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Abstract

We propose a method for egocentric 3D human pose es-

timation from a single image captured by a fisheye cam-

era. The problem of estimating the egocentric 3D pose for

a fisheye camera is that images may be subject to strong im-

age distortions (e.g. 2D poses on the image plane that pass

through the line of sight of the fisheye lens).

Therefore, in this paper, we approach this problem by

an automatic calibration module. Given a single image,

our network first estimates 3D joint locations of a human

in camera coordinates. To alleviate the impact of image

distortions on 3D human pose estimation, we then use the

automatic calibration to further regularize the 3D predic-

tions. Experimental results demonstrate that the proposed

method achieves state-of-the-art performance.

1. Introduction

Egocentric fisheye camera is used for human pose esti-

mation or action recognition in different computer vision

applications such as virtual reality (VR) or augmented real-

ity (AR). These applications generally use a head mounted

display to transform the user in a virtual world from a first-

person viewpoint. Due to the large field of view, pose es-

timation from the egocentric fisheye viewpoint has many

other valuable applications, such as robotics.

Current approaches focus on human pose estimation us-

ing pin-hole cameras. These methods show significant

progress for different benchmarks, such as the Human3.6M

[6] and MPI-INF-3DHP [16] datasets. To reduce the am-

biguity, many methods estimate the root-relative 3D joint

positions in camera coordinates. However, the problem of

estimating the egocentric 3D pose for a fisheye camera is

to predict the 3D human pose from a first-person viewpoint

possibly subject to strong image distortions. These distor-

tions may negatively influence the 3D poses when the 2D

poses on the image plane pass through the line of sight of

the fisheye lens. For example, as shown in Figure 1, two

different 2D poses which are subject to different levels of

image distortions correspond to the same 3D pose. Recent

works [35, 28] propose methods for 3D human pose estima-

tion from images captured by a fisheye camera to alleviate

the problem of self-occlusion. However, their methods ig-

nore the negative influence of the distortions on the 3D pose

estimation.

To mitigate the effect of distortions on the 3D hu-

man pose estimation, we propose an automatic calibration

module with self-correction to regularize 3D predictions.

The proposed calibration module automatically estimates

the intrinsic and distortion camera parameters with self-

correction instead of using a post-processing step [35] to

enforce the 3D predictions to be consistent with the corre-

sponding distorted 2D poses. In this way, the effect of dis-

tortions on 3D pose estimation is alleviated. To assess the

effectiveness of the proposed automatic calibration module,

we modified the xR-EgoPose dataset [28], a recent public

dataset for 3D human pose estimation collected by a fisheye

camera, by adding different levels of image distortions. We

show that our method outperforms previous state-of-the-art

methods and significantly improves the performance by us-

ing the proposed automatic calibration.

The contributions of our approach are summarized as

follows:

• We propose a method for egocentric 3D human pose

estimation from a single image captured by a fisheye

camera.

• We introduce an automatic calibration module with

self-correction to mitigate the effect of image distor-

tions for robust 3D human pose estimation.

• Our network shows state-of-the-art performance on the

modified xR-EgoPose dataset containing images with

different levels of distortions.
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Figure 1. 3D pose prediction from a single image captured by a fisheye camera and 2D projection generated by our method. Note that

although image (i) and (ii) appear different, they correspond to the same 3D pose. The proposed automatic calibration module alleviates

the negative impact of image distortions on the 3D human pose estimation.

2. Related Work

In this section, we describe monocular 3D human pose

estimation methods from a third-person viewpoint, a first-

person viewpoint and wearable motion sensors.

Third-person 3D Pose Estimation Monocular 3D hu-

man pose estimation using external cameras show signif-

icant progress with the use of CNN’s and with the avail-

ability of large-scale 2D [1, 8, 14] and 3D [6, 16] human

pose datasets. In general, existing methods are categorised

into two types: (i) Direct 3D human pose estimation from

images with full supervision [13, 21, 27, 26, 39] and (ii)
3D pose estimation from intermediate 2D pose predictions

[2, 4, 12, 15, 19, 34, 33, 20, 19, 37]. As direct pose es-

timation methods rely on extensive training data with 3D

annotations, their generalization capability is limited. To

mitigate the above problem, approaches attempt to create

synthetic datasets based on Motion Capture (MoCap) sys-

tems [3, 30]. Nonetheless, differences still exist between

synthetic images and real images, such as backgrounds, ap-

pearance and variety of details. On the other hand, using

robust 2D pose detectors, 3D pose estimation methods de-

couple the task into 2D pose prediction and 3D pose lifting

step. To reduce the requirement of 3D pose annotations,

[38, 25] propose geometric constraints to regularize the 3D

estimations. The human pose dataset with only 2D annota-

tions is used to constrain the 3D predictions.

First-person 3D Pose Estimation A number of meth-

ods based on egocentric cameras focuses on hands, arms

or torso detection [23, 36]. However, it is considerably

more challenging to estimate the full 3D human pose from

egocentric cameras. Jiang et al. [7] propose a method

for 3D pose estimation based on videos taken from chest-

mounted cameras by considering the motion of the sur-

rounding scene. However, the predictions are less accu-

rate and have low confidence. Rhodin et al. [22] present

an approach for full human body reconstruction captured

from a head-mounted camera pair. Only recently, egocen-

tric monocular 3D human pose estimation based on fisheye

cameras is proposed. Xu et al. [35] design a new head-

mounted system, where a fisheye camera is placed at the rig

of a standard baseball cap. To reduce the error of the lower

body, their methods take two images — one original image

and one 2 × zoomed central part of the original image, as

input to compute the 3D pose estimation. Tome et al. [28]

propose an auto-encoder with two branches for egocentric

3D human pose estimation based on a fisheye camera. How-

ever, their methods assume images with the same distortion

and therefore ignoring the negative impact of different lev-

els of distortions on 3D human pose estimation.

3D Pose Estimation from Wearable Motion Sensors

Inertial Measurement Units (IMUs) are used to perform 3D

pose estimation from a first-person viewpoint. However, a

large number of sensors may cause the system to become

intrusive and require more time to calibrate. Using less sen-

sors becomes more challenging to reconstruct the 3D hu-

man pose in this configuration [31]. Shiratori et al. [24]

introduce an alternative way to estimate the 3D human pose

by structure-from-motion (SfM), with 16 cameras mounted

at the human body joints. Nonetheless, this approach is dif-

ficult to use in real scenes due to motion blur, self-occlusion

of limbs and missing textures in the background.

3. Automatic Calibration of Fisheye Cameras

The inherent problem of image distortions captured by

fisheye cameras makes 3D human pose estimation challeng-

ing. Two images may correspond to the same 3D pose

when 2D different poses on the image plane pass through

the line of sight of the fisheye lens. Therefore, it is difficult

to regress 3D human joint positions in camera coordinates

without the distortion parameters. To alleviate this problem,

we propose an automatic calibration module to enforce the

1773



Figure 2. The imagery model of 3D-to-2D projection. The object — human joints Ji are located in camera coordinates OXY Z; The

projected 2D pose (hand joint as an example) with the pinhole camera jo and the fisheye camera j is on the image plane oxy; opuv

representing pixel coordinates. θ and θd indicate the angle of incidence and refraction with the fisheye lens respectively. ϕ represents the

angle between the projected ray ~oj and x axis on the image plane.

3D predictions to be consistent with the corresponding dis-

torted 2D poses.

3.1. Fisheye Camera Model

As shown in Figure 2.1, the human pose is represented

by a set of joints Ji = [Xi, Yi, Zi, 1]
T located in the cam-

era coordinate system. For the fisheye lens, shown in Figure

2.2, the angle of refraction from 3D locations J in Figure

2.1 is decreased from θ to θd. Then, the joint location J

is projected on the image plane by j = [x, y, 1]T in Figure

2.3. Particularly, the projected joint jo = [xo, yo, 1]
T rep-

resents the projection based on the pin-hole camera model.

It is because of the distortion that positions j and jo are

different.

3.2. Egocentric 3D Pose Estimation under a Fisheye
Camera

From a single 2D image to 3D pose. 3D human pose esti-

mation from a single image is an ill-posed geometric prob-

lem: there is no depth information. Previous methods at-

tempt to solve this problem by learning the relation between

2D and 3D poses in a data-driven manner. However, with

strong image distortions introduced by a fisheye camera, 3D

human pose estimation is more challenging.

To alleviate the above issues, we propose an automatic

calibration module to regularize 3D predictions. Instead of

using a post-processing method [35] or ground truth, the

proposed module automatically predicts the distortion cam-

era parameters with self-correction. This is the first attempt

to perform egocentric 3D human pose estimation by using

automatic calibration of the fisheye camera.

From 3D pose to 2D pose. For a fisheye camera mounted

on the head, the relative depth of human joints is compa-

rable to the distance between the camera and the human

joints. Therefore, weak perspective projection can not be

used to approximate the 2D projections [9, 5, 32]. The 3D-

to-2D projection process for the fisheye camera is illustrated

in Figure 2.

Let P3D = [J1,J2, ...,Jn] denotes the human joint lo-

cations in camera coordinate OXY Z, where n is the num-

ber of human joints and Ji = [Xi, Yi, Zi, 1]
T . The pro-

jected 2D pose from the fisheye camera and pinhole cam-

era is defined by p2D and po2D, a 3 by n matrix with

ji = [xi, yi, 1]
T and joi = [xoi, yoi, 1]

T respectively.

Given the intrinsic (K) and extrinsic (R and T ) cam-

era parameters, the 2D projections po2D under the pin-hole

camera model is as follows:

s · po2D = K[R|T ]P3D. (1)

where the extrinsic camera parameters R and T are the

identity matrix, s represents the scale factor and is equal

to the Z value of the corresponding 3D joints in camera co-

ordinates.

As the fisheye lens produces strong image distortions
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compared to a pinhole camera, distortion matrix D needs

to be considered to compute 2D projections from a fisheye

camera:

s · p2D = KD[R|T ]P3D. (2)

In this paper, D is defined by

D =





θd/l 0 0
0 θd/l 0
0 0 1



 , (3)

where l =
√
X2+Y 2

Z
, and θd indicates the angle of refrac-

tion. In this paper, we refer to [29, 10] to calculate the angle

of refraction θd = θ(1+k1θ
2+k2θ

4), where the angle of in-

cidence θ = arctan(l), and the number of radial distortion

parameters to be estimated is set to two, i.e., k1, k2.

Visually, the 2D projection jo under the constraint of a

pinhole camera is transformed to j for a fisheye camera in

Figure 2.3 using Equation 2 for the distortion camera ma-

trix.

3.3. Error Analysis of Estimated 3D Joints and 2D
Projections

Different from other methods for 3D pose estimation

from external viewpoints, i.e., outside-in approaches, in our

task, the depth variance of human joints is comparable to

the distance between the human joints and the fisheye cam-

era. Therefore, the depth of 3D joint locations has an effect

on the 2D re-projection error. Besides, the level of distor-

tions and the distance of 3D joint locations to the optical

axis (Z axis) also influence the 2D re-projection error.

Equation 2 can be detailed as follows,

x = f
θd
l

X

Z
= f(θ + k1θ

3 + k2θ
5)

X√
X2 + Y 2

, (4)

y = f
θd
l

X

Z
= f(θ + k1θ

3 + k2θ
5)

Y√
X2 + Y 2

. (5)

Without loss of generality, we only study the influence of

the level of distortions, the depth Z, and the value of X (the

same to Y) on the 2D re-projection error. Before calculating

the derivation of Equation 4, we set Y to zero to simplify the

formula, i.e.,

x = f
θd
l

X

Z
= f(arctan

X

Z
+ k1arctan

3X

Z
+ k2arctan

5X

Z
).

(6)

The partial derivative of Equation 6 is taken:

∂x

∂X
= f

Z

X2 + Z2
(1 + 3k1arctan

2X

Z
+ 5k2arctan

4X

Z
),

∂x

∂Z
= −f

X

X2 + Z2
(1 + 3k1arctan

2X

Z
+ 5k2arctan

4X

Z
).

(7)

Figure 3. The impact of value of X and Z on the re-projection error

under the fisheye camera with different distortion parameters k1
and k2. Due to the large range of hand and elbow joints, we plot

the curve setting Z to be 30mm as shown in Figure 3.1. Since most

joints such as shoulders, hips and knees have similar positions in

the XY plane, we plot this curve setting X = 25mm as shown in

Figure 3.2.

Figure 3 shows the impact of distortion parameters, the

value of X and Z on re-projection error according to Equa-

tion 7: 1) The value of X and Z have different influences on

the re-projection error with various distortion parameters.

Specifically, the larger the image distortions, the larger the

influence of 3D locations on the 2D re-projection error. 2)

Under the same level of distortions, the 3D joint locations

with larger distances to the camera (such as ankles, toes and

hips joints in lower body) or with larger X (such as elbows

and hands joints) are expected to cause smaller errors on

the 2D projections. In other words, the error of 3D poses

is larger for joints with larger distances to the camera in the

depth or larger distances to the optical axis under the same

error of 2D projections.

3.4. Self­correction for Calibrating the Fisheye
Camera

An automatic calibration module is proposed to regular-

ize the 3D predictions. Our calibration module predicts the

intrinsic camera parameters K and the distortion camera

parameters D automatically. Specifically, K includes fo-

cal length (f ) and principal coordinates (u0, v0) while D

contains the distortion parameters (k1, k2).

As discussed in Section 3.2, the re-projection error de-

pends on the level of distortions, the depth, and the distance

to the optical axis of the estimated 3D joints. Therefore, the

commonly used L2 loss that constrains the camera param-

eters in the outside-in approaches [5, 32] cannot be used to

update our automatic calibration module. The optimization

process will focus on the upper body estimation, especially

for neck and arm joints, due to the larger re-projection er-

ror. This may result in inaccurate estimation of hands, el-

bows and joints in lower body. We will verify this issue in

Section 5.

To optimize our automatic calibration module, we mini-
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Figure 4. Overview of the proposed framework. We use ResNet-50 as our backbone to detect 2D poses with heatmap representations. The

2D heatmaps are fed into a residual network with attention mechanism to further exploit the information in latent space. Then, we employ

a series of fully connected layers to estimate the 3D pose in camera coordinates and camera parameters (i.e., focal length f , principal

coordinate u0 and v0 and distortion parameters k1 and k2). Finally, the estimated 3D pose are enforced to be consistent with 2D poses on

image plane using the predicted camera parameters.

mize the absolute error between the projected 3D pose and

2D pose annotations pGT
2D . This avoids the optimization pro-

cess to focus on the joints with larger re-projection errors:

argmin
f,u0,v0,k1,k2

∥

∥KD[R|T ]P3D − pGT
2D

∥

∥

1
. (8)

Note that the camera parameters (f, u0, v0, k1, k2) and P3D

are updated simultaneously.

4. Network and Training Details

Given a single image captured by a fisheye camera, our

method aims to regress 3D human joint locations in cam-

era coordinates. In this section, we introduce our network

design and training strategy of our network.

4.1. Network Design

Our framework consists of three modules as shown in

Figure 4. First, we employ a 2D pose module to detect 2D

heatmaps of human joint positions on the image plane. Sec-

ond, a 3D pose regression module takes the fused features

from 2D heatmaps as input to estimate 3D joint locations in

camera coordinates. Finally, we use the proposed automatic

calibration of the fisheye camera to enforce 3D predictions

to be consistent with the corresponding 2D poses under the

distortions.

2D Pose module. Considering the accuracy and computa-

tional costs, we adopt ResNet-50 followed by three decon-

ventional layers as our 2D pose module. Given a single im-

age with a resolution of 256× 256, 2D pose module infers

2D poses with heatmap representations HM ∈ R
16×64×64,

where 16 indicates the number of human body joints with

the space dimension of 64× 64.

To train the 2D pose detector, we use the mean square

error (MSE) to calculate the loss between the estimated HM

and 2D ground-truth heatmaps HMGT. The loss function is

defined by:

LHeatmap =

H
∑

h

W
∑

w

∥

∥

∥
HM(h,w) − HMGT

(h,w)

∥

∥

∥

2
, (9)

where H and W indicate the resolution of the heatmaps.

Specifically, we generate ground-truth heatmaps by using

Gaussian distributions with kernel size of 13× 13 and stan-

dard deviation of 2 pixels on each joint locations on the im-

age plane.

2D-to-3D Regression Module. To regress the 3D human

pose P3D in camera coordinates, we employ several resid-

ual blocks with fully connected layers followed by batch

normalization, ReLU non-linearity and Dropout. Consider-

ing the inference time and prediction accuracy, we use two

residual blocks for 2D-to-3D regression.

We optimize the 3D pose regression module by mini-

mizing the MSE error between 3D predictions P3D and 3D

pose ground truth PGT
3D . Given the dataset with the number

of N samples, the loss function is defined by:

L3D =
1

N

N
∑

i=1

∥

∥

∥
P3D(i) −PGT

3D (i)

∥

∥

∥

2
, (10)

where i represents the index of the training set.
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Table 1. Comparison with existing methods on the modified xR-EgoPose dataset.

Approach Gaming Gesticulating Greeting
Lower

Stretching
Patting Reacting Talking

Upper

Stretching
Walking Average

Martinez [15] 98.3 85.3 65.6 83.0 74.7 97.2 53.7 77.2 79.2 79.7

Ours (w/o Lac) 80.7 66.4 61.0 74.8 65.6 80.2 44.4 83.8 76.4 78.6

Ours 75.3 66.0 54.1 68.7 65.4 78.3 43.0 67.4 69.2 67.7

1 Ours (w/o Lac) indicates that our method is trained without using the proposed automatic calibration module.

Automatic Calibration Module. As shown in Figure 4,

there are two branches in the regression module. The first

branch is the lifting module regressing 3D locations of hu-

man joints while a multi-layer perception is employed in

the second branch to perform automatic calibration of the

fisheye camera. Specifically, the second branch estimates

the intrinsic camera parameters consisting of focal length

(f ), principal coordinate (cx, cy) and distortion parameters

(k1, k2). Then we use Equation 2 to obtain the 2D projec-

tions, where 3D predictions are constrained by the 2D poses

under the distortions. In this way, the impact of image dis-

tortions on 3D human pose estimation is alleviated. In this

paper, automatic calibration module is only applied during

the training phase.

As discussed in Section 3.2, the level of distortions, the

depth and distance to the optical axis of estimated 3D joint

locations have an influence on the errors of the correspond-

ing 2D projections. Therefore, we minimize the absolute

error (i.e., L1 loss) between the projected 3D pose and 2D

ground truth avoiding the optimization to focus on joints

with large re-projection errors. The loss function is defined

by:

Lac =
1

N

N
∑

i=1

∥

∥

∥
KD[R|T ]P3D(i) − pGT

2D (i)

∥

∥

∥

1
, (11)

where R and T are the identity matrix.

4.2. Training

According to Equation 9 - 11, we train our full network

by minimizing the following cost function:

Lpose = λHMLHeatmap + L3D + λacLac, (12)

where λHM and λrep are loss weights to adjust the combi-

nation of the 2D heatmap loss, the 3D pose loss and the loss

of automatic calibration module.

During training, we first pre-train the 2D pose module

on the external perspective MPII dataset, because we found

pre-trained 2D pose module obtains higher accuracy of 2D

pose estimations for images captured by a fisheye camera.

Then, we fine-tune the whole network on the modified xR-

EgoPose dataset.

5. Experiments

Datasets. Recently, two datasets for egocentric 3D human

pose estimation for a fisheye camera are released — xR-

EgoPose [28] and Mo2Cap2 [35] datasets. Both datasets

consist of a large number of frames of daily activities for

different environments and lighting conditions. Consider-

ing images from current datasets with the same distortion,

we modified the xR-EgoPose dataset using Equation 4 and

Equation 5 to randomly add image distortions. For fast eval-

uation, the total number of images in the modified dataset is

one-fifth of the total size in original xR-EgoPose dataset.

Evaluation Metrics. We use the Mean Per Joint Position

Error (MPJPE) as the evaluation metric in the experiments.

Note that we do not need to align the root joint for the eval-

uation as in the outside-in approaches.

Implement Details. The proposed network regresses 16

human body joints including the head joint. The head joint

is estimated based on the position of head-mounted display

from 2D images. We first pre-train our 2D pose module

on the MPII dataset [1] and then train our full network for

36 epochs on the modified xR-EgoPose dataset using Adam

[11] for optimization. The learning rate is set to 5 × 10−4.

The model is trained on two GTX 1080ti GPUs with a batch

size of 64. The weights in the overall loss function are set

to Lhm = 107 and Lac = 50.

Method Comparisons. To assess the effectiveness of

our method, we conduct experiments on the modified xR-

EgoPose dataset compared with Martinez et al. [15], a sim-

ple but effective 3D pose estimation method from external

camera viewpoints. Furthermore, we evaluate our method

on the xR-EgoPose and Mo2Cap2 datasets compared with

current state-of-the-art methods [35, 28] for egocentric 3D

human pose estimation for fisheye cameras.

5.1. Evaluation on Modified xR­EgoPose Dataset

Overall performance. We first evaluate the proposed ap-

proach on the modified xR-EgoPose dataset. Since the ex-

isting methods [35, 28] do not release their codes, it is hard

to make a fair comparison with them. Therefore, we com-

pared our method with a state-of-the-art method [15] for 3D

human pose estimation from external camera viewpoints.
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Table 2. Average error for per joint performed by our method with L1 and L2 loss on the modified xR-EgoPose dataset.

Joint
Error (/mm)

Joint
Error (/mm)

Ours Ours_L2 Improvement Ours Ours_L2 Improvement

Head 32.90 27.03 -5.87 Neck 20.53 17.20 -3.33

Left Arm 31.91 35.61 3.69 Right Arm 33.23 36.97 3.74

Left Elbow 47.69 51.82 4.13 Right Elbow 52.22 58.24 6.02

Left Hand 82.99 93.83 10.84 Right Hand 85.49 100.19 14.71

Left Hip 56.86 65.03 8.17 Right Hip 56.77 65.13 8.35

Left Knee 79.33 87.54 8.21 Right Knee 79.87 89.84 9.97

Left Foot 100.31 110.84 10.53 Right Foot 103.21 115.41 12.20

Left Toe 109.39 119.61 10.22 Right Toe 110.73 122.09 11.36
1 Ours_L2 denotes our method use L2 loss to update the proposed automatic calibration module.

Table 3. Experimental results of our network on the modified xR-

EgoPose dataset under less 3D ground truth.

Approach 3D gorund truth MPJPE(/mm)

Martinez et al. [15] 100% 79.7

Ours 100% 67.7

Ours 80% 76.9

Table 1 lists the experimental results showing that our

method achieves the best performance in all activities, lead-

ing to an improvement of 15.1% in overall performance.

Effectiveness of automatic calibration module. We per-

form an ablation study on the modified xR-EgoPose dataset

to assess the influence of our proposed automatic calibra-

tion module. The MPJPE of all activities are reported in

Table 1, in which Ours (w/o Lac) refers to the proposed

method without automatic calibration module. Our method

obtained better performance than Ours (w/o Lac) with a

10.9mm improvement. The results show the effectiveness

of the proposed automatic calibration module.

Update strategy of automatic calibration module. As

discussed in Section 3.2, the level of distortions, the depth,

and the distance to the optical axis of 3D joint locations

have an influence on the error of the 2D projections. Based

on the error analysis, we employ the L1 loss to train our au-

tomatic calibration module instead of the commonly used in

the outside-in approach — L2 loss. In this way, our update

strategy avoids the optimization process to focus on the es-

timated 3D joints with larger 2D re-projection errors. Oth-

erwise, an inappropriate update strategy of our automatic

calibration module may lead to overfitting of these joints

and a decrease in overall performance.

We conduct a comparative experiment on the modified

xR-EgoPose dataset to validate this strategy. Particularly,

we denote our method using L2 loss as Ours_L2. Table 2

reports the average error for each estimated joint and the

improvement by our method. It is shown that the proposed

method achieves better performance for each joint except

head and neck joints. Note that the error of joints in 1)

lower body, such as knee, foot and toes, and 2) joints with

large distances to the optical axis, such as hands and elbows

in the 3D space are reduced significantly by our method,

which validates our assumption.

5.2. Mixed 2D and 3D Ground Truth Datasets

Another advantage of the proposed method is that our

network can be trained on a mixture of 2D and 3D pose

datasets. Due to our automatic calibration module, the es-

timated 3D pose can be partially constrained by the 2D

ground truth, alleviating the needs of 3D ground-truth la-

bels. We test our model on the modified xR-EgoPose dataset

with 80% of 3D annotations while the 2D ground truth la-

bels are available in the training phase. Table 3 lists the ex-

perimental results. Our method still outperforms Martinze

et al. [15] (79.7mm) with an error of 76.9mm.

5.3. Evaluation on current datasets

Evaluations on xR-EgoPose dataset. We also validate our

method on the original xR-EgoPose dataset. Specifically,

the proposed method is compared with Martinez et al. [15]

and Tome et al. [28] — the state-of-the-art egocentric pose

estimation method. Table 4 shows MPJPE on this dataset,

including the error on each activity and the average error.

Our method shows the best performance with an average

error of 50.0mm, leading to an improvement of 14.1% on

average compared to the state-of-the-art results.

Evaluations on Mo2Cap2 dataset. We further compare

our method with current methods on the Mo2Cap2 dataset.

Table 5 shows the experimental results, where 3DV’17 [17]

and VNect [18] focus on pose estimation from external

camera viewpoint while Xu et al. [35] and Tome et al. [28]

are the current state-of-the-art egocentric pose estimation

methods. Note that Xu et al. (i) take two images — one

original image and one 2 × zoomed central part of the orig-

inal image to regress 3D poses while we only use a single
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Table 4. Comparison with existing methods on xR-EgoPose dataset.

Approach Gaming Gesticulating Greeting
Lower

Stretching
Patting Reacting Talking

Upper

Stretching
Walking Average

Martinez [15] 109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5 122.1

Tome [28] 56.0 50.2 44.6 51.1 59.4 60.8 43.9 53.9 57.7 58.2

Ours 36.8 34.1 36.7 50.1 57.2 34.4 32.8 54.3 52.6 50.0

Table 5. Comparison with existing methods on indoor set of Mo2Cap2 dataset.

Approach Walking Sitting Crawling Crouching Boxing Dancing Stretching Waving Average

3DV’17 [17] 48.76 101.22 118.96 94.93 57.34 60.96 111.36 64.50 76.28

VNect [18] 65.28 129.59 133.08 120.39 78.43 82.46 153.17 83.91 97.85

Xu∗ [35] 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40

Tome∗ [28] 38.39 61.59 69.53 51.14 37.67 42.10 58.32 44.77 48.16

Ours 41.16 76.58 73.04 89.67 52.96 58.90 92.21 71.55 62.13

1 ∗ means the method uses extra information.

Figure 5. The visual results on the modified xR-EgoPose dataset

predicted by the proposed method.

image as input; (ii) need the toolbox for calibration of the

fisheye camera to obtain distortion camera parameters while

we directly estimate the distortion camera parameters with

self-correction in our framework. On the other hand, Tome

et al. uses the estimated 2D heatmaps from Xu et al. to im-

plement the evaluation. From Table 5, the proposed method

achieves competitive results with an error of 62.13mm on

the indoor set of Mo2Cap2 dataset, even with only a single

image as input.

6. Conclusions

We presented a novel method for egocentric 3D human

pose estimation from a single image captured by a fish-

eye camera. To alleviate the impact of image distortions

on 3D human pose estimation, we proposed an automatic

calibration module to enforce the 3D predictions to be con-

sistent with the corresponding 2D projections under the

distortions. Experimental results showed that our method

obtained state-of-the-art performance on the modified xR-

EgoPose and current datasets compared with existing meth-

ods.
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