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Abstract

Multispectral image pairs can provide complementary

visual information, making pedestrian detection systems

more robust and reliable. To benefit from both RGB and

thermal IR modalities, we introduce a novel attentive mul-

tispectral feature fusion approach. Under the guidance of

the inter- and intra-modality attention modules, our deep

learning architecture learns to dynamically weigh and fuse

the multispectral features. Experiments on two public multi-

spectral object detection datasets demonstrate that the pro-

posed approach significantly improves the detection accu-

racy at a low computation cost.

1. Introduction

Real world pedestrian detection applications require

accurate detection performance under various conditions,

such as darkness, rain, fog, etc. In these conditions, it is dif-

ficult to perform precise detection using only standard RGB

cameras. Instead, multispectral systems try to combine the

information coming from e.g. thermal and visible cameras

to improve the reliability of the detections.

Deep learning-based methods, more specifically, two-

stream convolutional neural networks, nowadays largely

dominate the field of multispectral pedestrian detection

[6, 9, 10, 11, 14, 18, 19, 20]. As illustrated in Fig. 1, a

typical two-stream pedestrian detection network consists of

two separate spectra-specific feature extraction branches, a

multispectral feature fusion module and a pedestrian detec-

tion network operating on the fused features. The system

uses some aligned thermal-visible image pairs as input and

outputs the joint detection results on each image pair.

Thermal and visible cameras have different imaging

characteristics under different conditions. As shown in

Fig. 2, visible cameras provide precise visual details (such

as color and texture) in a well-lit environment, while ther-

mal cameras are sensitive to temperature changes, which

is extremely useful for nighttime or shadow detection. An

adaptive fusion of thermal and visible features should take

such differences into account, and should identify and lever-

Joint detection resultsMultispectral image pairs

Pedestrian
detection network

Multispectral
feature fusion

Thermal feature
extraction

Visible feature
extraction

Figure 1: Multispectral pedestrian detection via a two-

stream convolutional neural network.

Figure 2: Typical examples of thermal-visible image pairs

captured during the day (first two rows) and night (bottom

row). For each pair, the thermal image is on the left and the

RGB image is on the right.

age the information from the most relevant modality.

An intuitive solution to adapt the feature fusion to the

different weather and lighting conditions is to manually

identify multiple usage scenarios and design a specific so-

lution for each scenario. For example, [6] proposes an

illumination-aware network consisting of a day illumina-

tion sub-network and a night illumination sub-network. The
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detection results from the two sub-networks are then fused

according to the prediction of the illumination context.

Such a kind of hand-crafted fusion mechanism improves

the resilience of the model to a certain extent, nonetheless,

there are still two limitations: firstly, cherry-picked scenar-

ios may not cover all conditions, e.g., different illumina-

tion/season/weather conditions; Secondly, the situation may

be completely different even in the same usage scenario,

e.g., at nighttime, lighting conditions in urban areas are dif-

ferent from those in rural areas.

In this paper, we propose a novel and fully adaptive mul-

tispectral feature fusion approach, named Guided Attentive

Feature Fusion (GAFF). By combining the intra- and inter-

modality attention modules, the proposed approach allows

the network to learn the adaptive weighing and fusion of

multispectral features. These two attention mechanisms are

guided by the prediction and comparison of the pedestrian

masks in the multispectral feature fusion stage. Specifically,

at each spatial position, thermal or visible features are en-

hanced when they are located in the area of a pedestrian

(intra-modality attention) or when they possess a higher

quality than in the other modality (inter-modality attention).

To the best of our knowledge, GAFF is the first work that

regards the multispectral feature fusion as a sub-task in the

network optimization and that introduces a specific guid-

ance in this task to improve the multispectral pedestrian

detection. Extensive experiments on KAIST multispectral

pedestrian detection dataset [8] and FLIR ADAS dataset

[1] demonstrate that, compared with common feature fusion

methods (such as addition or concatenation), GAFF brings

important accuracy gains at a low computational cost.

This paper is organized as follows: Section 2 reviews

some representative work applying static/adaptive feature

fusion for multispectral pedestrian detection; Section 3 in-

troduces implementation details on how to integrate GAFF

into a typical two-stream convolutional neural network; In

Section 4, we evaluate our methods on two public multi-

spectral object detection datasets [8, 1], then we provide an

extensive ablation study and visualization results to discuss

the reasons of the accuracy improvements; Section 5 con-

cludes the paper.

2. Related Work

2.1. Static multispectral feature fusion

KAIST released the first large-scale multispectral pedes-

trian detection dataset [8], which contains approximately

95k well-aligned and manually annotated thermal-visible

image pairs captured during daytime and nighttime. Some

example image pairs are shown in Fig. 2. Then [18] demon-

strated the first application of deep learning-based solutions

in multispectral pedestrian detection. They compared the

early and late fusion architectures and found that the late

fusion architecture is superior to the early one and the tra-

ditional ACF method [4]. This late-stage fusion architec-

ture can be regarded as a prototype of a two-stream neural

network, in which multispectral features are fused through

concatenation operations. Both [14] and [9] adapted Faster

R-CNN [16] to a two-stream network architecture for multi-

spectral pedestrian detection. They compare different mul-

tispectral fusion stages and came to the conclusion that

the fusion in the middle stage outperforms the fusion in

the early or late stage. Based on this, MSDS-RCNN [10]

adopted a two-stream middle-level fusion architecture and

combined the pedestrian detection task and the semantic

segmentation task to further improve the detection accuracy.

2.2. Adaptive multispectral feature fusion

As mentioned in Section 1, thermal and visible cameras

have different imaging characteristics and the adaptive mul-

tispectral fusion can improve the resilience and the detec-

tion accuracy of the system. This has become the main

focus of the multispectral pedestrian detection research in

recent years. Both [11] and [6] use the illumination infor-

mation as a clue for the adaptive fusion: they train a separate

network to estimate the illumination value from a given im-

age pair, then [11] uses the predicted illumination value to

weigh the detection results from both the thermal and vis-

ible images. [6] uses the illumination value to weigh the

detection results from a day illumination sub-network and

a night illumination sub-network. As mentioned in the pre-

vious section, such a handcrafted weighing scheme is lim-

ited and produces sub-optimal performance. CIAN [20] ap-

plies the channel-level attention in the multispectral feature

fusion stage to model the cross-modality interaction and

weigh each feature map extracted from the different spec-

trum. This network realizes a fully adaptive fusion of ther-

mal and visible features, however, in this approach, the fu-

sion module is optimized directly while solving the pedes-

trian detection task which means that the network uses in-

formation about what (pedestrian or background) and where

(bounding box) relevant elements are in the images but it

does not use the fact that some features may contain more

relevant information than others. We believe and we show

that with these additional information (that we include in

our method through the guidance mechanism), we can im-

prove the detection precision.

3. Proposed approach

The proposed Guided Attentive Feature Fusion (GAFF),

shown in Fig. 3, takes place in the multispectral feature fu-

sion stage of a two-stream convolutional neural network.

It consists of two components: an intra-modality attention

module and an inter-modality one.
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Figure 3: The overall architecture of Guided Attentive Feature Fusion (GAFF). Green, blue and purple blocks represent ther-

mal, visible and fused features. Yellow and red paths represent the intra- and inter-modality attention modules, respectively.

3.1. Intra­modality attention module

The intra-modality attention module aims at enhanc-

ing the thermal or visible features in a monospectral view.

Specifically, as illustrated by the yellow paths on Fig. 3,

features of an area with a pedestrian are highlighted by

multiplying the learnt features with the predicted pedes-

trian mask. Moreover, in order to avoid directly affecting

the thermal or visible features, the highlighted features are

added as a residual to enhance the mono-spectral features.

This procedure can be formalized as:

f t
intra = f t ⊗ (1 +mt

intra)

fv
intra = fv ⊗ (1 +mv

intra)
(1)

where

mt
intra = σ(F t

intra(f
t))

mv
intra = σ(Fv

intra(f
v))

(2)

Superscripts (t or v) denote the thermal (t) or visible (v)

modality; ⊗ denotes the element-wise multiplication; σ rep-

resents the sigmoid function; Fintra represents a convolu-

tion operation to predict the intra-modality attention masks

(pedestrian masks) mintra; f and fintra represent the orig-

inal and enhanced features, respectively.

The prediction of the pedestrian masks is supervised

by the semantic segmentation loss, where the ground truth

mask (m
gt
intra) is converted from the object detection anno-

tations. As illustrated in Fig. 3 the bounding box annota-

tions are transformed into some filled ellipses to approxi-

mate the shape of the true pedestrians.

3.2. Inter­modality attention module

Thermal and visible cameras have their own imaging

characteristics, and under certain conditions, one sensor has

superior imaging quality (i.e. is more relevant for the con-

sidered task) than the other. To leverage both modalities, we

propose the inter-modality attention module, which adap-

tively selects thermal or visible features according to the

dynamic comparison of their feature quality. Concretely,

an inter-modality attention mask is predicted based on the

combination of thermal and visible features. This predicted

mask has two values for each pixel, corresponding to the

weights for thermal and visible features (summing to 1).

This attention module is illustrated as the red paths in Fig. 3.

It can be formulated as:

f t
inter = f t ⊗ (1 +mt

inter)

fv
inter = fv ⊗ (1 +mv

inter)
(3)

where

mt
inter,m

v
inter = δ(Finter([f

t, fv])) (4)

Here, δ denotes the softmax function; [·] denotes the fea-

ture concatenation operation; Finter represents a convolu-

tion operation to predict the inter-modality attention mask

minter. At each spatial position of the mask, the sum of

mt
inter and mv

inter equals to 1. Note that this formalization

could theoretically allow for more than two modalities to be

fuse following the same principles.

The inter-modality attention module allows the network

to adaptively select the most reliable modality. However, in
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order to train this module, we should need a costly ground

truth information about the best pixel-level modality qual-

ity. Our solution to relieve the annotation cost is to assign

labels according to the prediction of the pedestrian masks

from the intra-modality attention module, i.e., we force the

network to select one modality if its intra-modality mask

prediction is better (i.e. closer to the ground truth pedes-

trian mask) than the other. Specifically, we first calculate an

error mask for each spectrum with the following formula:

etintra = | mt
intra −m

gt
intra |

evintra = | mv
intra −m

gt
intra |

(5)

then the label for the modality selection is defined as:

m
gt
inter =







1, 0 if (evintra − etintra) > margin

0, 1 if (etintra − evintra) > margin

ignored otherwise
(6)

Here, | · | denotes the absolute function; eintra repre-

sents the error mask, defined by the L1 distance between the

predicted intra-modality mask mintra and the ground truth

intra-modality mask m
gt
intra; m

gt
inter is the ground truth

mask for inter-modality attention (2 values at each mask po-

sition); margin is a hyper-parameter to be tuned.

An example of the label assignment for the inter-

modality attention mask is shown in Fig. 3. If the intra-

modality pedestrian masks are predicted as shown in the

yellow paths, the inter-modality (weak) ground truth masks

are then defined as the ones shown on the red paths, where

white, black and gray areas denote the classification la-

bels 1,0 and ignored, respectively. Here, the thermal fea-

tures produce a better intra-modality mask prediction for

the pedestrians on the left side of the input images in

Fig. 3. Therefore, according to Eq. 6, the label for the inter-

modality mask on this area is assigned as 1,0 (1 for the ther-

mal mask and 0 for the visible mask). For regions where

the two intra-modality masks have comparable prediction

qualities (i.e., the difference between prediction errors is

smaller than the predefined margin), the optimization of the

inter-modality attention mask prediction on these areas are

ignored (i.e., do not participate in the loss calculation).

3.3. Combining intra­ and inter­modality attention

The intra-modality attention module enhances features

on areas with pedestrians and the inter-modality attention

module adaptively selects features from the most reliable

modality. When these two modules are combined, the fused

features are obtained by:

ffused =
f t
hybrid + fv

hybrid

2
(7)

where

f t
hybrid = f t ⊗ (1 +mt

intra)⊗ (1 +mt
inter)

fv
hybrid = fv ⊗ (1 +mv

intra)⊗ (1 +mv
inter)

(8)

Here, mintra and minter are predicted intra- and inter-

modality attention masks from Eq. 2 and Eq. 4; fhybrid
represents features enhanced by both attention modules;

ffused represents the final fused features.

As mentioned in Section 2, the optimization of the mul-

tispectral feature fusion task may not benefit enough from

the sole optimization of the object detection task (as done

e.g. in [20]). In GAFF, we propose two specific feature fu-

sion losses, including the pedestrian segmentation loss for

the intra-modality attention and the modality selection loss

for the inter-modality attention, to guide the multispectral

feature fusion task. These losses are jointly optimized with

the object detection loss. The final training loss Ltotal is:

Ltotal = Ldet + Lintra + Linter (9)

where, Ldet, Lintra and Linter are the pedestrian de-

tection, the intra- and inter-modality attention loss, respec-

tively.

4. Experiments

In this section, we conduct experiments on KAIST Mul-

tispectral Pedestrian Detection Dataset [8] and FLIR ADAS

Dataset [1] to evaluate the effectiveness of the proposed

method. Moreover, we attempt to interpret the reasons for

improvements by visualizing the predicted attention masks.

Finally, we provide inference speed analysis on two differ-

ent target platforms.

4.1. Datasets

KAIST dataset contains 7,601 training image pairs and

2,252 pairs testing ones. Some example image pairs from

this dataset are shown in Fig. 2. [10] proposes a ”sanitized”

version of the annotations, where numerous annotation er-

rors are removed. Our experiments are conducted with the

original as well as the “sanitized” version of annotations

for fair comparisons with our competitors. We found out

that the “sanitized” annotations substantially improve the

detection accuracy for different network architectures. All

models are evaluated with the improved testing annotations

from [14] and the usual pedestrian detection metric: log-

average Miss Rate over the range of [10−2, 100] false posi-

tives per image (FPPI) under a “reasonable” setting [5], i.e.,

only pedestrians taller than 50 pixels under no or partial oc-

clusions are considered 1.

1We use the evaluation code provided by [10]: https://github.com/Li-

Chengyang/MSDS-RCNN/tree/master/lib/datasets/KAISTdevkit-matlab-

wrapper
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We also conduct experiments on FLIR ADAS Dataset

[1]. [19] proposed an ”aligned” version of the dataset for

multispectral object detection. This new version contains

5,142 well-aligned multispectral image pairs (4,129 pairs

for training and 1,013 pairs for testing). FLIR covers three

object categories: “person”, “car” and “bicycle”. Models

are evaluated with the usual object detection metric intro-

duced with MS-COCO[13]: the mean Average Precision

(mAP) averaged over ten different IoU thresholds.

4.2. Implementation details

The proposed GAFF module can be included in any type

of two-stream convolutional neural networks. In these ex-

periments, we choose RetinaNet [12] as our base detector. It

is transformed into a two-stream convolutional neural net-

work by adding an additional branch for the extraction of

thermal features. A ResNet18 [7] or a VGG16 [17] net-

work is pre-trained on ImageNet [2], then adopted as our

backbone network. The input image resolution is fixed to

640×512 for training and evaluation. Our baseline detector

applies the basic addition as the multispectral feature fusion

method. GAFF is implemented by adding the intra- and

inter-modality attention modules, corresponding to the yel-

low and the red branches in Fig. 3. Focal loss [12] and Bal-

anced L1 loss [15] are adopted as the classification loss and

the bounding box regression loss to optimize the object de-

tection task. In order to introduce our specific guidance, we

adopt the DICE [3] loss as the pedestrian segmentation loss

(Lintra in Eq. 9) and the cross-entropy loss as the modality

selection loss (Linter in Eq. 9).

4.3. Ablation study

Margin
Miss Rate

All Day Night

0.05 6.92% 8.47% 3.68%

0.1 6.48% 8.35% 3.46%

0.2 7.47% 9.31% 4.22%

Table 1: Detection results of GAFF with different margin

values in the inter-modality attention module.

Hyper-parameter tuning. As reported in Table 1, we

conduct experiments with different margin values in the

inter-modality attention module on KAIST dataset [8] with

“sanitized” annotations. The Miss Rate scores on the

Reasonable-all, Reasonable-day and Reasonable-night sub-

sets are listed. We observe that the optimal Miss Rate is

achieved when margin = 0.1. Thus, we use margin =
0.1 for all the following experiments.

Residual attention. As mentioned in Section 3, attention

enhanced features are added as residual to avoid directly af-

fecting the thermal or visible features. We verify this choice

Residual
Miss Rate

All Day Night

7.46% 8.88% 4.85%

X 6.48% 8.35% 3.46%

Table 2: Detection results of GAFF where the attention

masks are directly applied or added as residual.

by comparing in Table 2 the Miss Rate of GAFF where the

attention masks are directly applied to mono-spectral fea-

tures (fintra = f ⊗ mintra and finter = f ⊗ minter) or

added as residual (as in Eq. 1 and Eq. 3).

Necessity of attention. We compare in Tab. 3 the detec-

tion accuracy on KAIST dataset with different attention set-

tings, different backbone networks, and different annotation

settings (original and “sanitized”). When conducting exper-

iments with inter-modality but without intra-modality atten-

tion, the pedestrian masks are predicted but are not multi-

plied with the corresponding mono-spectral features. For

each backbone network or annotation setting, both intra-

and inter-modality attention modules consistently improve

the baseline detection accuracy, and their combination leads

to the lowest overall Miss Rate under all experimental set-

tings. The present findings confirm the effectiveness of the

proposed guided attentive feature fusion modules.

Necessity of guidance. To explore the effect of the pro-

posed multispectral feature fusion guidance, we compare

our guided approach to one with a similar architecture as

ours but where the optimization of the specific fusion losses

(Lintra and Linter in Eq. 9) are removed from the train-

ing process, i.e., the fusion is only supervised by the ob-

ject detection loss (as done with [20]). We report in Tab. 4

the detection performance with and without guidance, un-

der different backbone networks and annotations settings.

The results confirm our assumption that the object detec-

tion loss is not relevant enough for the multispectral feature

fusion task: even though the non-guided attentive fusion

module improves the baseline Miss Rate to some degree

(e.g., with the “sanitized” annotations and VGG16 back-

bone, non-guided model improves the base detector’s Miss

Rate from 9.28% to 8.38%), it could be further improved

when the specific fusion guidance is added (from 8.38% to

6.48%).

Attention mask interpretation. Fig. 4 provides the vi-

sualization results of the intra-modality, the inter-modality

and the hybrid attention masks during daytime and night-

time. For each figure, the top and bottom two rows of

images are visualization results of guided and non-guided

attentive feature fusions, respectively. We can see on the
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(b) Nighttime

Figure 4: Visualization examples of attention masks on KAIST dataset. Zoom in to see details.

Backbone
GAFF Miss Rate

Intra. Inter. All Day Night

ResNet18

13.04% 13.83% 11.60%

X 12.13% 11.97% 11.99%

X 11.15% 10.68% 11.67%

X X 10.74% 10.46% 11.10%

VGG16

12.72% 11.37% 15.57%

X 11.78% 11.45% 12.50%

X 11.03% 10.99% 11.44%

X X 10.62% 10.82% 10.14%

(a) Original annotations

Backbone
GAFF Miss Rate

Intra. Inter. All Day Night

ResNet18

9.98% 12.46% 5.29%

X 9.26% 11.51% 5.32%

X 9.29% 11.97% 5.14%

X X 7.93% 9.79% 4.33%

VGG16

9.28% 11.73% 5.17%

X 8.70% 11.42% 3.55%

X 7.73% 10.35% 2.81%

X X 6.48% 8.35% 3.46%

(b) “Sanitized” annotations

Table 3: Ablation study of two attentive fusion modules on

KAIST dataset [8] with original (top) or “sanitized” (bot-

tom) annotations.

intra-modality attention masks that the guided attention

mechanism focuses on pedestrian areas, even though, some-

times, it is not accurate from a single mono-spectral view.

For example, the traffic cone is misclassified as a pedestrian

Backbone Guidance
Miss Rate

All Day Night

ResNet18
13.15% 13.71% 11.54%

X 10.74% 10.46% 11.10%

VGG16
13.67% 13.19% 14.51%

X 10.62% 10.82% 10.14%

(a) Original annotations

Backbone Guidance
Miss Rate

All Day Night

ResNet18
9.05% 10.63% 6.01%

X 7.93% 9.79% 4.33%

VGG16
8.38% 10.39% 4.44%

X 6.48% 8.35% 3.46%

(b) “Sanitized” annotations

Table 4: Comparison between guided and non-guided mod-

els on KAIST dataset [8] with both annotation settings.

due to its human-like shape on the thermal image of Fig. 4a,

and the pedestrian in the middle right position is missed due

to insufficient lighting on the RGB image of Fig. 4b. For

inter-modality attention masks, it appears that the guided

attentive fusion tends to select visible features on well-lit

areas (such as upside of images in Fig. 4b) and brightly

coloured areas (e.g., traffic cone, road sign, speed bump, car

tail light, etc), and to select thermal features on dark areas

and uniform areas (such as sky and road). Note that these

attention preferences are automatically learnt via our inter-

modality attention guidance. On the contrary, despite the

fact that the non-guided attention mechanism brings some

accuracy improvements, the predicted attention masks are
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(b) Nighttime

Detection results Intra-modality attention mask Inter-modality attention mask Hybrid attention mask

G
ui

de
d 

A
tte

nt
iv

e 
Fe

at
ur

e 
Fu

si
on

N
on

-g
ui

de
d 

A
tte

nt
iv

e 
Fe

at
ur

e 
Fu

si
on

(c) Error case

Figure 5: More visualization examples of attention masks

on KAIST dataset. Zoom in to see details.

quite difficult to interpret. More visualization results are

shown in Fig. 5. Besides, an interesting error case is shown

in Fig. 5c, where the pedestrian on the steps is not detected

with the guided model but detected with the non-guided

model. As mentioned earlier, GAFF selects thermal fea-

tures on uniform areas, which is intuitive since thermal cam-

eras are sensitive to temperature change and there exist few

objects on uniform areas of the thermal image. However,

in this particular case, the pedestrian is not captured on the

thermal image, which leads to the final detection error.
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Figure 6: Intra- and inter-modality attention accuracy evo-

lution during training.

Attention accuracy evolution We plot in Fig. 6 the evo-

lution of intra- and inter-modality attention accuracy during

training. Specifically, red solid and dashed lines represent

the pedestrian segmentation accuracy (via DICE score [3]

Dice = 2|A∩B|
|A|+|B| ) from thermal and visible features in intra-

modality attention module; blue line indicates the modal-

ity selection accuracy in inter-modality attention module.

From the plot, we can conclude that thermal images are gen-

erally better for recognition than visible images. This ob-

servation is consistent with our mono-spectral experiments,

where thermal-only model reaches 18.8% of Miss Rate

while visible-only model achieves 20.74% (both trained

with “sanitized” annotations). Interestingly, as the segmen-

tation accuracy increases for both images, the modality se-

lection task becomes more and more challenging. Note

that this accuracy is irrelevant at the beginning of the train-

ing, where predicted pedestrian masks are almost zero for

both thermal and visible features, thus the difference be-

tween their error masks is minor and the set of margin

makes most areas ignored for modality selection optimiza-

tion. Such mechanism avoids the “cold start” problem.

Runtime analysis In Tab. 5 we report the total number of

learnable parameters and the average inference runtime on

two different computation platforms. Specifically, the mod-

els are implemented with Pytorch (TensorRT) framework
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Backbone GAFF Param.
Runtime

1080Ti TX2

ResNet18
23,751,725 10.31ms 10.5ms

X 23,765,553 10.85ms 12.1ms

VGG16
31,403,053 8.87ms 10.3ms

X 31,430,705 9.34ms 11.6ms

Table 5: Runtime on different computing platforms.

Methods
Miss Rate

All Day Night

ACF+T+THOG [8] 47.24% 42.44% 56.17%

Halfway Fusion [14] 26.15% 24.85% 27.59%

Fusion RPN+BF [14] 16.53% 16.39% 18.16%

IAF R-CNN [11] 16.22% 13.94% 18.28%

IATDNN+IASS [6] 15.78% 15.08% 17.22%

CIAN [20] 14.12% 14.77% 11.13%

MSDS-RCNN [10] 11.63% 10.60% 13.73%

CFR [19] 10.05% 9.72% 10.80%

GAFF (ours) 10.62% 10.82% 10.14%

(a) Original annotations

Methods
Miss Rate

All Day Night

MSDS-RCNN [10] 7.49% 8.09% 5.92%

CFR [19] 6.13% 7.68% 3.19%

GAFF(ours) 6.48% 8.35% 3.46%

(b) “Sanitized” annotations

Table 6: Detection results on KAIST dataset [8] with origi-

nal (top) or “sanitized” (bottom) annotations.

for an inference time testing on the Nvidia GTX 1080Ti

(Nvidia TX2) platform. Since GAFF only involves 3 con-

volution layers, the additional parameters and computation

cost is low, i.e., it represents less than 0.1% of additional

parameters and around 0.5ms (1.5ms) of inference time on

1080Ti (TX2). Note that the time for post-processing treat-

ments (such as Non-Maximum Suppression) is not taken

into account for the benchmarking. Our model meets the

requirement of real-time treatment on embedded devices,

which is essential for many applications.

4.4. Comparison with State­of­the­art Multispec­
tral Pedestrian Detection Methods

KAIST Dataset Tab. 6 shows the detection results of ex-

isting methods and our GAFF with the original and “sani-

tized” annotations on KAIST. It can be observed that GAFF

achieves state-of-the-art performance on this dataset (it is

slightly less accurate than CFR [19], which applies cas-

caded Fuse-and-Refine blocks for sequential feature en-

hancement and needs more computation than GAFF (see

Methods Platform Runtime

ACF+T+THOG [8] MATLAB 2730ms

Halfway Fusion [14] Titan X 430ms

Fusion RPN+BF [14] MATLAB 800ms

IAF R-CNN [11] Titan X 210ms

IATDNN+IASS [6] Titan X 250ms

CIAN [20] 1080Ti 70ms

MSDS-RCNN [10] Titan X 220ms

CFR [19] 1080Ti 50ms

GAFF (ours) 1080Ti 9.34ms

Table 7: Runtime comparisons with different methods on

KAIST dataset [8].

Backbone GAFF mAP AP75 AP50

ResNet18
36.6% 31.9% 72.8%

X 37.5% 32.9% 72.9%

VGG16
36.3% 30.2% 71.9%

X 37.3% 30.9% 72.7%

Table 8: Detection results on FLIR dataset [1].

Table 7). According to Tab. 7, thanks to the lightweight de-

sign of GAFF, our model has substantial advantage in terms

of inference speed compared to e.g. [19].

FLIR Dataset Tab. 8 reports the detection results with

and without GAFF on FLIR dataset. We can observe that

the average precision is improved for all IoU thresholds

with GAFF (around 1% of mAP improvement for both

backbone networks), which shows that our method can gen-

eralize well to different types of images. For comparison,

the more costly CFR [19] reaches 72.39% of AP50 on this

dataset, whereas our best result is 72.9%.

5. Conclusion

We argue that the lack guidance is a limitation for effi-

cient and effective multispectral feature fusion, and we pro-

pose Guided Attentive Feature Fusion (GAFF) to guide this

fusion process. Without hand-crafted assumptions or addi-

tional annotations, GAFF realizes a fully adaptive fusion of

thermal and visible features. Experiments on KAIST and

FLIR datasets demonstrate the effectiveness of GAFF and

the necessity of attention and guidance in the feature fu-

sion stage. We noticed that certain thermal-visible image

pairs are slightly misaligned in the above datasets, such a

problem could be more critical in real life applications. Our

future research is devoted to the development of a real-time

feature calibration module based on the predicted attention

masks from GAFF.
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