images which contain large

amount of noise. C) With the cleaned web images as well as the original clean training images, we employ our GCN-based FSL model

like under the conventional FSL setting. For both the LDN and FSL tasks, our AdarGCN is adopted.

outlying training samples. Our results show that the new

GCN is clearly better than existing GCN based alternatives

(see Table 4).

3. Methodology

3.1. Problem Definition

We formally define the scarce-source few-shot learning

(SSFSL) problem as follows. Let Cs denote a set of source

classes and Ct denote a set of target classes (Cs

⋂
Ct = ∅).

We are given a k1-shot sample set Ds from the source class-

es, a k-shot sample set Dt from the target classes, and a test

set T from the target classes. The source class small sam-

ple set is denoted as Ds = {(xi, yi)|yi ∈ Cs, i = 1, ..., Ns},

where yi denotes the class label of sample xi and Ns is the

number of samples in Ds. Since each source class from Ds

has only k1 labeled samples, we have Ns = k1|Cs|. Simi-

larly, we have Dt = {(xi, yi)|yi ∈ Ct, i = 1, ..., Nt}, where

Nt = k|Ct| (each target class has k labeled samples). The

goal of SSFSL is thus to train a model with Ds and Dt that

can generalize well to T . Note that our new SSFSL prob-

lem is clearly more challenging than the conventional FSL

problem, since Ds only has few samples per class.

As in previous works on FSL [6, 47, 50, 48, 32], we train

a FSL model with n-way k-shot classification tasks sampled

from Ds. Concretely, each n-way k-shot task is defined

over a randomly-sampled episode {Se,Qe}, where Se is the

support set having n classes and k samples per class, and

Qe is the query set. Each episode is sampled as follows:

we first sample a small set of source classes Ce = {Ci|i =
1, ..., n} from Cs, and then generate Se and Qe by sampling

k support samples and q query samples from each class in

Ce, respectively. Formally, we have Se = {(xi, yi)|yi ∈
Ce, i = 1, ..., n × k} and Qe = {(xi, yi)|yi ∈ Ce, i =
1, ..., n × q}, where Se

⋂
Qe = ∅. A FSL model is then

trained by minimizing the gap between its predicted labels

and the ground-truth labels over the query set Qe.

3.2. Framework Overview

To overcome the lack of training samples from source

classes in SSFSL, we propose a two-stage framework

shown in Fig. 2. (1) The first stage consists of image crawl-

ing and GCN-based label denoising (LDN), as depicted in

Fig. 2(A) and Fig. 2(B) respectively. For each source class

c ∈ Cs, we only have a small set of k1 clean images ini-

tially: Xs
c = {xi|(xi, yi) ∈ Ds, yi = c, i = 1, ..., Ns}. To

augment the small set Xs
c , we then crawl another set of k2

additional images from the web by image searching with the

name of source class c ∈ Cs: Xweb
c = {xi|i = 1, ..., k2}.

As expected, there exists much noise in Xweb
c . A GCN-

based LDN method is thus deployed to reduce the noise in

Xweb
c and obtain a set of cleaned images Xd

c ⊂ Xweb
c . We

then define the set of cleaned samples as: Dd = {(x, y)|x ∈
Xd

c , y = c, c = 1, ..., |Cs|}. (2) The second stage consist-

s of GCN-based FSL, as shown in Fig. 2(C). We leverage

both Ds and Dd to train our GCN-based FSL model. For
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Figure 3. Illustration of the network architecture of our AdarGCN

model. Notations: NU – node updating; EU – edge updating.

both stages, an adaptive aggregation GCN (AdarGCN) is

used to deal with noisy training images.

3.3. Network Architecture of AdarGCN

Different from existing GCN models [41, 15, 10, 17,

23]), our AdarGCN, illustrated in Fig. 3, induces adaptive

aggregation into GCN training to better control the infor-

mation propagation from each node to the rest in the graph

structure.

Formally, for the l-th GCN layer (l = 1, ..., L) of our

AdarGCN, given the node feature matrix V l−1 and the edge

feature matrix El−1 as inputs, the output V l can be ob-

tained by adding the node feature matrix from the GCN in-

ner block and that from the previous GCN layer:

V l = V l−1 + Vblock, (1)

which is realized by the inter-layer skip-connection branch

a (see Fig. 3). Within the GCN inner block of the l-th GCN

layer, we design a multi-head multi-level aggregation mod-

ule to aggregate the node features adaptively with different

aggregation complexities (see Fig. 3). The node feature ma-

trix and edge feature matrix are then updated successively.

Specifically, node feature updating is achieved by the

adaptive aggregation among the three updating branches c,

b, d with different degrees of aggregation. Branches c, b, d

update the node features respectively with 0, 1, 2 iterations:

one iteration update is denoted by a Node Updating (NU)

unit which consists of an aggregation module and a multi-

layer perceptron (MLP) module. The outputs of branches c,

b, d are given by:

V l
c = V l−1, V l

b = fθb(E
l−1 · V l−1),

V l
d = fθd1(E

l−1 · fθd2(E
l−1 · V l−1)),

(2)

where θb collects the parameters of the MLP module in

branch b, while θd1 and θd2 collect the parameters of

the two MLP modules in branch d, respectively. As

shown in Fig. 1, how far information can travel along each

head/branch differs – d has the farthest influence whilst c

the shortest (each node itself, to be precise). For adaptive

aggregation, the adaptive weight of each of branches c, b, d

is computed with a fully connected (FC) layer:

wc = FC(V l
c ), wb = FC(V l

b ), wd = FC(V l
d), (3)

where FC(·) denotes the output of a FC layer, followed by

a sigmoid function. The total node update within the GCN

inner block is formulated as:

V̄ l = concat(wc · V
l
c , wb · V

l
b , wd · V

l
d). (4)

Note that more than three branches can be used here, but

empirically we found that more branches bring no further

gains. We thus use only three branches.

For edge feature updating, we denote it with an Edge

Updating (EU) unit (see Fig. 3), which is used to learn the

distance metric given node features as inputs. In this work,

each EU unit includes a distance computing operation, 4

conv blocks, and a sigmoid activation function (see Fig. 3).

3.4. AdarGCN for LDN

Our AdarGCN is employed in both stages of our frame-

work. In the first stage, it is for LDN over the noisy images

crawled for each source class. Specifically, given a source

class c ∈ Cs, we have a positive image set X+
c = Xs

c ,

a noisy image set X∗
c = Xweb

c , and a negative image set

X−
c = {X+

i ∪ X∗
i |i ∈ Cs, i 6= c}, as shown in Fig. 2(B).

Before per-class LDN, we pretrain a simple embedding net-

work (e.g. four-block ConvNet) on X+
c like ProtoNet [47]

to extract d-dimensional image feature vectors, which is

consistent with the second stage.

To construct an LDN graph for each source class c ∈ Cs,

we generate a mini-batch by randomly selecting m+ im-

ages from X+
c , m∗ images from X∗

c , and m− images

from X−
c (see Fig. 2(B)). The image feature matrices of

these three groups of samples are respectively denoted as

V +
c ∈ R

m+×d, V ∗
c ∈ R

m∗×d, and V −
c ∈ R

m−×d. The n-

ode feature matrix is thus defined as Vc = [V +
c ;V ∗

c ;V
−
c ] =

[v1; · · · ; vM ] ∈ R
M×d, where M = m+ +m∗ +m−. The

initial symmetric adjacency matrix Ac = {aij} ∈ R
M×M

is formed as: aij = 0 if vi and vj respectively come from

V +
c and V −

c , and aij = 1 otherwise (see Fig. 2(B)). This

way of constructing Ac ensures that the positive and nega-

tive samples cannot be directly confused by each other.

We denote the above LDN graph as Gc = (Vc, Ec),
where the edge feature matrix Ec = {eij} ∈ R

M×M . To

adapt the generic AdarGCN described in Sec. 3.3 to the LD-

N task, we make four modifications to its architecture: (1)

For each edge updating (EU) unit, we set eij = 0 when

aij = 0, after the sigmoid operation to avoid direct label

confusion during label propagation. (2) Before the node

updating (NU) unit of the first GCN layer, we perform EU

to initialize Ec. (3) For each NU unit, we perform a linear

transformation after the concat operation. (4) For the last
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GCN layer, we drop the EU unit and use a sigmoid function

to output the predicted score for each sample.

Note that our GCN-based LDN model can be regard-

ed as a binary classifier, outputting 1 for positive samples

and 0 for negative ones. However, unlike the traditional

image classification, our model can make full use of uncer-

tain samples (i.e. images from X∗
c ) by aggregating similar

nodes for more effective label propagation. Let ŷi be the

predicted score of each sample xi (i = 1, ...,M ). The loss

for GCN-based LDN is defined as follows:

LLDN = −
1

m+

m+

∑

i=1

log(ŷi)−
1

m−

M∑

i=M−m−+1

log(1− ŷi).

(5)

Although our GCN-based LDN model ignores the direc-

t back-propagation w.r.t. the loss of noisy images (whose

labels are uncertain), it can learn better representation for

uncertain images by aggregating both certain and uncer-

tain images, followed by back-propagation w.r.t. the loss

of certain images. Our GCN-based LDN model is shown to

outperform multi-layer perceptron (MLP) which copes with

each sample independently (see Table 1), indicating the im-

portance of certain and uncertain image aggregation.

Since each uncertain sample x ∈ X∗
c can appear in mul-

tiple LDN graphs w.r.t. source class c, due to random sam-

pling, we average the obtained multiple predicted scores as

the probability of being positive for each sample x. If this

probability is greater than a preset threshold, we then add

(x, c) to Dd.

3.5. AdarGCN for FSL

In the second stage, given Ds ∪ Dd, we train our

AdarGCN-based FSL model by episodic sampling. For

each episode, we randomly select n × k samples to form

the support set Se and n × q samples to form the query

set Qe. The embedding network fϕ is trained jointly with

the GCN module to obtain the feature representations of all

samples from Se ∪Qe: vi = fϕ(xi), i = 1, ..., n× (k+ q).
Note that, although both transductive (with all query im-

ages in one trial) and non-transductive (with a single query

image per trial) test strategies are followed in the state-of-

the-art GCN-based FSL model in [15], we only adopt the

non-transductive strategy. This is for fair comparison with

most of the other state-of-the-art FSL methods which are

non-transductive.

For each episode, we construct n × q graphs, each of

which is constructed using n × k support samples and 1

query sample. Denote the n × q graphs as G = {Gt =
(Vt, Et)|t = 1, ..., n × q}. For a single graph Gt in

G, Vt = {

Se

︷ ︸︸ ︷

vs1, · · · , v
s
n×k,

Qe

︷︸︸︷

vqt }. For symbol conciseness,

we denote it as Vt = {vi}
n×k+1

i=1
, along with Et =

{eij}i,j=1,··· ,n×k+1, where vi is the node feature obtained

by the embedding network, vn×k+1 denotes the node fea-

ture of the query image, and eij is the edge feature w.r.t. vi
and vj . For vi, vj ∈ Se, eij = 1 if vi and vj come from

the same class and eij = 0 otherwise. When vi ∈ Qe or

vj ∈ Qe, we also set eij = 0 due to the unknown label of

vi or vj .

The full GCN is composed of L GCN layers, each having

the AdarGCN architecture shown in Fig. 3. In this work, we

set L = 3 for fair comparison with other GCN based FSL

methods [41, 15, 10] that also use three GCN layers. Given

a graph Gt (t = 1, ..., n × q), the inputs of the first GCN

layer (i.e. node feature matrix V 0
t and edge feature matrix

E0
t ) are obtained in the way mentioned above (where we

set l = 0). For the l-th GCN layer (l = 1, ..., L), the inputs

V l−1
t and El−1

t (from the previous layer) are updated to V l
t

and El
t.

For GCN training, we choose the binary cross-entropy

loss between the ground-truth edge matrix Egt =
{egtij }i,j=1,··· ,n×k+1 and the edge feature matrices of al-

l L GCN layers {El
t = {elij}i,j=1,··· ,n×k+1}

L
l=1

, where

egtij = 1 if xi and xj come from the same class and egtij = 0
otherwise. Formally, for each graph Gt, the binary cross-

entropy loss of the l-th GCN layer is defined as:

Lt
l = −

n×k+1∑

i=1

∑

j 6=i

egtij · log(e
l
ij) + (1− egtij ) · log(1− elij).

(6)

Taking all graphs (each for a query image) and all GCN

layers on board, we compute the overall cross-entropy loss

for a training episode as follows:

LFSL =

n×q
∑

t=1

L∑

l=1

λl · Lt
l , (7)

where λl denotes the loss weight of the l-th GCN layer.

For GCN inference, the edge feature matrix EL
t of the

last GCN layer can be used to predict the label of the unique

query image. Concretely, the predicted scores of the query

image are collected as ŷ = {ŷ1, · · · , ŷn×k}, where ŷi =
eLn×k+1,i (0 ≤ ŷi ≤ 1), being the predicted probability of

the query image coming from the class to which the support

sample xi (i = 1, ..., n × k) belongs. The classification

probability of the query image is given by:

pc =

n×k∑

i=1

1(yi = c) · ŷi/
n×k∑

i=1

ŷi, (8)

where 1 denotes the indicator function, yi is the class label

of support sample xi, and c the c-th class label in the episode

(c = 1, ..., n).
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miniImageNet CUB

Method k1=10 k1=20 k1=50 k1=10 k1=20 k1=50

FSL (w/o crawled noisy images) 40.91± 0.68 50.01± 0.66 55.04± 0.59 58.89± 0.71 68.33± 0.69 76.16± 0.62
FSL (w/ crawled noisy images) 59.20± 0.59 59.37± 0.61 59.64± 0.58 76.35± 0.57 76.83± 0.57 77.18± 0.56
FSL+LDN (LP) 60.21± 0.57 62.83± 0.55 64.74± 0.55 76.94± 0.49 77.98± 0.51 78.87± 0.54
FSL+LDN (MLP) 60.19± 0.58 62.88± 0.54 64.25± 0.60 77.10± 0.53 78.06± 0.48 78.92± 0.50
FSL+LDN (GCN [17]) 61.22± 0.58 63.27± 0.59 65.36± 0.54 77.44± 0.52 78.56± 0.54 79.32± 0.49
FSL+LDN (ResGCN [23]) 61.48± 0.61 63.79± 0.56 65.92± 0.56 77.52± 0.51 78.69± 0.52 79.69± 0.49
FSL+LDN (ours) 63.37± 0.53 65.12± 0.55 66.85± 0.52 79.16± 0.48 79.82± 0.51 80.88± 0.50

Table 1. Comparative results by various label denoising (LDN) methods under the new SSFSL setting (k2=1,200). FSL denotes GCN-based

FSL with our AdarGCN model.

4. Experiments

4.1. New SSFSL

Datasets and Settings. 1) Datasets. Two benchmark-

s are selected: (1) mini-ImageNet: This dataset [50] is

derived from ILSVRC-12 [39]. It consists of 100 classes

totally, with 600 images per class. As in [37], the train-

ing/validation/test split is set to 64/16/20 classes. (2) CUB:

The fine-grained CUB [51] is particularly suitable for our

new SSFSL setting. Since the number of images per class

is less than 60, FSL on CUB is naturally a SSFSL prob-

lem. Although CUB has been widely used for FSL, we are

the first to identify the problem and provide a solution. It

consists of 200 bird species, and the training/validation/test

split is set to 100/50/50 classes. In both datasets, each im-

age is resized to 84×84.

2) SSFSL Settings. Let k1 be the number of original clean

images per training class (i.e. source class), and k2 be

the number of crawled noisy images per training class. In

this work, we set k1=10, 20, or 50, and k2=1,200. As in

the state-of-the-art GCN-based FSL models [41, 15], the

four-block ConvNet network is used as the embedding net-

work. For both LDN and FSL tasks involved in our new

SSFSL setting, the same embedding network is used. As

in [41, 15], the 5-way 5-shot accuracy is computed over

600 episodes randomly sampled from the test set: each test

episode has 5 support images and 15 query images per class.

3) Implementation Details. (1) GCN-Based LDN: The

four-block ConvNet network pretrained on the training set

is used as the feature extractor. The dimensionality of the

output features is 128. For GCN training over each training

class, a mini-batch consists of three types of images from

this class: 5 positive images, 5 negative images, and 50

crawled noisy images1 (see Fig. 2). We construct an LDN

graph over each mini-batch. We set a learning rate of 0.001,

a dropout probability of 0.5, and a mini-batch size of 8. The

Adam optimizer [16] is used over 500 training epochs. For

each source class, we select the cleaned images with predic-

tion scores ≥ 0.5 for the subsequent GCN-based FSL task.

1Out of these crawled web images, around 40% are noise. After LDN

using our AdarGCN, this percent is reduced to around 10%. Some exam-

ples of the removed web images can be found in the suppl. material.

(2) GCN-Based FSL: With the same 4-block embedding

network, our GCN model for FSL is trained by the Adam

optimizer [16] with an initial learning rate of 0.001 and a

weight decay of 1e− 6. We also use label smoothing as in

[19]. During the training phase, we cut the learning rate in

half every 10,000 episodes and set total training episodes

as 50,000. In the 5-way 5-shot scenario, each mini-batch

has 32 training episodes, and each episode consists of 25

support images and 5 query images (5 shot support samples

and 1 query sample per class). Within a training episode,

we construct a graph over 25 support images and 1 query

image for each query image.

4) Compared Methods. Since our SSFSL setting includes

both LDN and FSL tasks, we compare our AdarGCN-LDN

and AdarGCN-FSL with various LDN and FSL alterna-

tives, respectively. When comparing our AdarGCN-LDN

with other LDN methods including label propagation (LP)

[61, 62], MLP, GCN [17] and ResGCN [23], we employ the

same subsequent FSL model (i.e. AdarGCN-FSL) for fair

comparison. Note that a score threshold of 0.5 is selected

for all LDN methods except LP to classify the positive and

negative samples. For LP-based LDN, a score threshold of

0 is used otherwise, since the positive samples are labeled

as ‘1’ and the negative samples as ‘-1’. Similarly, when

comparing our AdarGCN-FSL with various FSL baselines,

we adopt the same LDN model (i.e. AdarGCN-LDN) for

fair comparison. We focus on representative/state-of-the-

art FSL methods including MatchingNet [50], MAML [6],

ProtoNet [47], IMP [1], Baseline++ [3], GCN [41], wDAE-

GNN [10], and EGCN [15].

Comparison to LDN Alternatives. The comparative re-

sults for the label denoising task are shown in Table 1. It

can be seen that: (1) Adding the crawled images (although

noisy) to the original few clean data leads to consistent and

significant improvements for different values of k1. The im-

provements are particularly salient when k1 takes a smaller

value. (2) All LDN methods can further improve the FSL

performance (see ‘FSL+LDN’ vs. ‘FSL (w/ crawled noisy

images)’) by imposing label denoising over the crawled im-

ages, showing the effectiveness of LDN under the SSFSL

setting. (3) Our AdarGCN-LDN achieves the best label de-
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Method k1 k2 miniImageNet CUB

LDN+FSL (MatchingNet [50]) 50 1,200 51.59± 0.62 66.12± 0.60
LDN+FSL (MAML [6]) 50 1,200 59.67± 0.57 73.50± 0.54
LDN+FSL (ProtoNet [47]) 50 1,200 64.73± 0.58 74.48± 0.56
LDN+FSL (IMP [1]) 50 1,200 65.44± 0.57 78.61± 0.54
LDN+FSL (Baseline++ [3]) 50 1,200 64.55± 0.55 77.90± 0.54
LDN+FSL (GCN [41]) 50 1,200 64.80± 0.54 74.59± 0.49
LDN+FSL (wDAE-GNN [10]) 50 1,200 63.26± 0.53 74.23± 0.50
LDN+FSL (EGCN [15]) 50 1,200 65.12± 0.52 78.10± 0.51
LDN+FSL (ours) 50 1,200 66.85± 0.52 80.88± 0.50

Table 2. Comparative results by various FSL methods under the

new SSFSL setting. LDN denotes GCN-based LDN with our

AdarGCN.

GCN Model k1 k2 LDN Task FSL Task

AdarGCN (branch: b) 50 1,200 64.36± 0.57 63.13± 0.59
AdarGCN (branches: a, b) 50 1,200 65.92± 0.53 65.01± 0.55
AdarGCN (branches: a, b, c) 50 1,200 66.10± 0.52 65.88± 0.55
AdarGCN (branches: a, b, c, d) 50 1,200 66.85± 0.52 66.85± 0.52

Table 3. Ablation study results for our AdarGCN on both LDN and

FSL tasks involved in new SSFSL setting over miniImageNet.

noising results among all LDN methods including the GCN-

based ones [17, 23]. This validates the effectiveness of our

AdarGCN for LDN.

Comparison to FSL Alternatives. The comparative re-

sults for the FSL task are shown in Table 2. For fair com-

parison, all compared methods use the same set of cleaned

samples obtained by our AdarGCN-LDN. We have the fol-

lowing observations: (1) Our AdarGCN-FSL performs the

best among all FSL methods, validating the effectiveness of

our AdarGCN for solving the FSL task. (2) Our AdarGCN-

FSL clearly outperforms the latest GCN-based FSL meth-

ods [41, 15, 10], which suggests that adaptive aggregation

indeed plays an important role when applying GCN to FSL.

(3) Our AdarGCN-FSL also clearly leads to improvements

over the state-of-the-art FSL baselines [1, 3].

Further Evaluations. 1) Ablation Study Results. The ab-

lative results for our AdarGCN model on both tasks are pre-

sented in Table 3. We can observe from Table 3 that adding

more branches leads to more performance improvements on

both the LDN and FSL tasks, consistently demonstrating

the contribution of each branch (a, b, c, or d in Fig. 3) in our

AdarGCN model.

2) Effect of Different Values of k2. To show the effec-

t of different values of k2 on our AdarGCN-LDN method,

we gradually reduce k2 from 1,200 to 300, and then eval-

uate the obtained LDN results by forwarding them to the

subsequent FSL task. The results in Fig. 4 show that our

AdarGCN-LDN method suffers from gradual performance

degradation when k2 decreases from 1,200 to 300.

3) Iterative Optimization for GCN-Based LDN. Note that

the cleaned samples obtained by our AdarGCN-LDN can

be easily exploited for another round of GCN-based LD-

N. In this work, for computational efficiency, we have not

Figure 4. The effect of different

values of k2 on our AdarGCN-

LDN method (k1=10, 20, 50)

over miniImageNet.

Figure 5. The effect of iterative

optimization on our AdarGCN-

LDN method (k1 = 50, k2 =

1, 200) over miniImageNet.

Models GCN miniImageNet CUB

MatchingNet [50] no 55.30± 0.73 68.71± 0.81
ProtoNet [47] no 65.77± 0.66 74.70± 0.57
R2-D2 [2] no 68.40± 0.60 –

MAML [6] no 63.11± 0.92 71.33± 0.71
Relation Net [48] no 67.07± 0.63 69.66± 0.75
IMP [1] no 68.10± 0.80 71.87± 0.69
Baseline++ [3] no 66.43± 0.72 75.39± 0.62†

TPN [30] no 69.86± 0.58 –

MetaOptNet [19] no 69.51± 0.51 77.10± 0.53
DN4 [27] no 71.02± 0.64 74.92± 0.64
GCN [41] yes 66.41± 0.60 74.07± 0.67
wDAE-GNN [10] yes 65.91± 0.60 73.85± 0.74
EGCN [15] yes 66.85± 0.62 74.58± 0.65
AdarGCN (ours) yes 71.48± 0.48†

78.04± 0.45

Table 4. Comparative results for conventional FSL. † denotes that

the result is reproduced since our data split of CUB is different

from that in [3]. ‡ note that our AdarGCN achieves an even higher

accuracy of 72.24 with six GCN layers (see Fig. 7).

attempted such iterative optimization in the experiments re-

ported so far. To show the effect of iterative optimization on

our AdarGCN-LDN, we present the results by iterative op-

timization in Fig. 5. We see that our AdarGCN-LDN con-

sistently achieves more improvements when more rounds

of GCN-based LDN are included and becomes stable after

three iterations/runs.

4.2. Conventional FSL

Datasets and Settings. We further evaluate our AdarGCN-

FSL under the conventional FSL setting. The full mi-

niImageNet and CUB are selected, where miniImageNet

has 600 samples per class and CUB has less than 60 samples

per class. The non-transductive 5-way 5-shot test strategy

is adopted under the conventional FSL setting. Note that

only the 5-way 5-shot protocol is considered for fair com-

parison to the latest GCN-based FSL methods [41, 15] (the

results with the 5-way 1-shot protocol can be found in the

suppl. material). Moreover, the implementation details for

GCN training remain largely unchanged compared to those

described in Section 4.1. One exception is that: since the

number of training samples in the CUB dataset is relatively

small, we cut the learning rate in half every 5,000 episodes

and set the total number of training episodes as 20,000 on

CUB for better optimization.
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(a) Training (b) Test

Figure 6. Illustration of weight distribution on the three branches

b, c, d of different GCN layers obtained by our adaptive aggre-

gation module over miniImageNet. The visualization of adaptive

aggregation is presented for both training and test phases. The red,

green, and blue points denote the weights of GCN layer 1, 2, and

3, respectively.

Comparison to FSL Baselines. Two groups of baselines

are selected: (1) State-of-the-art GCN-based FSL method-

s [41, 15, 10]; (2) Representative/latest FSL methods (w/o

GCN) [50, 47, 6, 48, 30, 2, 1, 3, 19]. The comparative re-

sults for conventional FSL are shown in Table 4. It can

be seen that: (1) Our AdarGCN-FSL method yields 3–

5% improvements over the latest GCN-based FSL methods

[41, 15, 10], validating the effectiveness of adaptive aggre-

gation for GCN-based FSL. (2) The improvements achieved

by our AdarGCN-FSL method over the state-of-the-art FSL

baselines [30, 2, 1, 3, 19] range from 1% to 6%, showing

that AdarGCN has a great potential for FSL even with suf-

ficient and clean training samples, due to its ability to limit

the negative effect of outlying samples.

Further Evaluations. 1) Visualization of Adaptive Ag-

gregation. By randomly sampling 1,000 query images re-

spectively from the training set and the test set, we visu-

alize the weights of the three branches b, c, d of different

GCN layers obtained by our adaptive aggregation module

(see Fig. 3). The visualization results over miniImageNet

are presented in Fig. 6. It shows that each GCN layer has

a significantly different weight distribution. This provides

direct evidence that adaptive aggregation is indeed needed

in GCN-based FSL. Further, it is also noted that the weight

of branch c is forced to be significantly larger than those

of the other two branches for the outlying samples so that

their negative effect can be effectively limited (see the sup-

pl. material), demonstrating that the negative impact of a

noisy or outlying training sample can be limited to a small

neighborhood of the corresponding node, making the mod-

el more robust against the clean but outlying samples under

the conventional FSL setting.

2) FSL with Deeper GCN. In the above experiments, all

GCN-based FSL methods uniformly set the number of GCN

layers to 3, for fair comparison. It is well-known that deep-

er GCNs often lead to performance degradation. However,

since both adaptive aggregation and skip connection are in-

Figure 7. Comparative results among the three latest GCN-based

FSL methods with deeper GCNs (GCN layers ≥ 3) for conven-

tional FSL over miniImageNet.

cluded in our AdarGCN model, it is possible to go deeper

with our AdarGCN. To demonstrate this, we provide the

comparative results obtained using three GCN-based FSL

methods (i.e. GCN [41], EGCN [15], and our AdarGCN) in

Fig. 7, where the number of GCN layers ranges from 3 to 7.

As expected, the performance of GCN [41] drops when it

goes deeper. However, both EGCN [15] and our AdarGCN

achieve performance improvements when more GCN lay-

ers are stacked, and our AdarGCN consistently outperform-

s EGCN. This can be explained as follows: our AdarGC-

N leverages both adaptive aggregation and skip connection,

while only skip connection is concerned in EGCN. These

results suggest that skip connection enables relative perfor-

mance gains with deeper GCNs. But the adaptive aggrega-

tion (induced by our AdarGCN) is crucial for the absolute

performance. One possible reason is that it helps avoid the

over-smooth effect, because it can adaptively aggregate over

different reaches of message passing on the graph.

5. Conclusion

In this paper, we have defined a new scarce-source few-

shot learning (SSFSL) setting. To overcome the training

data scarcity problem, we chose to augment the training da-

ta by crawling sufficient images from the web. Since the

crawled images are noisy, we then proposed a GCN-based

LDN method to clean the crawled noisy images. Further,

with the cleaned web images and the original clean training

images as the new training set, we proposed a GCN-based

FSL method. For both the LDN and FSL tasks, we designed

an AdarGCN model which can perform adaptive aggrega-

tion to deal with noisy training data more effectively. Ex-

tensive experiments show that our AdarGCN outperforms

the state-of-the-art alternatives under both the new SSFSL

and the conventional FSL settings.
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