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Abstract

Human emotions can be inferred from facial expres-

sions. However, the annotations of facial expressions are

often highly noisy in common emotion coding models, in-

cluding categorical and dimensional ones. To reduce hu-

man labelling effort on multi-task labels, we introduce a

new problem of facial emotion recognition with noisy multi-

task annotations. For this new problem, we suggest a for-

mulation from the point of joint distribution match view,

which aims at learning more reliable correlations among

raw facial images and multi-task labels, resulting in the re-

duction of noise influence. In our formulation, we exploit

a new method to enable the emotion prediction and the

joint distribution learning in a unified adversarial learn-

ing game. Evaluation throughout extensive experiments

studies the real setups of the suggested new problem, as

well as the clear superiority of the proposed method over

the state-of-the-art competing methods on either the syn-

thetic noisy labeled CIFAR-10 or practical noisy multi-

task labeled RAF and AffectNet. The code is available at

https://github.com/sanweiliti/noisyFER.

1. Introduction

As a window to the mind, face expresses various hu-

man emotions and intents in everyday life. This leads to a

common assumption that a person’s emotional state can be

readily inferred from his or her facial movements. To au-

tomatically recognize facial expressions of emotions, large

amounts of datasets (e.g., [31, 53, 63, 6, 11, 37, 28, 24, 25])

and machine learning methods (e.g., [59, 46, 38, 3, 30,

21, 65, 58, 29]) have been suggested. However, how peo-

ple communicate and understand basic categorical emo-

tions (i.e., happiness, sadness, anger, disgust, surprise and

fear) vary substantially across cultures, situations, and even

across people within the same situation. In addition, it is

often challenging for people to distinguish several facial

Figure 1. Illustration of (a) biased annotations on categorical emo-

tions [37], (b) the association between categorical and dimensional

emotions.

emotion pairs such as, anger vs. disgust, and surprise vs.

fear. Fig. 1(a) shows some examples where two experts

perceive emotions differently. Moreover, the challenge of

correctly annotating emotions increases dramatically when

people are asked to annotate dimensional emotions, i.e., va-

lence and arousal values, which are typically defined within

a continuous range of [−1, 1]. Therefore, biased annota-

tions of facial expressions are inevitable and ubiquitous. On

the other hand, as illustrated in Fig.1 (b), the categorical and

dimensional labels have close correlation, despite of them

being targeted for different tasks, i.e., emotion recognition

vs. affect prediction.

In this paper, we explore a new problem of facial emotion

recognition from noisy multi-task labels. To reduce human

efforts for labelling, we suggest to make use of cheap anno-

tations, allowing noisy labels of the kind typically obtained

from the web collection or using non-expert annotators. In

fact, such labels for emotion already do exist in the form of

different coding models across various datasets [11, 37, 28].

Among many, two most commonly used facial emotion

coding models are categorical and dimensional. Therefore,

we suggest to learn emotion recognition from multi-task la-

bels of these two kinds. Our general observation indicates

that the association between image data and the available

emotion labels, although noisy, are often correct when com-

pared to the incorrect ones, for both coding models con-

sidered. Unfortunately though, directly learning from such

labels results in undesired outcome during inference. In-
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spired by this observations, we advice to benefit from mul-

tiple labels per image hereby posing a problem of learning

from related multi-task labels of different encoding models.

Our proposed formulation addresses this problem from the

perspective of joint distribution match, which aims at ex-

ploiting the correlations among data and multi-task labels

to reduce the impact of the labels’ noise.

While the formulation facilitates us to better treat the

new problem, it is challenging to achieve a unified model

to play the trade-off between the basic emotion prediction

and the constraint on joint distribution match. Furthermore,

it is known that exact modeling of probability density func-

tion is computationally intractable [45] for all but the most

trivial cases. Additionally for our case, due to the high

heterogeneity between data and multi-task labels, it is non-

trivial to learn their joint distribution. To cope with the sec-

ond issue, we instead reduce the data distribution model-

ing to generative modeling of distributions, using genera-

tive adversarial networks [15], which has proved the empir-

ical strength as generative models of arbitrary data distribu-

tions. For the third issue, we follow the idea of canonical

correlation analysis [51] to learn the correlation (or joint

distribution) of the heterogeneous data using multi-stream

projections, with which a common space is pursued reduc-

ing the heterogeneity. The exploration of joint distribution

learning enables a good collaboration between the emotion

prediction and joint distribution learning tasks in an unified

adversarial learning game.

In summary, this paper offers several contributions to ad-

dress the practical case of facial emotion recognition. Major

three of them are listed below:

• We suggest a new problem of facial emotion recog-

nition with noisy multi-task labels, which targets for

readily available cheap multi-task annotations.

• To address the proposed problem, we propose a gen-

eralized formulation with explicit joint and marginal

distribution match among data and the heterogeneous

multi-task labels.

• In our formulation, we introduce a new adversarial

learning model to optimize the training of emotion pre-

diction with the joint and marginal distribution based

constraint, which is shown to be suitable for the newly

proposed problem.

2. Related Work

Learning from noisy labels. A number of approaches

have been proposed for learning noisy labels. There are

several different lines to address this issue. The first line

aims to parameterize the noise by a transition matrix in-

dicating the probability to mislabel one class into another

class [48, 14, 50, 39]. [39] performs a forward correction

and a backward correction to the noisy labels given a tran-

sition matrix. [48, 14] add a linear layer on top of the net-

work to learn the transition probability jointly with the pre-

diction network. The second line learns the label distribu-

tion [13, 49, 56]. For example, [13] introduces deep label

distribution learning by assuming a predefined distribution

for the true labels and minimizes the Kullback-Leiber di-

vergence. [49, 56] optimize both the network parameters

and the label predictions as the label distributions to correct

noise. Some works explore this topic with two simultane-

ous networks [20, 33, 16, 57, 32, 27] updated iteratively.

There are other methods such as sample weighting strategy

to measure the confidence level of each sample [20, 61], or

robust loss functions [55, 40, 62] from the loss level. Learn-

ing with multiple noisy labels has also been explored by es-

timating ground truth with crowdsourcing [66] or soft labels

[18]. For emotion recognition with inconsistent labels, [58]

extents the single noise learning formulation by incorpo-

rating a separate transition matrix for each annotator. [50]

proposes to add a regularization term to minimize the trace

of the transition matrix for the convergence to the true label.

To summarize, previous works generally tackle the noise

label issue by transition matrix, label distribution or other

classification-specific methods, therefore are incapable of

dealing with multi-task involving both discrete and contin-

uous labels, while ignoring the joint distribution between

the image and labels which potentially contains richer in-

formation to benefit learning.

Generative modeling for joint distribution learning.

Following generative adversarial network [15], there are

emerging a few works that explore joint distribution learn-

ing in unsupervised inference tasks or conditional genera-

tion [10, 7, 19, 8, 42, 4, 12]. For instance, [10, 7, 2] approx-

imate the posterior distribution by matching two joint dis-

tributions from an inference network and a generation net-

work in an unsupervised or semi-supervised manner. With

a slight difference, [4] distinguishes three joint distributions

including the image-label pair from data, while [12] incor-

porates two discriminators to distinguish among encoder-

decoder distributions and fake-true distributions. More re-

cently, [42] focuses on image synthesis from both marginal

distributions and conditional distributions. [19] deals with

conditional image synthesis by matching joint distribution.

While these works have made some success on joint distri-

bution learning, they either deal with representation learn-

ing or emphasize on image synthesis, which can hardly be

applied to our noisy label learning problem without special

treatment to the noisy labels. Furthermore, they generally

lack abilities to learn the correlations among heterogeneous

labels of different tasks.

Multi-task learning for facial emotion recognition. Some

works utilize auxiliary tasks to facilitate facial emotion

recognition [5, 64, 34, 41, 43, 35, 25, 54, 17]. [54] explores
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a multi-task learning model for expression recognition and

action unit detection by automatically learning the weights

for either task. [17] predicts emotions with facial landmark

detection as a side task. Recently a large-scale human emo-

tion dataset Aff-Wild2 [25] is proposed with annotations of

basic expression classes, valence-arousal values and action

unit labels, and multi-task models are developed to facili-

tate learning for each individual task. However, these works

do not treat the labelling noise problem, while noise exten-

sively exists in common facial emotion recognition labels.

3. Problem Formulation

Noisy-labeled facial emotion recognition aims at train-

ing a robust model on facial images merely with noisy la-

bels. Let D be the underlying truth distribution gener-

ating (X,Y ) ∈ χ × ν pairs from which n iid samples

(X1, Y1), . . . , (Xn, Yn) are drawn. After annotating these

samples with a certain bias, we obtain corrupted samples

(X1, Ỹ1), . . . , (Xn, Ỹn), and let the distribution of (X, Ỹ )
be Dρ. The biased annotation model P (Ỹ |Y ) is unknown

to the learner. Instances are denoted by x ∈ χ ⊆ R
d, clean

and noisy labels are denoted by y, ỹ respectively.

A traditional way is to model the noise directly with the

noisy label distribution definition p(ỹ = j|y = i) = tj,i.

The probability that an input x is labeled as j in the noisy

data can be computed using tj,i:

p(ỹ = j|x) =
cX

i

ti,jp(y = i|x), (1)

where c is the total class number. In this way, we can modify

a classification model using a probability matrix T = (tj,i)
that modifies its prediction to match the label distribution

of the noisy data. Let θ denote parameters of the prediction

model, and p̂(y|x, θ) be the prediction probability of true

labels by the classification model. Then the prediction of

the final model is given by

p̂(ỹ = j|x, θ, T ) =
cX

i

tj,ip̂(y = i|x, θ). (2)

However, modeling label noise by the transition proba-

bility matrix T has several disadvantages: firstly, the transi-

tion matrix lacks constraints for the convergence to the true

T [50], which can lead optimization to a wrong direction,

secondly, the assumption that annotators mislabel one spe-

cific class into another certain class in a constant probability

may not always hold. Lastly, the probability matrix is a spe-

cific case to model discrete labels and fails in the regression

task, while continuous noisy labels also exist in many tasks

such as affect prediction. Hence, the relationship between

the images and the corresponding labels should be consid-

ered for a more generalized model which is applicable in

different tasks, as well as the multi-task setting.

To address the drawback of the traditional conditional

probability modeling, we suggest to remove the transition

matrix T and add a constraint on the joint distribution of

(X,Y ). As noisy labels are generally outliers of the true

distribution, our goal is to infer the true joint distribution

to reduce impacts of outliers. Distribution-to-distribution

supervision as a regularizor makes learning more robust to

noise than one-to-one supervision, therefore the key idea is

to match two joint distributions. If the aim is achieved, then

we are ensured that all marginals as well as all conditional

distributions are aligned to some extent. Here, we consider

the following two joint probability distributions over two

pairs of data and labels:

p̂(x, y0, y1 = i|θ) = p̂(x)p̂(y0, y1 = i|x, θ),

q̂(x̃, ỹ0, ỹ1 = j|ϑ) = q̂(ỹ0, ỹ1 = j)q̂(x̃|ỹ0, ỹ1 = j,ϑ),
(3)

where (x, y0, y1) is a triplet of the input facial image, its

predicted non-emotion latent variable, and emotion label,

(ỹ0, ỹ1, x̃) is a triplet of the random non-emotion latent vari-

able, the noisy emotion label and the facial image inferred

from them, and ϑ is the synthesis mapping from (ỹ0, ỹ1) to

x̃. To achieve a reliable constraint, a natural way is to op-

timize Kullback–Leibler or Jensen–Shannon divergence for

the alignment of the two joint distributions.
In the multi-task setting for facial emotion understand-

ing, labels of different tasks such as categorical emotion la-
bels (discrete emotion classes), and dimensional emotion
labels (continuous valence-arousal values) convey comple-
mentary information, which can be utilized for better facial
emotion recognition. Still, all types of labels are noisy and
this joint distribution learning framework can be easily ex-
tended to the multi-task setting. Assume each sample Xn

is labeled by T types of noisy labels Y 1
n , . . . , Y

T
n , and the

goal is to learn the joint distribution of the samples and all
corresponding labels (X,Y 1, . . . , Y T ), then it is desired to
optimize the alignment between the following two joint dis-
tributions:

p̂(x, y0
, y

1
, . . . , y

T |θ) = p̂(x)p̂(y0
, y

1
, . . . , y

T |x, θ),

q̂(x̃, ỹ0
, ỹ

1
, . . . , ỹ

T |ϑ) = q̂(ỹ0
, ỹ

1
, . . . , ỹ

T )q̂(x̃|ỹ0
, ỹ

1
, . . . , ỹ

T
,ϑ),

(4)

where y0, ỹ0 are non-emotion latent variables.

4. Proposed Method

As it is computationally intractable to model the explicit

probability density function of data distributions of real-

world data [45], it is generally infeasible to match the two

joint distributions with the exact modeling. To overcome

this issue, we resort to the generative adversarial modeling

methodology [15], which models a distribution with a gen-

erator and approximates the model distribution to the true

distribution with a discriminator.

To model the two distributions in Eqn. 4, we exploit two

components for the generator: One is an encoder GY that
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Figure 2. Illustration of (a) the overall architecture, where a pair

of symmetric encoder GY and decoder GX aims for simultane-

ous inference and image generation, with samples from both GY

and GX fed into D to align the distributions, (b) the discrimina-

tor architecture, which is trained to learn the joint score Sjoint, as

well as the marginal scores Sx, Syi . x indicates the real input im-

age, y0, ŷ1, . . . , ŷT correspond to the predicted non-emotion and

multi-task emotion labels by the encoder GY , ỹ0 is a Gaussian

noise, ỹ1, . . . , ỹT are the noisy labels of image x, and x̃ corre-

sponds to the generated image by the decoder GX .

learns the function θ to infer the clean labels from the in-

put images, while the other is a decoder GX that learns the

function ϑ to produce the facial images with the correspond-

ing expression from the noisy labels. The architecture is il-

lustrated in Fig. 2 (a). As GX is an image generator that

maps from the label space back to the image space, an ad-

ditional vector y0 is incorporated into our learning scheme

to model other attributes of the image except for the input

labels. The encoder GY predicts the clean labels ŷ1, . . . , ŷT

along with the latent noise y0. In the meantime, the decoder

GX takes a Gaussian noise ỹ0, to generate image x̃ condi-

tioned on the noisy labels ỹ1, . . . , ỹT :

GY : x → (y0, ŷ1, . . . , ŷT ),

GX : (ỹ0, ỹ1, . . . , ỹT ) → x̃,
(5)

In order to match the joint distributions captured by the

encoder and decoder, an adversarial game is played between

the generator and the discriminator. In particular, the dis-

criminator (Fig.2 (b)) is designed to match the joint dis-

tribution of the group of the facial image, the noise vec-

tor, and the multi-task labels from GY and GX . For the

joint distribution alignment, a natural way is to feed a pair

of the group (X,Y 0, . . . , Y T ), sampled from the encoder

p̂(x, y0, ŷ1, . . . , ŷT ) and the decoder q̂(x̃, ỹ0, ỹ1, . . . , ỹT )
respectively, into the discriminator network for the adver-

sarial training. Such distribution-to-distribution learning

avoids overfitting to specific samples, leading to more ro-

bust inference compared to one-to-one supervision which is

easily corrupted by the noisy labels.
However, the data within each group is highly hetero-

geneous and thus the direct concatenation on them could

hurt the distribution learning. To reduce the heterogene-
ity among the data and multi-task labels, we suggest to ex-
ploit multiple network streams to seek their common space
where their feature embeddings are less heterogeneous and
hence their correlation can be better learned. As shown in
Fig. 2 (b), the output embeddings of all the network streams
are finally fed into a common network where their joint dis-
tributions are learned by the joint score Sjoint. Besides the
advantage to leverage noisy labels of each task, the joint dis-
tribution learning also takes advantage of the implicit rela-
tionships among related tasks by Sjoint to facilitate learning
for each task. The full objective function is given by

min
GX ,GY

max
D

f(GY (x), ỹ) + λ(Ep̂(x)[g(D(x,GY (x)))]

+ Eq̂(y)[h(D(GX(ỹ), ỹ))]),
(6)

where y = (y0, ŷ1, . . . , ŷT ), ỹ = (ỹ0, ỹ1, . . . , ỹT ),
and the integral forms of the two regularizers
Ep̂(x)[g(D(x,GY (x)))] and Eq̂(y)[h(D(GX(ỹ), ỹ))])
are given by

Ep̂(x)[g(D(x,GY (x)))]

=

Z
. . .

Z
p̂(x)p̂(y|x, θ)g(D(x, y))dxdy0

. . . dy
T
,

(7)

Eq̂(y)[h(D(GX(ỹ), ỹ))]

=

Z
. . .

Z
q̂(ỹ)q̂(x̃|ỹ,ϑ)h(D(x̃, ỹ))dxdỹ0

. . . dỹ
T
.

(8)

The proposed generator and discriminator enable us to

optimize the emotion prediction based loss and the distribu-

tion match based constraint within a unified framework. On

one hand, the encoder GX is trained to predict the clean la-

bels. On the other hand, the discriminator D learns to align

the distributions by distinguishing them, while the encoder

GY and decoder GX are trained jointly to fool the discrimi-

nator in an adversarial game. According to such scheme, we

exploit a min-max objective function for our final solution:

min
GX ,GY

f(GY (x), ỹ) + λ(Ep̂(x)[ĥ(−D(x,GY (x)))]

+ Eq̂(y)[ĥ(D(GX(ỹ), ỹ))])

max
D

Ep̂(x)[g(D(x,GY (x)))] + Eq̂(y)[h(D(GX(ỹ), ỹ))],

(9)

where y = (y0, ŷ1, . . . , ŷT ), ỹ = (ỹ0, ỹ1, . . . , ỹT ), λ

plays a trade-off between the multi-task based prediction

loss f(GY (x), ỹ) and the joint distribution learning con-

straint with the two component functions g(D(x,GY (x))),

h(D(GX(ỹ), ỹ)) and ĥ(D(GX(ỹ), ỹ)), which correspond

to adversarial losses [9]. We adopt the hinge loss for the

adversarial loss that is commonly used by exiting works

like [36, 60]. For the multi-task learning, f(GY (x), ỹ)
can be realized by applying a regular cross entropy loss

to the emotion recognition task, with a similarity loss for

the continuous labels, which can be replaced by any target-

specific loss, such as the Concordance Correlation Coeffi-

cient (CCC) loss [44, 52] for affect prediction, which proves
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Algorithm 1 The proposed method

Require: Batch size m, encoder GY , decoder GX , discriminator D, training iterations n, and hyperparameter λ

1: for i ← 1 to n do

2: Sample data (x1, ỹ
1
1 , . . . , ỹ

T
1 ), . . . , (xm, ỹ1m, . . . , ỹTm) from the dataset

3: sample Gaussian noise ỹ01 , . . . , ỹ
0
m from N (0, 1)

4: ỹj ← (ỹ0j , ỹ
1
j , . . . , ỹ

T
j ) for all j

5: Update GX , GY :

minGX ,GY

1
m

Pm

j=1[f(GY (xj), ỹj) + λ(ĥ(−D(xj , GY (xj))) + ĥ(D(GX(ỹj), ỹj)))]
6: Update D:

maxD
1
m

Pm

j=1[g(D(xj , GY (xj))) + h(D(GX(ỹj), ỹj)))]
7: end for

to be more efficient than the common L2 loss [37, 24, 23].

Formally, the corresponding functions f , g, h, ĥ applied for

the minimization on the generator are given by

f((yd, yc), (ỹd, ỹc)) = LCE(yd, ỹd) + γLsim(yc, ỹc)

g(z) = min(0, z − 1),

h(z) = min(0,−z − 1),

ĥ(z) = −z,

(10)

where yd, ỹd denote the discrete labels, yc, ỹc indicate the

continuous labels, and z represents the discriminator’s out-

put. LCE and Lsim denote the cross entropy loss and the

similarity loss for discrete and continuous labels respec-

tively. γ is the trade-off between LCE and Lsim.

Although aligning the joint distribution by Sjoint implic-

itly matches the marginal distribution, the noise and true la-

bel distributions can be very different among noisy hetero-

geneous labels. In this case, explicit marginal distribution

alignment is beneficial. The alignment between the syn-

thetic image distribution and the real image distribution can

guide the decoder to generate more realistic images, mean-

while enforcing the distribution of decoder’s predicted la-

bels ŷ1, . . . , ŷT to match the distribution of the noisy labels

ỹ1, . . . , ỹT . Accordingly, each individual network stream

within D is expected to learn the corresponding marginal

distribution by the marginal scores {Sx, Sy0 , Sy1 , ..., SyT }
as shown in Fig. 2 (b). Since we consider the facial emotion

recognition as the target task, we use affect prediction as the

auxiliary task to benefit the target task from both the image-

to-label relationship and task-to-task relationship. The al-

gorithm of the proposed method is illustrated in Alg. 1.

5. Evaluation

We evaluate the proposed model in two scenarios: (1)

a synthetic noisy labeled dataset (CIFAR-10 [26]) for im-

age classification; (2) two practical facial emotion datasets

(RAF [28] and AffectNet [37]) for facial emotion recog-

nition. For a more real-world setup, we do not use clean

validation labels for model selection, and thus the finally

converged trained model of each comparing method is used

directly for evaluation in all experiments. Please refer to

supplementary material for more implementation and archi-

tecture details.

5.1. Evaluation on Synthetic Noisy Labeled Dataset

Experiment setup. Following [58], the CIFAR-10 dataset

[26] for image classification is selected to build the syn-

thetic noisy labeled dataset, as a simulation case to study

model behavior with multiple increasing noise. CIFAR-

10 includes 60,000 images of size 32x32 in 10 different

categories, among which 50,000 are used for training and

10,000 for the test. Images in CIFAR-10 are labeled only

for image classes, from which we generate three different

sets, in order to simulate our multi-task scenario. Our simu-

lation creates three training sets with different noisy labels,

by randomly flipping 20%, 30%, and 40% (each for one

set) of the corresponding clean labels. We do not introduce

any noise in the test set. The modified noisy labels are uni-

formly selected across classes. Although this setup is not

ideal in the sense of multi-task labels, the proposed model

is still applicable, where three inconsistent noisy labels are

treated as ỹ1, ỹ2, and ỹ3, respectively. λ is set as 0.8 in the

experiment.

Baselines. As the encoder GY is a VGG-backboned net-

work, we compare the proposed model with the follow-

ing baselines: VGGNet [47] trained on clean labels; VG-

GNet trained on the majority vote of the three noisy la-

bels; VGGNet trained with all noisy labels; auxiliary im-

age regularizer model (AIR) [1], symmetric cross entropy

loss method (SCE) [55]; Co-teaching method [16]; and LT-

Net [58]. Among the competing methods, LTNet is pro-

posed to deal with inconsistent labels, while other methods

mainly tackle the single noisy label issue. We adapted the

remaining methods to multiple noisy labels setting, by com-

bining losses of all label sets.

Results and analysis. The results are summarized in

Tab. 1. Note that the results of AIR and LTNet are di-

rectly from [58], because AIR’s result cannot be reproduced

by ourselves and LTNet has not released its official code.
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Table 1. Test accuracy on CIFAR-10 synthetic dataset.

Training data Model Test acc (%)

Clean labels VGGNet [47] 88.55

Multi noisy labels

VGGNet-major vote 82.36

VGGNet 80.23

AIR [1] 76.37

SCE [55] 86.34

Co-teaching [16] 84.21

LTNet [58] 87.23

Proposed 87.90

Figure 3. Test accuracy vs. training steps on CIFAR-10 synthetic

noisy dataset.

As can be observed, noisy labels severely hurt the learn-

ing performance, when used without further treatment. The

VGGNet model trained with majority voting label performs

poorly because the majority voting only decreases noise ra-

tio, but cannot model the label distribution. The VGGNet

model trained with multiple noisy labels also tends to overfit

on the noisy training set by one-to-one supervision, leading

to a degraded performance in the clean test set. AIR is not

trained end-to-end and therefore difficult to optimize. SCE

and Co-teaching deal with single noise label issue, from the

perspective of robust loss function or complementary net-

works, hence they lack generalization abilities to the multi-

label or multi-task setting. LTNet, which is specifically de-

signed for inconsistent label setting, performs comparable

to the VGGNet model trained with clean labels. However, it

is not applicable for continuous labels as it models noise by

the transition matrix. In comparison, the proposed model

trained with multiple noisy labels achieves the best result

among compared methods, and is comparable to the model

trained using clean labels. Note that our method is not re-

stricted by the number or task types or the noisy labels.

The test accuracy curves of the baselines and the pro-

posed model over training steps are visualized in Fig. 3.

Note that the baseline models trained with noisy labels first

rise to a peak accuracy quickly and decrease later. In con-

trast, the test accuracy of the proposed model continues in-

crease over the training steps. Furthermore, we observed

that the one-to-one cross entropy loss of the proposed model

does not converge to zero, instead settles at a relatively high

value. However, the cross entropy loss of VGGNet base-

line models converge to almost zero, which indicates over-

fitting. This observation demonstrates that the joint distribu-

tion learning proposed in this paper can avoid the negative

influence of the noisy labels.

5.2. Evaluation on Facial Emotion Dataset

The distribution of the synthetic noise in CIFAR-10

dataset is straightforward and only includes one task, while

labelling noise can have various patterns in practical emo-

tion datasets due to many reasons (different annotators, la-

belling protocols, challenges in distinguishing certain ex-

pressions, etc.). To study the effectiveness of the proposed

model in the emotion recognition task with noisy multi-task

labels, we evaluate the model in real-world settings.

Experiment setup. A cross-dataset evaluation protocol is

proposed by LTNet [58] to train the model on the combi-

nation of AffectNet [37], RAF [28] training set (and some

unlabeled facial images), and test on several emotion recog-

nition dataset test sets including AffectNet and RAF. How-

ever, such setting is not suitable to our new problem: this

training setting assumes that the labelling of AffectNet and

RAF are biased and inaccurate, while reporting test accu-

racy on both AffectNet validation set and RAF test set to

demonstrate the superiority of the proposed framework as-

sumes that the same labelling on these two datasets can re-

sult in clean labels for test, which is contradictory with the

training. Therefore, for the suggested new problem, we pro-

pose a more appropriate evaluation procedure on RAF and

AffectNet. We use machine labeling by pretrained models,

which inherently introduces noise due to domain gap and

human-machine disagreements.

Baselines. As existing methods for noisy label learning

either are not applicable, or cannot be easily adapted to the

multi-task setting or continuous labels, we choose to train

two of state-of-the-art methods for single discrete noisy la-

bel learning, i.e., SCE [55], Co-teaching [16], only with

discrete expression labels. For comparison, we also train

the VGGNet model and a degraded version of our model

in the single-task setup only with discrete expression labels

or continuous valence-arousal labels. To evaluate the pro-

posed multi-task model’s full effectiveness, we train it with

both expression and valence-arousal labels. With no exist-

ing work applicable for multi-task noisy label learning with

both discrete and continuous labels, we train another VG-

GNet model with multi-task labels with loss combination

of both tasks for comparison.

The RAF dataset consists of 15,339 real-world facial
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Table 2. Evaluation results on facial emotion datasets. Single-task refers to models trained only with categorical expression labels or

valence-arousal labels, and multi-task refers to models trained with both expression and valence-arousal labels. Emotion/Acc (%) denotes

test accuracy of categorical expression prediction, the higher the better. VA/CCC, VA/MSE denote CCC and MSE metrics of valence-

arousal prediction respectively, the higher the better for CCC and the lower the better for MSE. (Bold: best, Underline: second best)

Setting Model RAF-base AffectNet-base

Task/Metric Expression/Acc (%) Expression/Acc (%) VA/CCC VA/MSE

Single-task

VGGNet [47] 72.64 43.42 0.6254 0.1438

SCE [55] 73.96 42.87 - -

Co-teaching [16] 75.43 42.36 - -

Proposed 74.02 44.52 0.6354 0.1284

Multi-task
VGGNet 73.15 43.36 0.6263 0.1354

Proposed 76.10 46.08 0.6727 0.1248

images collected from Flickr, including 12,271 images for

training and 3,068 images for testing. Each image was la-

belled as one of the seven basic facial emotions (i.e., neutral,

happy, sad, surprise, angry, fear, disgust) by about 40 inde-

pendent annotators, followed by an EM algorithm to assess

the reliability of each annotator. The AffectNet dataset is

a multi-task in-the-wild dataset including around 450,000

training images, and 5,500 validation images. Each im-

age in AffectNet is labeled by two labels: one of the eight

discrete expression classes (seven basic expressions with

an additional contempt class), and the continuous valence-

arousal values. The labels for the test set is not public there-

fore we only report accuracy results on the validation set,

which is not seen during training. We select images with

the seven basic expression labels in the experiment, result-

ing in 283,910 training images and 3,500 test images.

We create two scenarios for evaluation: (1) the RAF

training set is relabeled for both expression classes and

valence-arousal values by an AffectNet pretrained model

for training, and we keep RAF test set unchanged for evalu-

ation; (2) the expression classes of AffectNet training set is

relabeled by a RAF pretrained model for training, together

with the original valence-arousal labels of AffectNet, and

the trained model is evaluated on the AffectNet validation

set. We denote the two experiment scenarios by RAF-base

and AffectNet-base respectively. For valence-arousal pre-

diction, we only report results in AffectNet-base case since

no human valence-arousal labels are available on RAF.

Results and analysis. The experiment results on facial

emotion datasets are illustrated in Tab. 2. For the discrete

expression prediction, in the single-task RAF-base case,

SCE and the proposed model achieve similar performance,

all higher than VGGNet, and Co-teaching achieves the best

performance. Co-teaching trains two networks simultane-

ously, with each one selecting small-loss instances (more

likely to have correct labels) and teaching its peer network.

However, such instances are less likely to occur with in-

creasing noise intensity. Therefore, Co-teaching is a strong

baseline for the single-task RAF-base case, where the noise

level is relatively low. For the AffectNet-base case where

the model is exposed to higher noise, SCE and Co-teaching

face difficulties for optimization with more complicated

noise distributions, and perform even worse than VGGNet.

Moreover, it is non-trivial to adapt these two baselines to

multi-task. In contrast, the proposed model takes full advan-

tage from multi-task noisy labels and achieves the best per-

formance. For the continuous valence-arousal prediction,

we utilize the commonly used Concordance Correlation Co-

efficient (CCC) and Mean Square Error (MSE) as the eval-

uation metrics. We can observe that the proposed model

trained in the multi-task setting significantly improves pre-

diction performance compared with the VGGNet baseline

method and the single-task models.

For the case of clean labels, it is natural to combine loss

functions of each task in multi-task learning [25]. Never-

theless such simple loss combination is not necessarily ben-

eficial in the presence of noisy labels for each task, or even

harmful, which could be observed in Tab. 2. However, the

proposed multi-task model demonstrates superior perfor-

mance compared with multi-task VGGNet and single-task

models. Our joint distribution learning scheme not only

leverages noise for each task individually, but also learns

a robust correlation between different tasks as well as the

image, to take advantage of labels of both tasks and utilize

richer information for emotion recognition without being

corrupted by the noise in labels of each task.

5.3. Ablation Study

Here we conduct the ablation study to investigate the

contributions of marginal scores {Sx, Sy0 , Sy1 , ...} and

joint scores Sjoint in D, the decoder GX and extra labels

of the proposed model. The ablation study is implemented

on the following four cases: (1) single-label model on the

synthetic noisy CIFAR-10 dataset with 20% noise in the
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Table 3. Ablation study for different components of the proposed model: w/o joint, w/o marginal and w/o GX respectively remove Sjoint,

{Sx, Sy0 , Sy1 , ...} and GX in Fig. 2.

Setting VGGNet w/o joint w/o marginal w/o GX Proposed

Single-label CIFAR-10* 77.82 77.93 83.65 83.51 84.78

Multi-label CIFAR-10 80.23 79.10 85.48 87.88 87.90

Single-task RAF-base 72.64 72.28 73.19 73.37 74.02

Multi-task RAF-base 73.15 73.24 74.40 74.46 76.10

* Use one single noisy label set with 20% noise for training

(b)(a) (c)

Figure 4. Samples synthesized by the decoder GX conditioned on the input label: (a) samples from CIFAR-10, and each column condi-

tioned on input class labels as airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck from left to right; (b)(c) samples from

RAF/AffectNet, respectively, and each column conditioned on input expression labels as neutral, happy, sad, surprise, fear, disgust, anger

from left to right. The rotations and boundaries are due to data augmentation during training.

training labels, (2) multi-label model on the synthetic noisy

CIFAR-10 dataset, (3) the single-task model on RAF-base

case, and (4) the multi-task model on RAF-base case). Re-

sults are shown in Tab. 3. With respect to design of D,

only marginal distribution matching (by {Sx, Sy0 , Sy1 , ...})

without joint distribution learning has marginal benefit (w/o

joint), while the joint distribution learning by Sjoint in D is

essential to combat the noise labels (w/o marginal). Ad-

ditional marginal scores on top of Sjoint brings extra im-

provements by explicit marginal distribution matching (pro-

posed). The decoder GX is beneficial by facilitating the

joint distribution learning in a more balanced way. Here the

non-emotion variable y0 in Fig. 2 is necessary to encode

other image attributes so that GX has sufficient informa-

tion for generation. Training with multiple labels further en-

hances the model by capturing the correlation among com-

plementary labels, which is validated both in the CIFAR-10

case and practical emotion learning scenario.

5.4. Conditional Image Synthesis

Our proposed joint distribution learning framework

learns inference and conditional image synthesis simultane-

ously. Since the distribution learning only serves as a regu-

larizar in our algorithm, the generated images are not neces-

sarily of the highest quality, but should carry explicit seman-

tic meaning. Fig. 4 presents generated samples on CIFAR-

10 (Fig. 4 (a)), RAF (Fig. 4 (b)) and AffectNet (Fig. 4 (c)).

The decoder GX can generate correct images given the con-

ditional label, which demonstrates that the two joint distri-

butions could be aligned with the adversarial training.

6. Conclusion and future work

This paper introduces an interesting problem of fa-
cial emotion recognition with noisy multi-task annotations,
which has a high potential to reduce human labelling ef-
forts for multi-task learning. To better treat the problem, we
introduce a new formulation from the view of joint distri-
bution match. Following the suggested formulation, we ex-
ploit a new adversarial learning method to jointly optimize
the emotion prediction and the joint distribution learning.
Finally we study the setup of synthetic noisy labeled dataset
and practical noisy multi-task datasets, and experiments
demonstrate the clear advantage of the proposed method for
the new problem. While we can roughly setup the trade-off
between the emotion prediction loss and the joint distribu-
tion match based constraint, automatically adapting the bal-
ance would be interesting to study in our future work.
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