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Abstract

Transferring knowledge from an existing labeled domain

to a new domain often suffers from domain shift in which

performance degrades because of differences between the

domains. Domain adaptation has been a prominent method

to mitigate such a problem. There have been many pre-

trained neural networks for feature extraction. However,

little work discusses how to select the best feature instances

across different pre-trained models for both the source and

target domain. We propose a novel approach to select fea-

tures by employing reinforcement learning, which learns

to select the most relevant features across two domains.

Specifically, in this framework, we employ Q-learning to

learn policies for an agent to make feature selection de-

cisions by approximating the action-value function. After

selecting the best features, we propose an adversarial dis-

tribution alignment learning to improve the prediction re-

sults. Extensive experiments demonstrate that the proposed

method outperforms state-of-the-art methods.

1. Introduction

There is high demand for automatic classification of all

kinds of data. However, large quantities of labeled train-

ing data is a prerequisite for high quality machine learn-

ing models. Unfortunately, manual annotation typically in-

volves tremendous human costs. Therefore, it is often nec-

essary to transfer knowledge from an existing labeled do-

main to an unlabeled new domain. However, due to the

phenomenon of domain shift [26], machine learning models

do not generalize well from an existing domain to a novel

unlabeled domain. Domain adaptation (DA) has been an ef-

fective method to mitigate the domain shift problem. Both

traditional and deep learning based models are explored.

Traditional methods rely on feature representation of

instances (e.g., images) to perform DA tasks. With the

emergence of different deep neural networks trained on

large datasets, the features for traditional methods changed

from low-level features to deep features (Alexnet [18],

ResNet50 [24], Xception [52], InceptionResNet [47] etc.).

Distribution alignment includes the alignment of marginal

distribution [25, 22, 16], conditional distribution [10, 40]

and joint distributions [41]. Subspace learning includes

methods in Euclidean space [25, 49] and Riemannian

space [9, 52]. However, the performance of traditional

methods is heavily affected by the extracted features; a bet-

ter ImageNet model produces better features than a lower

accuracy ImageNet model [50].

Recently, deep learning methods have shown great suc-

cess for domain adaptation. Most deep domain adaptation

networks either design novel distance metrics to measure

the discrepancy between two domains or learn domain in-

variant features using adversarial learning. Distance based

methods aim to minimize the discrepancy between source

and target domain [38, 20, 7]. Inspired by generative ad-

versarial network (GAN) [11], adversarial learning-based

methods consist of a domain classifier and discriminator.

The classifier aims to distinguish the source domain and tar-

get domain, while the discriminator aims to fool the classi-

fier. By playing the minimax game, the distance between

source and target domain can be minimized [6, 37, 48].

The Domain-Adversarial Neural Network (DANN) consid-

ers a minimax loss to integrate a gradient reversal layer

to promote the discrimination of source and target domain

[6]. The Adversarial Discriminative Domain Adaptation

(ADDA) method uses an inverted label GAN loss to split

the source and target domain, and features can be learned

separately [37]. Zhang et al. reweighed the target sam-

ples using the degree of confusion between source and tar-

get domains. The target samples are assigned by higher

weights, which can confuse the domain discriminator [44].

Domain Symmetric Network (SymNet) includes a symmet-

rically designed source and target classifier. The proposed

category level loss can improve the domain level loss by

learning the invariant features between two domains [51].

In this paper, we propose to select the best feature pairs

across the source and target domains using reinforcement

learning, and it interacts with the adversarial distribution

alignment learning module, so that we can learn the domain
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(a) Source t-SNE view (b) Combination (c) Target t-SNE view

Figure 1: T-SNE view of two images from source domain: Art (a) and target domain: Real world (c) in Office-Home dataset.

Different colors in (a) and (c) represent different feature extractors, while red colors in (b) are points from source domain,

and blue colors denote points in target domain. The distance between source and target image can be minimized by selecting

a proper feature extractor. Source features from ShuffleNet and target features from NasnetMobile have the shortest distance.

invariant features and further minimize the domain discrep-

ancy. Our contributions are three-fold:

1. We propose a novel framework called adversarial re-

inforcement learning for unsupervised domain adapta-

tion (ARL). Reinforcement learning is employed as a

feature selector to identify the closest feature pair be-

tween source and target domains.

2. We also develop a new reward across both source and

target domains. The proposed deep correlation reward

on the target can guide the agent to learn the best policy

and select the closest feature pair for both domains.

3. The proposed adversarial learning and domain distri-

bution alignment together mitigate the discrepancy be-

tween source and target domains.

Extensive experiments on benchmark datasets demonstrate

significant improvements in classification accuracy over the

state of the art.

2. Related work

Existing domain adaptation methods including both tra-

ditional methods and deep learning based methods more or

less rely on pre-trained models for feature extraction. In

prior work [50], we explored the effect of model selection

of sixteen deep pre-trained ImageNet models on twelve do-

main adaptation methods. We found that a higher accuracy

ImageNet model will produce better features for unsuper-

vised DA. However, that work did not explore whether fea-

tures from the same pre-trained model are optimal.

Fig. 1 is the t-SNE view of one source and one target

image using different feature extractors. Previous work

only evaluated their models on the same domain (e.g., train

source data using ResNet50 features and test target data also

using ResNet50 features). However, such a strategy might

not be optimal, since the distance between the source and

target from different feature extractors can be shortened. In

Fig, 1b), ShuffleNet and NasnetMobile are closer to each

other than others in projected 2D space. Similarly, in the

original space, these features can be closer to each other

than others, which suggests these two feature sets have min-

imal distance. It is hence important to identify such close

features between two domains.

Reinforcement learning (RL) shows its robustness in

learning sophisticated policies by interacting with a com-

plex environment and is widely used in many tasks such as

text/image recognition and object tracking. Feng et al. used

RL as an instance selector to filter out noisy data and select

high quality sentences to improve relation classification ac-

curacy [5]. Carr et al. presented an algorithm using RL to

initialize the adversarial autoencoder network; they trans-

ferred source domain state representation space to the target

domain using a random policy [1]. The DisentAngled Rep-

resentation Learning Agent (DARLA) model employed de-

noising autoencoders to learn a visual system to encode the

observations from the environment as a disentangled repre-

sentation and learned a source policy for zero-shot DA [13].

The closest work is DARL (Domain Adversarial Rein-

forcement Learning) [3], focusing on selecting the data in-

stance from a label-rich source domain to a label scarce

target domain called partial domain adaptation, but it does

not generalize to unsupervised domain adaptation if there

are insufficient labels in the source domain. DARL only

selected relevant source data using RL, and then applied

adversarial learning to minimize the distance between the

source and target domain. However, this RL paradigm re-

lies on the rich labels in the source domain and will fail if

the number of labels in the source domain is equal to that in

the target domain. Therefore, the RL paradigm on unsuper-

vised domain adaptation should be further explored.

3. Background

In this section, we briefly recap the concepts of domain

adaptation, reinforcement learning and adversarial learning,

which are the main components of our model.
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3.1. Unsupervised Domain Adaptation (UDA)

For unsupervised domain adaptation, given a source do-

main DS = {XS i,YS i}
ns

i=1 of ns labeled samples in C cat-

egories and a target domain DT = {XT j}
nt

j=1 without any

labels (YT for evaluation only). Our ultimate goal is to learn

a classifier f under a feature extractor F , that ensures lower

generalization error in the target domain.

We propose a new framework for unsupervised domain

adaptation, which is able to select the best feature pair be-

tween two domains from different pre-trained neural net-

works using reinforcement learning.

3.2. Reinforcement learning (RL)

The RL paradigm aims to train an agent to interact with

an unknown environment, and to maximize the cumulative

reward for the task. The agent receives observations and a

reward from the environment and performs actions to the

environment. This problem can be modeled as a Markov

Decision Process (MDP) [33], which is defined as a tuple

(S,A, T,R, γ) where S is a set of states, A is a set of ac-

tions, T is the transition function T (s, s′, a) = P (s′|s, a),
which models the possibility of next state s′ given action

a in state s. R is the reward function R(s, s′, a), which

gets reward R from state s to s′ with discount factor γ
in which 0 ≤ γ ≤ 1. The goal of RL is to learn a

policy π(a|s), that maximizes the discounted expected re-

ward: E[
∑T

t=0 γ
tR(st, at)]. T is the timestep at which each

episode ends.

In our work, we employ a Q-learning agent to maintain a

critic Q(S,A) to estimate the value function. It takes obser-

vation S and action A as inputs and outputs the correspond-

ing expectation of reward.

3.3. Adversarial learning

Adversarial learning minimizes the domain discrepancy

by a feature extractor and a domain discriminator. The do-

main discriminator aims to distinguish the source domain

from the target domain, while the feature extractor aims to

learn domain-invariant representations to fool the domain

discriminator.

Given the feature representation of feature extractor F ,

we can learn a discriminator D, which can distinguish the

two domains using the following loss function:

LA(XS ,XT ) = −
1

ns

ns
∑

i=1

log(1−D(F(XS i)))

−
1

nt

nt
∑

j=1

log(D(F(XT j)))

(1)

The discriminator D learns the domain distributions by

maximizing LA with the fixed F , and the feature extractor

F aims to learn domain-invariant representations via mini-

mizing LA with the optimal discriminator D. For the task

in the labeled source domain, it minimizes the following

cross-entropy loss.

LS(f(F(XS)),YS) = −
1

ns

ns
∑

i=1

C
∑

c=1

YS iclog(fc(F(XS i))),

(2)

where f is classifier of the source domain and YS ic ∈
[0, 1]C is the probability of each class in true label, and

fc(F(XS i)) is the predicted probability.

4. Methods

4.1. Motivation

Most previous work in UDA only considered a feature

extractor F from a single pre-trained model without explor-

ing other models [24, 2]. As aforementioned, previously

[50] we explored how different ImageNet models affect

the domain adaptation problem, and found that a higher-

performing ImageNet model would produce better features

for unsupervised domain adaptation. However, identifying

the best set of features (from any source) for UDA has not

yet been explored. Do features from the same deep network

achieve the best performance? We explore this question us-

ing reinforcement learning by exploring all possible pair-

ings of features from sixteen different pre-trained ImageNet

models.

4.2. Adversarial reinforcement learning (ARL)

We now formalize unsupervised domain adaptation sce-

narios in a reinforcement learning setting by considering

different pre-trained models.

Since we have several well-trained ImageNet models, we

employ a second feature extractor G (which we name the

pre-trained feature extractor) to represent the source and

target images using pre-trained models1. For a given fea-

ture extractor, we consider the maximum mean discrepancy

(MMD) as a non-parametric distance-measure to compare

the distributions of source and target domain by mapping

data into Reproducing Kernel Hilbert Space (RKHS). Let

PXS
and PXT

be the distributions of the source and target

domains. Then the distance between PXS
and PXT

can be

denoted as:

Distk(XS ,XT ) = ||
1

ns

ns
∑

i=1

Gk(XS i)−
1

nt

nt
∑

j=1

Gk(XT j)||H

where Gk is the kth ∈ {1, 2, · · ·K} feature extractor from

pre-trained models (K = 16), andH is the universal RKHS,

1G extracts features from the last fully connected layer of any pre-

trained model, and extracted features have the same dimensionality regard-

less of network.
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Figure 2: The overall progress of the proposed model. We first employ reinforcement learning as a feature selector, and the

adversarial distribution alignment will provide the reward for the feature selector and then the features from the best pair

of pre-trained models will be chosen as the input for the distribution alignment model (Ssource and Starget are all possible

states for the source and target domain; ST(source,target)
is the terminal state with two selected sources of features. LR is the

reinforcement learning loss; LS is the source classification loss; LA is the adversarial domain loss and LDA is the domain

alignment loss).

and G : X � H. However, with a different Gk, such a dis-

tance can be varied. As seen in Fig. 1, we use the t-SNE

view to show one image from the source and target domain,

which belong to the same class. We can find that all sixteen

feature extractors represent the same image with different

projection locations, which shows the differences of var-

ied G. However, we notice that source and target features

from the same extractor might not be the closest features

between source and target. Therefore, we aim to minimize

the distance across all pairs of pre-trained feature extractors

in Eq. 3.

Dist(XS ,XT ) =
1

K2

K
∑

ks=1

K
∑

kt=1

||
1

ns

ns
∑

i=1

Gks
(XS i)

−
1

nt

nt
∑

j=1

Gkt
(XT j)||H,

(3)

where Gks
and Gkt

are pre-trained feature extractors

(ks/kt ∈ {1, 2, · · · ,K}). Therefore, we have many possi-

ble feature instances for two domains, the complexity of the

exhaustive search is O(nsntk
2). We treat the RL paradigm

as a feature selector, which can select the best feature for

two domains. However, the challenge is that extracted fea-

tures are inevitably noisy because they were extracted from

different neural networks, and some lower performance pre-

trained models will cause negative transfer, which means

that some features are “functional” but not “informational”.

If the less informational features are selected, it will hurt the

performance on the target domain.

To address this issue, the ARL model learns to choose

the most suitable source-target feature pair via their ability

to optimize the model. As shown in Fig. 2, we first employ

RL to select the best feature pair and then feed them into an

adversarial domain alignment framework.

We apply a Q-learning algorithm to select the feature sets

for the two domains. The Q-learning agent is a value-based

reinforcement learning agent which trains a critic to esti-

mate the return or future rewards. A reinforcement learn-

ing policy is a mapping that selects an action to take based

on observations from the environment. During training, the

agent tunes the parameters of its policy representation to

maximize the long-term reward. The details of State, Ac-

tion, Reward and policy gradient are described as follows.

State. The state S represents the current selected fea-

tures. As shown in Fig. 2, for one image, we have K pos-

sible states for the feature selector. The state (Sksi, Sktj) is

one selected source-target pair including two extracted fea-

ture vectors: source state Sksi and target state Sktj .

The source state and target state representations are from
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different feature extractors:

Ssource = {Sksi|
K/ns

ks/i=1}, where Sksi = Gks
(XS i)

Starget = {Sktj |
K/nt

kt/j=1}, where Sktj = Gkt
(XT j)

(4)

The initial state S0 = ∅, and the terminal state for each

feature pair is defined as:

ST (ksi, ktj) = Sksi ◦ Sktj . (5)

Therefore, we can define all possible states as a four com-

ponents set: S = {S0, Sksi, Sktj , ST (ksi, ktj)}, where

ks/kt ∈ {1, 2, · · ·K}, i ∈ {1, 2, · · ·ns} and j ∈
{1, 2, · · ·nt}. Without loss of generality, the inputs for the

adversarial domain alignment are the terminal states of all

source and target pairs (ST (source,target)).

Action. We define an action a ∈ {0, 1} to indicate

whether the source feature or target feature is selected as

the input for the adversarial domain alignment. The number

of actions is the same as the number of states. The optimal

action taken by the agent at timestep t is calculated as:

at = max
a

Q(St, a) (6)

where St is the state in the timestep t, and the critic Q(St, a)
is the accumulated reward of taking action a.

Reward. The reward function is an indicator of the util-

ity if features are selected. The difficulty of the current

model is how to define a proper reward for both the source

and target domain. For the source domain, the reward can

be defined considering the training accuracy. For the target

domain, we need to define an unsupervised reward; we then

propose a deep correlation reward.

Deep correlation reward. Our features are extracted

from a well-trained model; we assume that two highly cor-

related examples should belong to the same class as follows.

Yi = Yj if Sim(G(Xi), G(Xj)) > Sim(G(Xi), G(Xj 6=i)),

where Sim is the cosine similarity. We then rank all sim-

ilarity scores and calculate the top-1 cosine similarity ma-

trix for target domains. Hence, we can compare correlated

labels with the predicted labels using the source classifier.

The reward in the target domain can be defined as:

R(f(F(G(XT ))),YT corr) =
1

nt

nt
∑

i=1

(Ypredi
==Ypred[Ycorri ]),

where Ypred is the prediction from the source classifier f ,

and Ycorr is the correlation label with the size of Nt × 1;

it shows the top-1 index, which is highly related to the in-

stance that should be in the same class. Therefore, the re-

ward measures how different the predicted label is to its

nearest neighbors. We then define the reward of the each

selected pair as:

R(f(F(G(XSi/Ti
))), YSi/Tcorri

) =
{

0 if f(F(G(XSi/Ti
))) 6= YSi/Tcorri

1 if f(F(G(XSi/Ti
))) = YSi/Tcorri

(7)

We then define the total reward of the source and target do-

main in Eq. 8.

Rtotal =
1

ns

ns
∑

i=1

R(f(F(G(XS i))), YS i)

+
1

nt

nt
∑

j=1

R(f(F(G(XT j))), YT corrj ),

(8)

where R(f(F(G(XS i))),YS i) is the reward for one source

data, and the reward for one target data is denoted as

R(f(F(G(XT j))),YT corrj ).
The loss function of the RL paradigm is denoted as:

LR(RS ,RT ) = L(f(F(G(XS))),YS)

+ L(f(F(G(XT ))),YT corr)

Policy gradient. We use the standard policy gradient to

propagate the reward to the training of the state and action

network. In all T step, it first calculates the accumulated

reward RT for each of the t steps: RT =
∑T

t=1 γRtotalt ,

where γ is discounted factor.

We optimize the parameters of the state and action using

the following standard policy gradient.

Q(S, a)
⋆ ←− Q(S, a) + α[Rtotalt + γmax

a
Q(S′, a)−Q(S, a)],

(9)

where Q(S, a)
⋆

is the updated target value, and α is the

learning rate.

4.3. Adversarial distribution alignment learning

After selecting each feature pair, we first apply adversar-

ial learning to identify the domain distribution by minimiz-

ing the loss function in Eqs. 1-2. We then align marginal

and conditional distributions of both domains as follows.

Manifold Embedded Distribution Alignment (MEDA),

proposed by Wang et al. [41], aligns learned features from

manifold learning. The original MEDA used the GFK

model to learn manifold features, and the GFK model is

based on the SGF model. However, Zhang et al. showed

that there are defects in the SGF model, which cannot es-

timate the geodesic of sub-source and sub-target domains

[52]. We modified the domain alignment loss as follows:

LDA(DS ,DT ) = argmin(LG(f(F(G(XS))),YS) + η||f ||2

+ λDf (DS ,DT ) + ρRf (DS ,DT ))
(10)
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where f is the source classier in Eq. 2, LG is the sum of

squares loss; ||f ||2 is the squared norm of f ; and the first

two terms minimize the structural risk of the source do-

main. Df (·, ·) represents the dynamic distribution align-

ment; Rf (·, ·) is a Laplacian regularization; η, λ, and ρ are

regularization parameters. Specifically, Df (DS ,DT ) =

(1 − µ)Df (PS , PT ) + µ
∑C

c=1 D
c
f (QS , QT ), where µ is

an adaptive factor to balance the marginal distribution

(PS , PT ), and conditional distribution (QS , QT ), and c ∈
{1, · · · , C} is the class indicator [41].

4.4. Overall objective function

The overall optimization problem of the proposed ARL

model is in Eq. 11.

L(XS ,YS ,XT ,YT corr) = argmin(LR(RS ,RT )

+ LS(f(F(G(XS))),YS) + LA(G(XS), G(XT ))

+ LDA(DS ,DT )),
(11)

where LA and LS are from Eq. 1 and Eq. 2 except that

the inputs are the extracted features from pre-trained mod-

els (G(XS) and G(XT )) not the raw images. The detailed

procedures of our ARL model are shown in Algorithm 1.

Algorithm 1 Adversarial Reinforcement Learning UDA

Input: Source domain XS and YS , target images XT , K, and

numEpochs.

Output: Optimized features extractor F and source classifier f .

1: Extract features from pre-trained models

{Gk(XS), Gk(XT )}Kk=1;

2: Initialize the critic Q(S, a) ;

3: for i = 1 to numEpochs

4: Initialize the state S;

5: while S is not a terminal state do

6: Take an action at using the policy in Eq. 6;

7: Execute action at, observe the reward Rtotalt by Eq. 8 and

next state S′;

8: Update the critic Q(S, a)⋆ by Eq. 9;

9: Set the state S to S′;

10: end while

11: Update F and f by Eq. 11.

12: end for

5. Experiments

5.1. Datasets

We evaluate our ARL model using two bench-

mark datasets, which are widely used in UDA. We

follow the protocol of prior work [50] which ex-

tracted features from sixteen pre-trained neural networks

(Squeezenet [15], Alexnet [18], Googlenet [35], Shuf-

flenet [45], Resnet18 [12], Vgg16 [30], Vgg19 [30],

Mobilenetv2 [29], Nasnetmobile [53], Resnet50 [12],

Resnet101 [12], Densenet201 [14], Inceptionv3 [36],

Xception [4], Inceptionresnetv2 [34], Nasnetlarge [53]).

All extracted features are from the last fully connected

layer [46], and each image has feature size of 1,000.

Office + Caltech-10 [9] is a standard benchmark for do-

main adaptation, which contains Office 10 and Caltech 10

datasets. It consists of 2,533 images in four domains: Ama-

zon (A), Webcam (W), DSLR (D) and Caltech (C). In the

experiments, C � A means learning knowledge from do-

main C and which is applied to domain A. There are twelve

transfer tasks in Office + Caltech-10 dataset.

Office-31 [28] consists of 4,110 images in 31 classes

from three domains: Amazon (A), which contains images

downloaded from amazon.com, Webcam (W), and DSLR

(D), both containing images that are taken by a web camera

or a digital SLR camera with different settings, respectively.

We evaluate methods across all six transfer tasks.

Office-Home [39] contains 15,588 images from four do-

mains, and it has 65 categories. Specifically, Art (Ar) de-

notes artistic depictions for object images, Clipart (Cl) de-

scribes picture collection of clipart, Product (Pr) shows ob-

ject images with a clear background and is similar to Ama-

zon category in Office-31, and Real-World (Rw) represents

object images collected with a regular camera. There are

also twelve tasks in this dataset. Therefore, we have a total

of 30 tasks in our experiments.

5.2. Implementation details

The number of pre-trained backbone networks is fixed

(i.e., K = 16.) We apply the ǫ-greedy strategy for the Q-

learning with ǫ = 0.9, the discount factor is γ = 0.99,

numEpochs = 1000 and the learning rate α is 1e − 3.

The numbers of units of the dense layer are 512, 256, and

128, respectively. The rate of the Dropout layer is 0.5. It

ends with a Dense layer (the number of units is the number

of classes in each dataset (10 and 65 in our experiments).

Parameters in domain distribution alignment are η = 0.1,

λ = 10, and ρ = 10, which are fixed based on previous

research [41]. ǫ, γ, α and numEpochs are determined by

the performance of source domain. After selecting features

using ARL model, adversarial domain alignment learning

is used to generate a final class prediction on the target do-

main, whose accuracy is reported.

5.3. Evaluation results

We also compare our results with state-of-the-art meth-

ods (including both traditional methods and deep neural net-

works). The performance on Office + Caltech-10, Office-

31 and Office-Home are shown in Tables 1-3. For a fair

comparison, we highlight in bold those methods that are re-

implemented using our extracted features (we concatenate

all sixteen deep neural network features), and other meth-

ods are directly reported from their original papers. We note
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Table 1: Accuracy (%) on Office + Caltech-10 dataset

Task C�A C�W C�D A�C A�W A�D W�C W�A W�D D�C D�A D�W Ave.

GFK [9] 94.6 94.9 95.5 92.6 90.5 94.3 93.5 95.7 100 93.6 95.9 98.6 95.0

CORAL [31] 96.3 97.3 98.1 94.3 96.3 98.7 94.4 96.3 100 93.3 95.6 98.6 96.6

JGSA [43] 95.1 97.6 96.8 93.9 94.2 96.2 95.5 95.9 100 94.0 96.3 99.3 96.2

ARTL [19] 96.3 94.9 96.2 93.9 98.3 97.5 94.7 96.7 100 94.4 96.2 99.7 96.6

MEDA [41] 96.3 98.3 96.2 94.6 99.0 100 94.8 96.6 100 93.6 96.0 99.3 97.0

MDA [47] 96.5 97.6 99.4 93.5 99.0 100 94.3 96.8 100 91.3 96.1 100 97.1

DDC [38] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 83.8 100 79.0 87.1 97.7 86.1

DCORAL [32] 89.8 97.3 91.0 91.9 100 90.5 83.7 81.5 90.1 88.6 80.1 92.3 89.7

DAN [20] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100 80.3 90.0 98.5 90.1

RTN [23] 93.7 96.9 94.2 88.1 95.2 95.5 86.6 92.5 100 84.6 93.8 99.2 93.4

MDDA [27] 93.6 95.2 93.4 89.1 95.7 96.6 86.5 94.8 100 84.7 94.7 99.4 93.6

ARL 96.1 99.3 100 95.4 98.6 99.4 95.7 96.3 100 95.3 96.3 99.7 97.7

Table 2: Accuracy (%) on Office-Home dataset

Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Ave.

GFK [9] 40.0 66.5 71.8 56.8 66.4 65.1 58.1 43.0 74.1 65.3 44.9 76.3 60.7

CORAL [31] 50.5 77.5 81.6 66.3 77.0 77.3 69.1 51.0 81.7 73.7 52.0 83.8 70.1

JGSA [43] 45.8 73.7 74.5 52.3 70.2 71.4 58.8 47.3 74.2 60.4 48.4 76.8 62.8

ARTL [19] 56.5 80.4 81.4 68.7 81.6 81.7 70.1 56.2 83.3 72.8 58.2 85.6 73.0

MEDA [41] 49.1 75.6 79.1 66.7 77.2 75.8 68.2 50.4 79.9 71.9 53.2 82.0 69.1

MDA [47] 57.5 80.4 82.1 72.4 82.5 82.2 69.7 55.7 82.8 74.6 58.1 84.9 73.5

DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [24] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-RM [21] 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5

CDAN-M [21] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

TADA [42] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6

SymNets [51] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

ARL 58.6 83.3 84.1 74.4 84.2 83.4 73.4 58.4 84.9 76.8 75.6 87.1 75.6

Table 3: Accuracy (%) on Office-31 dataset

Task A�W A�D W�A W�D D�A D�W Ave.

GFK [9] 78.3 77.9 72.1 98.0 68.9 95.8 81.8

CORAL [31] 87.9 86.6 75.7 98.2 74.0 96.7 86.5

JGSA [43] 87.2 85.1 76.1 99.0 74.9 97.2 86.6

ARTL [19] 89.1 91.0 77.9 100 77.6 98.2 89.0

MEDA [41] 91.7 89.2 77.1 97.4 76.5 96.2 88.0

MDA [47] 90.9 93.0 78.1 99.0 78.2 98.1 89.6

RTN [23] 84.5 77.5 64.8 99.4 66.2 96.8 81.6

DANN [8] 82.0 79.7 67.4 99.1 68.2 96.8 81.6

ADDA [37] 86.2 77.8 68.9 98.4 69.5 96.2 82.9

JDDA [2] 82.6 79.8 66.7 99.7 57.4 95.2 80.2

JAN [24] 85.4 84.7 70.0 99.8 68.6 97.4 84.3

SymNets [51] 90.8 93.9 72.5 100 74.6 98.8 88.4

CAN [17] 94.5 95.0 77.0 99.8 78.0 99.1 90.6

ARL 96.3 95.9 79.9 99.3 80.9 98.3 91.8

that classification performance can be low in some tasks

(e.g., W�D in Office-31 dataset). One underlying reason

is that SymNets and CAN are more likely to reduce the

discrepancy between domain W and domain D than other

methods. However, the ARL model wins more tasks than

any other, and outperforms all state-of-the-art methods in

terms of average accuracy (especially in the Office-Home

dataset). This demonstrates the benefits of RL in selecting

similar features between the source and target domain for

UDA. It is compelling that our ARL model substantially en-

hances the classification accuracy across different datasets.

5.4. Ablation study

To better demonstrate the performance of our model, we

report the effects of different loss functions on classification

accuracy in Tab. 4. Notice that we should at least maintain

the source classifier (i.e., LS ) to train the source domain

and test on the target domain. “ARL−R/A/DA” is imple-

mented without reinforcement learning, adversarial domain

loss, and distribution alignment loss. It is a simple model,

which only trains the source domain without minimizing

the domain discrepancy. It is also the worst baseline since

it did not consider other loss functions. “ARL−A/DA” re-

ports results without performing the additional adversarial

domain loss and domain distribution alignment. “ARL−R”

ignores the feature selector using reinforcement learning

and reduces the domain discrepancy with adversarial learn-

ing and the distribution alignment. In Tab. 4, all varia-

tions with “−R” omit the reinforcement learning for fea-
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ture selection, and the model is trained with the best fea-

tures, which are extracted from the pre-trained Nasnetlarge

model. We observe that as additional loss functions are in-

cluded, the robustness of our model keeps improving. In

addition, the performance of models that include reinforce-

ment learning is better than those who exclude reinforce-

ment learning. For instance, “ARL − R” is worse than

“ARL −A” and “ARL −AD”. This implies that the fea-

ture selector using reinforcement learning is powerful and

important to identify the most similar paired features for the

source and target domain. Adversarial learning and domain

alignment also further improve the classification accuracy.

Therefore, we can conclude that each of these loss functions

are important in minimizing the target domain risk.

6. Discussion

In these extensive experiments, our method achieves the

highest average accuracy. Therefore, the quality of our

model exceeds that of the state-of-the-art methods. There

are two prominent reasons for this success. First of all,

RL discovers the closest features between source and tar-

get, which produces the minimum discrepancy between two

domains from feature space. Secondly, the proposed adver-

sarial learning further reduces the domain discrepancy, and

domain distribution alignment jointly aligns both the con-

ditional and marginal distributions of two domains, which

guarantees the agreement in label space. Although the ab-

solute improvement in the Office+caltech-10 dataset is not

large, it reduces the average error by more than 20% over

the best baseline method.

One challenge of our model is that the reward of the tar-

get domain is not directly calculated based on the true la-

bels since we do not have ground truth for the target do-

main. A better unsupervised reward function for the target

domain may improve performance. Although we extract

features from sixteen different pre-trained ImageNet mod-

els, these features are fixed once they are extracted and do

not need to be re-extracted during model training, meaning

that feature extraction has a fixed cost. The RL paradigm

Table 4: Ablation experiments on Office-31. (R: reinforce-

ment learning, A: adversarial domain loss, and DA: distri-

bution alignment loss.)

Task A�W A�D W�A W�D D�A D�W Ave.

ARL−R/A/DA 91.9 88.5 78.3 98.1 77.8 97.3 88.7

ARL−R/DA 92.6 89.9 78.5 98.2 78.9 97.6 89.3

ARL−R/A 92.8 92.9 78.9 98.6 79.1 97.6 90.0

ARL−R 92.9 93.0 79.4 98.6 79.2 97.7 90.1

ARL−A/DA 94.6 94.3 78.9 99.1 78.4 97.4 90.5

ARL−DA 95.6 95.1 79.1 99.0 79.8 97.9 91.1

ARL−A 96.1 95.3 79.3 99.2 79.8 98.0 91.3

ARL 96.3 95.9 79.9 99.3 80.9 98.3 91.8

Figure 3: The computation time of different Office-31 trans-

fer tasks for ARL, MDA, and CAN models.

consumes the major computation time in our model. As

shown in Fig. 3, we compare the computation time of

six transfer tasks in Office-31 dataset with the best tradi-

tional method: MDA [52], and the best deep learning based

method: CAN [17]. Our model ARL uses more computa-

tion time than the MDA model since MDA does not need

to find the best feature pair. Meanwhile, our model requires

less time than the CAN model and achieves the highest ac-

curacy since the CAN model takes more time to re-train all

raw images. Therefore, our model can achieve higher per-

formance with reasonable computation time.

What can we learn from the ARL model? The ARL

model employs a reinforcement learning paradigm to ex-

plore all possible pairings of features from sixteen pre-

trained ImageNet models. Extensive experiments reveal

that RL is effective in finding the best feature pair between

the source and target domain and outperforms all other

baseline methods. As mentioned in Sec. 4.1, do features

from the same deep network achieve the best performance?

The answer is “No”. We find that features from the same

deep network surprisingly do not generate the best perfor-

mance in the UDA. In most tasks, the best pair is “Xception-

Nasnetlarge”, which means training the model with Xcep-

tion features and applying the model to Nasnetlarge features

achieves the best results. One possible reason is that the

discrepancy between Xception and Nasnetlarge features are

smaller than other combinations. Therefore, we recommend

choosing the Xception model as a feature extractor for the

source domain and using the Nasnetlarge model for the tar-

get domain to promote classification accuracy if the com-

plex RL framework is excluded.

7. Conclusion

This paper selects features via reinforcement learning.

After determining the most similar sets of features for the

source and target domains, we utilize adversarial learning

to reduce further the source-target discrepancy. In addition,

we align the joint distribution between the two domains to

achieve the highest classification accuracy. Extensive ex-

periments show that the proposed ARL model is better than

state-of-the-art domain adaptation methods.
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