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Figure 1: Portrait compositing results on the real-world images. All the methods are using the same estimated foreground mask. Previous

methods suffer from problems such as halo artifacts and color contamination. Our method learns to generate better compositing results

with less boundary artifacts and accurate foreground estimation. Best viewed in color.

Abstract

Image compositing is a task of combining regions from

different images to compose a new image. A common use

case is background replacement of portrait images. To ob-

tain high quality composites, professionals typically manu-

ally perform multiple editing steps such as segmentation,

matting and foreground color decontamination, which is

very time consuming even with sophisticated photo editing

tools. In this paper, we propose a new method which can au-

tomatically generate high-quality image compositing with-

out any user input. Our method can be trained end-to-end

to optimize exploitation of contextual and color information

of both foreground and background images, where the com-

positing quality is considered in the optimization. Specif-

ically, inspired by Laplacian pyramid blending, a dense-

connected multi-stream fusion network is proposed to effec-

tively fuse the information from the foreground and back-

ground images at different scales. In addition, we intro-

duce a self-taught strategy to progressively train from easy

to complex cases to mitigate the lack of training data. Ex-

periments show that the proposed method can automatically

generate high-quality composites and outperforms existing

methods both qualitatively and quantitatively.

1. Introduction

Image compositing is one of the most popular applica-

tions in image editing. A common scenario is to composite

a portrait photo with a new background. Sample images for

portrait compositing is shown in Fig. 1. To get high-quality

composite images, professionals rely on image editing soft-

ware to perform operations like segmentation, matting and

foreground color decontamination. Although many parts of

the workflow have been made relatively easier by software,

it still requires a lot of expertise and manual efforts to cre-

ate high-quality composited images. In this paper, we aim

to fully automate the portrait image compositing process.

One straightforward solution is to use a salient object

segmentation model [2, 46, 38, 9, 16, 25] to cut out the fore-

ground region and then paste it on the target background

image. However, such simple cut-and-paste approach with

the segmentation mask usually results in undesirable arti-

facts along the object boundary. This is because pixels
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Figure 2: Leveraging high-quality masks for directly compositing

(Copy-paste) may not result in high-quality compositing results.

From the direct copy-paste results, it can be clearly observed that

color-artifacts are along the boundary.

along the object boundary are usually linear combinations

of both foreground and background. To address the bound-

ary artifacts, previous approaches resort to low-level image

blending methods such as Poisson blending [26], Laplacian

blending [5], feathering, guided-filter [13], etc. However,

these low-level blending methods often introduce other un-

desirable effects such as color distortion or non-smooth halo

artifacts. Sample results are shown in Fig. 1.

A common solution to the boundary artifacts is to extract

the object matte (i.e. alpha channel) from the foreground

image using image matting methods [7, 41, 22, 29, 8, 10,

31, 1]. The ground truth matte controls the linear interpo-

lation of foreground and background in the original input

image. Hence, image mattes, if accurately predicted, are

able to generate very convincing compositing results with

natural blending along the boundary. However, the im-

age matting problem is generally very challenging and it

usually requires human input (eg trimap) to identify fore-

ground, background and the uncertain regions to solve. In

addition, mistakes in matting are not equally important to

image compositing, and the matting methods cannot lever-

age that as they do not take the end compositing results into

consideration. For example, as shown in Fig 2, though the

high-quality ground truth mask (GT mask) is given to cut-

out the foreground person and composite it onto a different

background, yet the compositing result (Copy-paste result)

contains obvious color artifacts along the boundary, which

degrade the whole compositing quality.

In this work, we propose a deep learning based image

compositing framework to directly generate a composited

portrait image given a pair of foreground and background

images. A foreground segmentation network together with

a refinement network is employed to extract the portrait

mask. Guided by the portrait mask, an end-to-end multi-

stream Fusion (MLF) Network is proposed to merge infor-

mation from both foreground and background images at dif-

ferent scales. The MLF network is inspired by the Laplacian

Pyramid Blending method. It uses two encoders to extract

different levels of feature maps for the foreground and back-

ground images respectively, and fuse them level-by-level

through a decoder to reconstruct the final compositing re-

sult. To notice, the task of the harmonization [35, 34, 48] is

different from ours. Their task is to harmonize the appear-

ances (e.g. color) between the foreground and the back-

ground and they assume that an artifact-free mask is pro-

vided by the user. In contrast, our method is fully automatic

and focuses on alleviating the boundary artifacts caused

by imperfect foreground masking and color decontamina-

tion. Basically, our paper solves an orthogonal problem to

color/appearance harmonization for image compositing. In

addition, we propose an easy-to-hard self-taught based data

augmentation scheme to generate high quality compositing

data for training the MLF network. The basic idea is to use

a MLF network, which is trained on simpler data, to com-

posite more challenging training data for improving itself.

Experimental results evaluated on the synthetic images

and real-world images demonstrate the effectiveness of the

proposed method compared to previous methods. The su-

perior perceptual quality of our method is validated though

a user study. Sample results of our method can be found in

Figs. 1 and 7 . To summarize, our contributions are

• an end-to-end deep learning based framework for fully

automatic portrait image compositing,

• a novel multi-stream Fusion Image Compositing Net-

work for fusing image features at different scales, and

• an easy-to-hard data-augmentation scheme for image

compositing using self-taught.

2. Related Works

2.1. Image Compositing

Image compositing is a challenging problem in com-

puter vision/ computer graphics, where salient objects from

foreground image to be overlayed/composited onto given a

background image. And the final goal of the image com-

positing is to generate realistic high-quality images. Many

image editing applications fall into the category of the im-

age compositing such as image harmonization [34, 35, 48,

32], image matting [1, 7, 8, 31, 10, 29, 41, 22, 37], image

blending[5, 13, 26, 40].

The goal of classical image blending approaches is to

guarantee that there is no apparent transition gap between

source image and target image. Alpha blending [36] is the

simplest and fastest method, but it blurs the fine details and

may bring in halo-artifacts in the compositing images. To

efficiently leverage the information from different scales,

Burt and Adelson [5] proposed a multi-scale blending al-

gorithm, named Laplacian pyramid blending. Similar idea

has also been used for other low-level tasks such as im-

age enhancement [20, 44] and Generative Adversarial Net-

work (GAN) [11]. Alternatively, gradient-based approaches

[26, 33, 18] also address this problem by adjusting the dif-

ferences in color and illumination for the composited image

globally.
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Figure 3: An overview of the proposed multi-stream Fusion Image Compositing Network, where features of different levels are extracted

from foreground and background images separately, and then are fused together to generate high-quality compositing results. A pair of

masks generated by segmentation models are used to guide the encoding process. See text for more details.

The most common compositing workflow is based on

image matting. Matting refers to the process of extracting

the alpha channel foreground object from an image. Tradi-

tional matting algorithms [1, 8, 41, 29, 23, 6] require a user

defined trimap which limits their applications in automatic

image process. Though recent works [31, 7] have leveraged

the CNN models to automatically generate trimaps, they

still regard trimap generation and alpha channel computa-

tion as two separated stages. In addition, the matting meth-

ods do not take the final compositing results into considera-

tion. Instead, we propose an end-to-end image compositing

framework that takes the final compositing performance as

the optimization objective.

2.2. Data Augmentation

Data augmentation is a common technique to improve

the training of deep neural networks. It helps to reduce

over-fitting and improves the model generalization. Data-

augmentation has been successfully applied to various com-

puter vision applications both in low-level vision and high-

level vision such as image enhancement [45, 43], image

matting [41, 7], image harmonization [34], and object de-

tection [12]. Most data augmentation methods are based

on trivial transformations such as cropping, flipping, color

shift, or adding noise to an image [12, 34, 49, 28]. In our

problem, the training requires a triplet composed of a pair of

foreground and background images and the target compos-

ited images, and traditional data augmentation methods can-

not help to diversify the contents of the triplet. In this paper,

we propose a self-taught method to automatically generate

such triplet samples for our image compositing problem.

3. Deep Image Compositing

In this section, we present our Deep Image Composit-

ing framework. Although we only implement it for portrait

compositing in this paper, the formulation of the framework

is general and we hope it can be useful in other image com-

positing applications, too.

The proposed framework takes a pair of foreground and

background images as input, and generates the composited

image. It has three components: 1) a Foreground Segmen-

tation Network, 2) a Mask Refinement Network and 3) a

multi-stream Fusion Network. First, the segmentation net-

work automatically extracts an object mask from the fore-

ground image. Then, the mask refinement network takes the

image and the mask as input to refine the mask boundary.

After that, the refined mask, together with the foreground

and background images, is passed to the multi-stream fu-

sion network to generate the compositing results. We will

describe these components as follows.

3.1. Multistream Fusion Network for Compositing

We present the multi-stream Fusion (MLF) Network first

as it is independent of the other two components and can

work with other segmentation and matting models, too. The

goal of the MLF network is to provide natural blending

between the foreground cutout and the background image,

removing artifacts caused by color contamination, aliasing

and the inaccuracy of the segmentation mask.

Our MLF network is inspired by the Laplacian pyramid

method for image blending. The Laplacian blending [5]

method computes image pyramid representations for both

foreground and background images, and then blends dif-

ferent levels of details with varied softness along the mask

boundary through the image pyramid representations. The

final composited image can be reconstructed from the multi-

stream fused image representations.

Similarly, the proposed MLF network consists of two

separate encoders to extract the multi-scale features from

foreground and background images separately. The input

to both encoders is a concatenation of the image and a pre-

computed soft mask. The mask for the foreground image

is computed by our segmentation and refinement networks,
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Figure 4: Results on the segmentation mask estimation. It can

be observed that the refined segmentation mask preserves better

boundary details with more confidence.

and the mask for the background image is an inverted ver-

sion of it. The foreground and background encoders then

generate different levels of features, which correspond to

the image pyramid representations in Laplacian blending.

At the end of the encoders, the highest-level of feature

maps are concatenated and are passed to a decoder. At dif-

ferent decoding levels, feature maps get upsampled through

deconvolution and are concatenated with the same level

feature maps from the two encoders. At the end of the

decoder, the composited image is reconstructed from the

fused feature maps. This process is analogous to the fusion

and reconstruction process of Laplacian pyramid blending.

Dense-block [17] is leveraged as the basic building block

for the discussed encoder and decoder architecture. Details

of the proposed network is presented in the supplementary

material. The overview of the MLF network is shown in

Fig. 3.

As we can see, our MLF network can be regarded

as an extension of the popular encoder-decoder network

with short connections [27, 4]. Instead of a single-stream

encoder in the previous models, our two-stream encoder

pipeline encodes the foreground and background feature

maps separately, which are fused later during the decod-

ing process. We find that such two-stream design not only

coincides with the Laplacian blending framework, but also

provides better performance than the single-stream design

in our experiment.

For training, the proposed method is optimized via both

L1 loss and perceptual loss [19, 21] to encourage image-

level perceptual realism [47] for the composited images.

The loss function is defined as follows:

Lall = L1 + λPLP , (1)

where L1 denotes the L1 loss and LP indicates the percep-

tual loss. Here, λP indicates the weights for the perceptual

loss. The perceptual loss is evaluated on relu 1-1 and relu

2-1 layers of the pre-trained VGG [24] model.

3.2. Segmentation and Mask Refinement Networks

The foreground segmentation network can be imple-

mented as a salient object segmentation model [2, 46, 38,

9, 16, 25] or specifically a portrait segmentation model

[31, 7, 30], and we refer the readers to those related works

for the details of model training and datasets. In our im-

plementation, we use a salient object segmentation model

[3] due to its speed and accuracy, but that our framework

can work with any off-the-shelf salient object segmentation

models.

However, the raw mask from the foreground segmenta-

tion model is often not very accurate at the object bound-

aries. The segmentation network also processes the image

at low resolution, so the upsampled mask will further suf-

fer from the up-sampling artifacts like jagged boundaries.

Therefore, we propose a mask refinement network to re-

fine the details along the object boundary and up-sample

the mask with fewer artifacts.

The refinement network shares the same architecture

as the segmentation network, except that input is a four-

channel RGB-A image, where the fourth contains the raw

segmentation mask. To make this mask refinement net-

work focus on different levels of local details, we sample

image patches of various sizes for the training. In train-

ing, a cropped version of the image and the pre-computed

raw mask are passed to the refinement network to generate

the local refined mask. The training uses the same data and

and the same cross-entropy loss as used by the segmentation

model. At testing, the refinement network takes the whole

image and its mask as input.

The refinement network can be applied recursively at dif-

ferent scales. In our implementation, we first resize the im-

age and the its raw mask to 320 × 320 and generate a re-

fined mask at this resolution. Then we resize the image to

640 × 640 and upsample the refinemask to same size, and

apply the refinement network again. We find this two-stage

refinement scheme working very well in practice. A sam-

ple result of the refinement network is shown in Fig. 4. It

can be observed that the refined mask preserves much better

boundary details and reduce the fuzziness of the raw mask.

This also makes the training of our fusion network easier.

4. Easy-to-Hard Data Augmentation

To train our multi-stream Fusion (MLF) network, each

training sample is a triplet [FG,BG,C], where FG is the

foreground image, BG is the background image and C is

the target composted image of FG and BG. As we want the

MLF network to learn to produce a visually pleasing blend-

ing between FG and BG, the quality of the target image C

is the key to our method. However, manually creating such

high-quality compositing dataset requires expert-level hu-

man effort, which limits the scalability of the training data

collection.

To address this issue and generate a relative large-scale

image compositing dataset without much human annotation

effort, we propose an easy-to-hard data-augmentation ap-

368



FG

Target 

BG1

BG2
DecoderEncoder

MLF
Network

BG

Encoder Decoder

MLF
Network

share 
weights 

Hard Training Triplet

Easy FG

Figure 5: An overview of the proposed easy-to-hard data augmen-

tation procedure.

proach using a self-taught scheme. The basic idea is to use

the MLF network to generate more challenging data to im-

prove itself. The MLF network is first trained on a few easy

training triplets where the foreground images FG are all

portrait images with simple color background. After that,

we collect a lot of such simple portrait images and use the

MLF network to generate more challenging training triplets

for the next training stage. The overview of this data aug-

mentation scheme is shown in Fig. 5 and we describe more

details below.

We first use a small matting dataset [41] to create a sim-

ple compositing training set. Images in the matting dataset

have alpha channel and were processed by color decontam-

ination. Thus, they can be composited to any background

images using the alpha channel. To generate a easy train-

ing triplet, the foreground images FG is generated by com-

positing the matting image with pure color background; the

background image BG can be a random web image; and

the target image C is created by using the alpha channel of

the matting image as well. By firstly training our MLF net-

work on these triplets, the network learns to blend an easy

foregrond image onto a random background image.

We then use our specifically trained MLF network to

generate harder training triplets. We collect a lot of web por-

trait images with simple background, with which we gen-

erate composited images with random background images

using the MLF network (see Fig. 5). Given a simple portrait

image, which is denoted as Easy FG in Fig. 5, we sample

two random background images BG1 and BG2 to generate

two composited images using the MLF network. Without

loss of generality, the composited image of BG2 and Easy

FG is used as a new target image C ′; the other compos-

ited image then becomes a new foreground image FG′, and

BG2 will be used as the new background image BG′. As

we can see from Fig. 5, the new triplet [FG′, BG′, C ′] fol-

lows the compositing relationship

C ′ = Easy FG⊕BG2 = FG′
⊕BG′, (2)

Background Foreground Target

Figure 6: Samples of triplets generated by our self-taught data

augmentation algorithm. It can be observed that the proposed data

augmentation algorithm is able to generate high-quality with near-

perfect target images.

whtere Easy FG and FG′ share the same foreground con-

tent, and BG′ = BG2. The compositing operation is de-

noted as ⊕.

In this way, we generated high-quality hard triplets to

augment the original matting training set. Sample triplets

are shown in Fig. 6. It can be observed that the pro-

posed data augmentation algorithm is able to generate high-

quality compositing targets. Our results in the next section

show that these self-generated training sample is essential

for the good performance of our method.

5. Experiments

We evaluate our deep image compositing method

through quantitative and qualitative evaluations. A user

study is also performed to measure the users’ preference

regarding the perceptual quality of the compositing results.

Finally, we perform some ablation studies to validate the

main components of our method.

Datasets: The segmentation and refinement network is

trained on the DUTS [39, 42], MSRA-10K [15, 14] and

Portrait segmentation [31, 30] datasets . The multi-stream

fusion compositing network is trained using the synthe-

sized dataset via the proposed self-taught data augmentation

method together with a matting-based compositing dataset.

Similar to [41], the matting-based compositing dataset is

composed of 30000 training images generated by composit-

ing foreground images to random background images us-

ing the ground truth mattes. In addition, we also synthe-

size a testing dataset using the proposed self-taught data-

augmentation method, denoted as SynTest. SynTest is used

for quantitative evaluations. We leverage the PSNR as the

measurements to measure the final compositing quality.

Implementation Details: The segmentation and refine-

ment module is optimized via ADAM algorithm with a

learning rate of 2 × 10−3 and a batch size of 8. All the

training samples for the segmentation and refinement mod-

ules are resized to 256 × 256.

Similarly, the multi-stream fusion compositing network

is trained using ADAM with a learning rate of 2×10−3 and

batch size of 1. All the training samples are cropped and
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Foreground Generated Trimap Copy-Paste Lap-Pyramid [5] Closed [22]

KNN [8] Info-flow [1] DIM [41] Index [23] Our

(Image 2)

Foreground Generated Trimap Copy-Paste Lap-Pyramid [5] Closed [22]

KNN [8] Info-flow [1] DIM [41] Index [23] Our

(Image 3)

Figure 7: Results compared with other methods.

Table 1: Quantitative results evaluated on SynTest compared with the other methods. Evaluation on unknown regions.

Copy-paste Lap-Pyramid [5] Closed [22] KNN [8] Info-flow [1] DIM [41] Index [23] Our

PSNR (dB) 17.88 17.85 18.23 18.21 17.88 18.40 19.01 19.34

resized to 384 × 384 and all the testing samples are resized

to 768× 768. We trained the network for 200000 iterations

and choose λP = 0.8 for the loss in Eqn. 1. Details of the

proposed multi-stream fusion network is discussed in the

supplementary material.

Compared Methods: In this paper, the proposed

method is compared with traditional blending-based com-

positing methods such as Laplacian pyramid blending [5].

We also evaluate the matting-based compositing approach

using state-of-the-art matting methods such as Closed-Form

(Closed) [22], KNN [8], Information-Flow (Info-flow) [1],

Deep Image Matting (DIM) [41] and Index-net [23]. In ad-

dition, we also compare one baseline method called copy-

paste. For copy-paste, the refined segmentation mask esti-

mated from the refinement segmentation module is used as

the soft alpha matte for the compositing.

For fair comparison, all the compared methods use the

same refined mask as our method. For the feathering

method, we apply Gaussian blur with σ = 2 to soften the

mask. For the Laplacian pyramid blending [5], we use the

OpenCV implementation. As matting-based methods re-

quire trimaps, we binarize the refined mask and then gener-
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Foreground w/o-DataAug Our

Figure 8: Results on the Ablation 1 on a real-world image. With-

out data augmentation, the baseline MLF network often makes the

foreground region mixed with the background colors, leading to

color shift artifact.

ate a pseudo-trimap by labeling a narrow boundary band of

width 16 as unknown. Sample trimaps are shown in Fig. 7.

To notice, an automatic color-decontamination algorithm

[22] is used for the matting-based compositing methods to

enhance their compositing quality.

5.1. Results

As our task is focusing more on perceptual quality, our

evaluation is composed of subject judgment and quantita-

tive evaluation. The quantitative evaluation uses two stan-

dard metrics PSNR to demonstrate the compositing quality,

and it serves as a verification process. We do not deliber-

ately pursue high scores of these metrics.

Some visual comparisons are shown in Fig. 71. It can be

seen that the Feathering and Laplacian pyramid methods are

able to smooth the hard mask and improve the visual qual-

ity along the boundary. However, these two blending meth-

ods bring in halo artifacts and the object boundaries tend

to be over-smoothed in the composited images. In contrast,

the matting-based methods with color decontamination are

able to generate compositing results with fine details along

the object boundary, but sometimes the boundary artifacts

becomes more obvious when the matting is not success-

ful on challenging scenarios, as shown in the third image

in Fig. 7. In addition, the imperfect trimap generated us-

ing the refined segmentation mask may also introduce more

difficulty for the matting-based methods, and we find some

of matting methods are sensitive to the choice of trimaps.

Overall, our method is much more robust to the mistakes in

the segmentation mask, and is able to generate higher qual-

ity compositing results in most of the cases. It can preserve

natural details along the hair and object boundaries, and is

also able to complete the missing part that is not completely

captured by the input segmentation mask. Quantitative re-

sults evaluated on the synthetic data also demonstrate the

effectiveness of the proposed methods, as shown in Table 1.

The quantitative results in Table 1 are computed on the un-

known regions only. In this setting, our method outperforms

1Due to the page limit, feathering results are put into the supplementary

material.

Deep Image Matting (DIM) by nearly 1 dB in PSNR and

state-of-the-art Index-net [23] by 0.3 dB. Quantitative re-

sults evaluated on the whole image region is shown in sup-

plementary material. Still, the numbers can only partially

convey the performance gain of our method.

User Study: To further evaluate the perceptual quality of

our results, we perform a user study. In this user study, we

compare our results with the Laplacian Pyramid Blending

method [5], and matting based methods using Closed-form

[22], Information-flow [1] DIM [41] and Index [23]. We

also include a Single-Stream network (Single-Enc) baseline

to verify the architecture design of the MLF network (See

the Ablation 2 in Sec 5.2 for more details). The Copy-paste

baseline with refined soft mask is also included to demon-

strate the advantage of our deep image composting frame-

work.

This study involves 44 participants including Photoshop

experts. During this study, each participant was shown 14

image sets, each consisting of the foreground images and

compositing results of all compared methods. All testing

images and compositing results are included in the supple-

mentary materials. In each image set, participants were

asked to pick and rank the favorite 3 results. The compost-

ing results in each set is randomly shuffled to avoid selec-

tion bias. We report the average ranking (lower the better)

in Table 2. Compositing results that are not selected are

assigned a rank score of 8 for more penalty.

Our method achieves the best ranking score. Among

the 14 test samples, our method ranks the first on 9 im-

ages. The runner-up, which is Index-net [23], ranks the

first on 4 images. And DIM [41] is the third place, which

ranks the first on 1 image. Other matting-based methods are

generally ranked lower than the our baselines. One major

reason is that they often produce color artifacts along the

object boundary, especially on challenging images where

color contrast between object and background is not strong

enough, or there are strong textures on the background near

the object boundary. Moreover, some matting methods are

sensitive to the trimaps and their performance may degrade

significantly when the trimap is not accurate enough. In

such cases, the users even prefer the smoother Lap-Pyramid

results over the sharper matting-based results. These find-

ings suggest the necessity of an end-to-end formulation for

the image compositing problem.

5.2. Ablation Study

We conduct three ablation studies to demonstrate the ef-

fectiveness of the proposed method. The quantitative eval-

uation is performed on the synthesized SynTest datasets.

Ablation 1: Effectiveness of Data Augmentation. We

evaluate the effectiveness of our self-teach data augmenta-

tion method. We train a baseline MLF network only on the

matting-based compositing data (see Sec. 5) without using
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Table 2: User-study results compared with the other methods. (Lower is the better.)

Lap-Pyramid [5] Closed [22] Info-flow [1] DIM [41] Index [23] Copy-paste Single-Enc Our

Average rank 5.02 4.81 4.50 3.17 3.69 4.22 4.15 3.05

Foreground Single-Enc Our

Figure 9: Results of the Ablation 2 on a real-world image. The

baseline using a single-stream encoder tends to have issues in pre-

serving the foreground regions.

Table 3: Quantitative results on SynTest of Ablation 1-3, where

w/o-DataAug denotes the network trained without our data aug-

mention, Single-Enc denotes a network with a single-stream en-

coder and w/o-RefNet means the baseline without the segmenta-

tion refinement network. Evaluation on unknown regions only.

w/o-DataAug Single-Enc w/o-RefNet Our

PSNR (dB) 18.00 19.05 18.22 19.34

the self-taught based data augmentation (denoted as w/so-

DataAug).

By visually checking testing samples, we find that the

baseline MLF network is much less robust without the self-

taught data augmentation. In many cases, the foreground

tend be transparent, leading to color shift on the foreground.

A sample result is shown in Fig. 8. Quantitative results

in Table 3 also verify this observation. It shows that large

training data is essential for training a robust MLF network

and our self-taught data augmentation can effectively miti-

gate the lack of training data.

Ablation 2: Effectiveness of the Two-stream Encoder.

Next, we demonstrate the effectiveness of our two-stream

encoder design. We train a baseline network with a single-

stream encoder-decoder structure (denoted as Single-Enc),

where the foreground and background image, together with

the refined mask, are concatenated as the input to the net-

work. The backbone model of this baseline is the same as

our full model. We do make sure the parameters for both

single and two-stream have approximately the same num-

ber of parameters. We increase the number of channels for

the encoder in the single-stream network

Similar to the Ablation 1, we evaluate this baseline on

both the synthetic datasets and real-world images. A visual

comparison is shown in Fig. 9. It can be observed from

the zoom-in region that the single-stream network is less

successful in preserving the foreground regions and causes

more artifacts along the boundary. Quantitative results in

Table 3 is also consistent this observation.

Ablation 3: Effectiveness of the Mask Refinement Net-

Foreground w/o-RefNet Our

Figure 10: Results of the Ablation 3 on a real-world image. It can

be observed from the zoom-in region that the refinement networks

enables cleaner boundaries in the composited image.

work. We further evaluate the benefit of introducing the

mask refinement network. For this baseline (denoted as

w/o-RefNet), we remove the refinement network and di-

rectly use the raw segmentation mask for testing. To make it

fair, we also re-train the MLF network using the raw mask.

Sample visual result is shown in Fig. 10. In general,

the baseline is able to generate high-quality compositing re-

sults, but the object boundaries often contain contaminated

colors that belong to the original background of the portrait

photo. Quantitative results in Table 3 echos this observa-

tion.

Failure Case: The proposed MLF compoting network is

robust to small errors in the segmentation mask, but it still

relies on the general quality of the masks, as indicated in

Ablation 3. Most of our failure cases are caused by fail-

ures of the segmentation network. Sample failure cases are

shown in the supplementary material.

6. Conclusion

In this paper, we propose an end-to-end image composit-

ing framework, where a saliency segmentation model with

a refinement module is embedded into the network. To

efficiently leverage features of both foreground and back-

ground from different scales, a multi-stream fusion net-

work is proposed to generate the final compositing results.

Furthermore, a self-taught data-augmentation algorithm is

leveraged to augment the current compositing datasets. Ex-

periments evaluated on both synthetic images and real-

world images demonstrate the effectiveness of the proposed

method compared to other methods. The user-study also

show that the proposed method is able to generate better

compositing results with good perceptual quality.
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