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Abstract

Recent works such as Mixup and CutMix have demon-

strated the effectiveness of augmenting training data for

deep models. These methods generate new data by gen-

erally blending random image contents and mixing their la-

bels proportionally. However, this strategy tends to produce

unreasonable training samples for fine-grained recognition,

leading to limited improvement. This is because mixing ran-

dom image contents may potentially produce images con-

taining destructed object structures. Further, as the cate-

gory differences mainly reside in small part regions, mixing

labels proportionally to the number of mixed pixels might

result in label noisy problem. To augment more reasonable

training data, we propose Intra-class Part Swapping (InPS)

that produces new data by performing attention-guided con-

tent swapping on input pairs from the same class. Com-

pared with previous approaches, InPS avoids introducing

noisy labels and ensures a likely holistic structure of objects

in generated images. We demonstrate InPS outperforms the

most recent augmentation approaches in both fine-grained

recognition and weakly object localization. Further, by sim-

ply incorporating the mid-level feature learning, our pro-

posed method achieves state-of-the-art performance in the

literature while maintaining the simplicity and inference ef-

ficiency. Our code is publicly available†.

1. Introduction

Deep neural networks have made enormous progress

in many computer vision tasks such as object recognition

[4, 10, 24], object detection [9, 22]. One inherent limi-

tation of these neural networks is that they have tremen-

∗These authors contributed equally to this work.
†https://github.com/lbzhang/InPS.git

dous parameters to learn, leading to overfitting and poor

generalization. To alleviate this issue, a variety of train-

ing strategies such as data augmentation and regularization,

have been proposed, among which mixing-based methods

[28, 13, 39] have been recently demonstrated as a new di-

rection to improve model generalization. The general strat-

egy of these methods is to extend the training distribution

by blending random image contents and mixing their labels

proportionally. The augmented data significantly benefits

generic object classification as it helps regularize deep neu-

ral networks in training.

However, their superiority might be undermined for fine-

grained recognition. Unlike general object classification,

fine-grained objects often share a common part structure,

while mixing random contents tends to generate images

with corrupted object structures. Therefore these methods

might potentially generate training images that are not con-

sistent with the data characteristics of the task. On the other

hand, mixing labels according to the mixing ratio of image

content will inevitably produce unfavorable label noise, as

the semantic information is usually disproportionate to the

number of image pixels. For example (Figure 1), there is

label mixing in Mixup [39] and CutMix [38], of which Cut-

Mix produce new label based on the category area, which

might lead to the noisy label. As illustrated in Figure 1, al-

though Eared Grebe dominates ground-truth label, the out-

put is visually more like California Gull to a human. It

is also noted that, in the mixing process, Cutout and Cut-

Mix cause structure corruption, and Mixup combines two

images unreasonably.

To remedy these limitations, we propose Intra-class Part

Swapping (InPS) that imposes prior restrictions on both im-

age contents and label pairs to be mixed. Specifically, InPS

randomly selects input pairs from the same class and then

constructs an attention pool to guide content swapping be-

tween two potential part regions. Compared with existing
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Figure 1. Comparison of Cutout, Mixup, CutMix, and the proposed method. Note that there is label mixing in MixUp and CutMix,

and CutMix produces a new label based on category area. This might lead to noisy labels; for example, although Eared Grebe dominates

ground-truth label, the output is visually more like California Gull to a human. In terms of object structure, Cutout and CutMix cause

structure corruption; Mixup combines two input images unreasonably. Instead, our method generates more reasonable samples and clean

supervision information.

mixup-based methods, InPS synthesis images without de-

structing too much object structure and avoid label noise,

which is a promising solution to augment fine-grained train-

ing data.

We evaluate our method on fine-grained benchmarks

including CUB-200-2011 [29], Stanford-Cars [16], and

FGVC-Aircraft [20], and demonstrate superior performance

over the most recent mixed-up based strategies. Further-

more, by simply incorporating mid-level features, our pro-

posed method achieves state-of-the-art performance in the

literature while maintaining simplicity and inference ef-

ficiency. Compared with mixing-based methods such as

Mixup, Cutout, and Cutmix, our method also exhibits bet-

ter performance in weakly supervised object localization,

which indicates that InPS trains the neural networks to be

more sensitive to the object integrity.

The rest of the paper is organized as follows. We discuss

works related to our method in section 2 and present details

of our method in section 3. Section 4 will report implemen-

tations and experiment results and conclude the paper in the

last section.

2. Related Works

2.1. Mixing Regularization

Image mixing [28, 13, 39] is an effective augmentation

strategy to regularize the training of neural networks. One

simple way [13] to mix image is randomly picking two a

pair of images from training data before synthesizing a new

sample, where the pixel values of selected images are aver-

aged in the new sample. In this work, the label of the first

image is maintained as the supervised information when the

synthetic image is fed through the network. Zhang et al.

[39] extends the training distribution by linear interpolating

both the input images and associated targets. This concept

if further investigated by Summers and Dineen [25] who

explores a more generalized form and considers a broader

scope of non-linear mixing up. More recent works are RI-

CAP [27] and CutMix [38]. Among them, RICAP ran-

domly crops four images and concatenates them to con-

struct a new sample for training. In CutMix, one patch of

each image is cut and pasted among training data. Com-

pared with Cutout [5], or randomly erasing [45], CutMix

claims to make better use of the image information.

These researches tend to focus on random mixing but

fail to consider the structural integrity of objects so that the

network is not trained to make decisions from the global-

level features. The additional problem is that the label mix-

ing over the whole data leads to noisy labels. Because

the uneven distribution of regional importance is neglected,

pixel number based supervision of new synthetic samples

becomes noisy, which will further confuse the neural net-

works if the attention signal is used to guide the mixing

process. In contrast, the proposed method alleviates label

noise by mixing images of positive samples. Since intra-

class images are more likely to share similar responses, the

object integrity is potentially preserved while images parts

are swapped between positive samples.

2.2. FineGrained Classification

Researches for fine-grained image recognition [32, 12,

33, 36, 26] have focused on extracting diverse features

from a single image by locating or sampling significant

parts. To find object parts with specific semantic informa-

tion, early works [12, 41, 34, 18] design extra part-location

sub-network trained from bounding box and part annota-

tions. Despite effective results benefiting from strong su-

pervised information, the process of obtaining such anno-
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Figure 2. Overview of our network architecture. InPS takes positive image pairs as input and then construct an attention pool using

multiple-level features. After that, an attention pair is randomly selected before deploying a threshold to determine attended parts, which

are swapped to generate synthetic images.

tation is costly and not practical for many fine-grained data

[16, 20]. Recent part-based methods [42, 43, 26, 6, 35] tend

to use category labels to supervise model learning and de-

velop a variety of attention techniques to find class-related

parts. Inspired by the intuition that a convolutional filter

can be treated as a certain visual pattern detector [42, 23],

MA-CNN [43] clusters feature channels of convolutional

layers to generate multiple parts. A similar idea is used

by MAMC [26], which use Squeeze Excitation (SE) [11]

mechanism with metric constrain to learn multiple attention

regions. S3N [6] and TASN [44] consider regions with a

high response in attention map as informative parts. The

corresponding region in the image is re-sampled to high-

light fine-grained details. This soft manner retains context

while amplifying local regions, which alleviates the infor-

mation loss from the hard part cropping strategy.

Most of these methods rely on a complex pipeline to ex-

tract fine-grained details. This leads to less efficient train-

ing and evolves as a limit to the study of attention-based

methods. Rather than learning fine-grained information by

designing complex network structures, we choose to rein-

force the existing networks. In particular, feature extraction

pipelines are simplified from multiple backbones to only

one backbone. The proposed method can also be easily

embedded into the existing networks to improve the model

performance on fine-grained classification and localization

without introducing extra resources.

3. Proposed Method

In this section, we describe the details of the proposed

Intra-class Part Swapping (InPS). An overview of InPS can

be found in Figure 2. The network recognizes objects

mainly using features from the target object in a given im-

age. Inspired by this, we functionally separate the image

into two zones in the spatial dimension, the internal at-

tended zone that contains critical information and the exter-

nal preserving zone. Given the attended region, we aim to

drive networks to understand the fine-grained object in more

diverse contexts, where the network is supervised by correct

ground-truth information. To achieve this goal, we need to

solve the following two problems: (1) Given only image-

level labels, how to define and obtain the determined zones.

(2) How to preserve the supervised information when mix-

ing images into new samples.

3.1. Attention Priors

Since we only have category supervision, it is difficult to

obtain a precise object zone. In fact, we seek what is more

attractive to obtain significant regions as attention priors.

We feed the images to the network to obtain initial atten-

tion map Ma using Classification Activation Map (CAM)

[46]. Then we threshold Ma with δ for a binary mask Ba.

Regions with values larger than δ in Ma will be treated as

the interested zone. Thus, we define the binary mask as

follows: Ba,(i,j) = 1 if Ma,(i,j) ≧ δ, and Ba,(i,j) = 0 oth-

erwise. It is reasonable that the attention zone covers parts

that contain semantic information of the target object.

Our architecture contains one shared backbone, from

which the attention map can be generated from different

layers. Take two attentions as an example, the correspond-

ing two sub-networks are denoted by Sa and Sb, respec-

tively. Sa and Sb differ in the number of convolutional

layers and the pooling method before the linear classi-

fier. However, both sub-networks start from a convolutional

block, the goal of which is to determine initial attention.

By combining initial attention maps, we introduce the at-

tention pool. Given the attention map Ma produced by Sa,

separately. We can obtain binary masks Ba according to

the above section. By sampling threshold δ from a specified

distribution, the attention space is expanded to a potentially

larger one. In the training step, we randomly sample atten-
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tion pairs to guide the swapping operation.

3.2. Intraclass Part Swapping

Let (I1, l1) and (I2, l2) be an image pair sampled from

the training set, where l1 = l2 and I1, I2 ∈ R
3×h×w. To

perform swapping between positive samples, the output re-

gion is computed by applying an affine transformation T

(spatial scaling and translation) to the attended patch in the

source image. Taking swapping a part from I2 to I1 as an

example, the synthetic image, in this case, is calculated as,

Ĩ1 = S(F (G(I2), Tθ), B2 ∗ I2) + (1−B1) ∗ I1 (1)

where the transformation function F is parameterized by

an augmented matrix Tθ with size of 2 × 3 in 2D coordi-

nate system. Since the affine transformation works on the

coordination of pixels, a sampler S is used to grid sample

transformed patch from old coordinates to a new one. Since

we are only interested in spatial scaling and translation, the

affine matrix can be simplified as

Tθ =

[

ax 0 cx
0 ay cy

]

(2)

where ax, ay are the scaling factor, and cx, cy are the

bias in the coordinates of x and y. We further factorized

Tθ into a scaling matrix A =

[

ax 0
0 ay

]

and a translation

matrix C =

[

1 0 cx
0 1 cy

]

. The affine matrix is converted to

Tθ =

[

1 0 cx
0 1 cy

]

·





ax 0 0
0 ay 0
0 0 1



 (3)

Here, we denote the I2 that provide the internal attended

zone as the source image, and I1 that provide external pre-

serving zone as the target image. After applying a thresh-

old to the selected attention map of I2, the attended region

is formulated as a rectangle box determined by its top-left

point and bottom-right point with the location of (xtl
1 , y

tl
1 )

and (xbr
1 , ybr1 ) for I1. Similarly, the corresponding points of

I2 are (xtl
2 , y

tl
2 ) and (xbr

2 , ybr2 ).
Given these two sets of anchors, we can directly obtain

the scaling factor and translation factor without introducing

extra parameters. We first determine the scaling matrix Aθ

from I2 to I1, which are calculated as

ax =
xbr
1 − xtl

1

xbr
2 − xtl

2

, ay =
ybr1 − ytl1
ybr2 − ytl2

(4)

Specifically, assume that the (x, y) is the location of one

pixel in selected patch of image I2. After applying the scal-

ing transformation, the coordinates are converted to

[

ax 0
0 ay

]

·

[

x

y

]

= x

[

ax
0

]

+ y

[

0
ay

]

=

[

axx

ayy

]

(5)

Next, we decide the translation factor cx, cy on the basis

of scaled coordinates. After introducing an extra dimen-

sion 1 to the coordinate vector, the coordinate is denoted as

(axx, ayy, 1). We then solve the following equation:

[

1 0 cx
0 1 cy

]

·





axx

ayy

1



 =

[

x1

y1

]

(6)

We get value of translation parameters cx and cy in the

following form

cx = axx2 − x1, cy = ayy2 − y1 (7)

To perform a swapping transformation between the im-

age pair, a sampler mush take the set of sampling point

F (G(·), Tθ), along with the input image I2 and produce

the sampled output image Ĩ1. Each (x, y) coordinate in

F (G(·), Tθ) defines the spatial location in the output where

a grid sampler is applied to get the value at particular pixel

in the input image. Denote the output of grid sampler as V ,

the sampling is then written as

V (Tθ·G(I2))x,y = (B2∗I2)
x,y, ∀x ∈ [1 . . . w], y ∈ [1 . . . h]

(8)

Different from STN [14] that learn parameters to define

the transformation matrix, the affine matrix in our method is

directly calculated from the selected attention. By multiply-

ing the affine matrix to the masked source image, we align

the size and location of the source patch to the target loca-

tion, which is then linearly combined with the external zone

of the target image. The swapping operation is only used in

the training stage, and during test time the network behaves

the same as the backbone used. In practice, our such trans-

formation is applied by transforming the grid of the target

image size by T and interpolating the source image at the

resulting coordinates.

InPS takes advantage of both intra-class swapping and

attention signal. The plausible combination of internal zone

and external zone from positive example creates a large

context space, making it harder to overfit the fine-grained

dataset. Local parts contribute differently when recogniz-

ing the object in a different context, with more contexts to

explore, InPS understands the categories with better knowl-

edge. This helps the network recognize fine-grained objects

by accurately using information from more object parts,

which, therefore, benefits localization capability. We note

that Attentive CutMix[30] also introduced attention to mix-

ing strategy, but our method is different. InPS is specifi-

cally designed for fine-grained tasks by performing image
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Dataset # Class # Train # Test # Total

CUB-200-2011 200 5,994 5,794 11,788

Stanford-Cars 120 12,000 8,580 2,0580

FGVC-Aircraft 102 6,667 3,333 10,200

Table 1. Dataset Statistics of CUB-200-2011, Stanford-Cars and

FGVC-Aircraft.

Method Accuracy(%)

Random Mix (CutMix) 86.64

Positive Mix (CutMix + positive) 86.80

Positive Mix of Attention (InPS) 87.56

Table 2. Effectiveness of positive pair and attention pool on CUB-

200-2011

mixing among samples of the same classes, which avoided

label confusion in the learning process. Besides, the atten-

tive patch to be swapped in our method covers the connected

area, which maintains the integrity of discriminative parts.

4. Experiments

This section evaluates the performance of the proposed

InPS method for fine-grained image classification and lo-

calization. We first introduce the benchmark datasets and

implementation details of InPS. In weakly supervised lo-

calization, we compare InPS with mixing-based methods,

including Mixup, Cutout, and CutMix. We report the su-

perior performance of InPS compared with state-of-the-art

approaches in the classification task.

4.1. Dataset

To verify the effectiveness of our proposed approach, we

conduct experiments on three fine-grained datasets, namely

CUB-200-2011 [29], Stanford-Cars [16], and FGVC-

Aircraft [20]. Details about these three datasets are sum-

marized in Table 1.

CUB-200-2011 dataset contains 11,788 bird images of

200 categories with roughly 30 training images per cate-

gory. The dataset also contains 5994 instances as the train-

ing data and other 5794 as testing data. Each image in the

dataset is annotated with a bounding box, part locations as

well as attribute labels.

Stanford Car dataset contains 196 car categories for the

fine-grained task. There are 8144 examples in the training

set, and for the testing set, the data size is 8041, making

16,185 images in total in the dataset. Car images from the

dataset are taken from various angles, and the categories are

assigned based on production year and car model, e.g., 2012

Tesla Model S or 2012 BMW M3 couple.

FGVC-Aircraft dataset contains 102 aircraft categories

with 100 images for each class making 10,200 images in

the dataset. There are 6667 examples in the training set,

and the testing data has a data size of 3333. The main air-

craft in each image is annotated with a bounding box and a

hierarchical airplane model label.

We compared our method with baselines methods that

only use category labels without additional data.

4.2. Implementation Details

For our intra-class part swapping network, we use

ResNet-50 with ImageNet pre-trained weights as our base

model, open-sourced PyTorch [21] as our code-base and

trained all models on 1×V100 GPU. We use stochastic gra-

dient descent (SGD) as the optimizer. The initial learning

rate of new layers is set to be 0.01 while the learning rate

for the pre-trained layer is reduced by one-tenth. The batch

size is set to 10. We train our model for 100 epochs while

decaying the learning rate by multiplying 0.1 at 40th, 70th,

90th epoch. We report the results using the model from the

last epoch.

We take different augmentation strategies for three

datasets. For CUB-200-2011, during training time, we

first augment images by randomly resized to 512 along the

shorter side while keeping the image from deforming, then

we crop the images to size 448 × 448 with randomly hor-

izontal flipping. We also resize the test image using the

same method while only performing center cropping to size

448 × 448. For Stanford-Car and FGVC-Aircraft, we aug-

ment the training images by first resizing them to 512×512,

then random crop to size 448×448 as the input. Test image

are also resize to 512× 512 before central cropping to size

448 × 448 for recognition. The reason we do this is that

part shape is more important for bird recognition when per-

forming local feature extraction, and if we resize the input

to a square, the local parts are deformed, which reduces the

local information diversity. This augmentation strategy is

used for all experiments in this paper, including classifica-

tion and localization.

We briefly describe the settings for baseline augmenta-

tion schemes. Cutout [5] requires to fix mask size, follow-

ing setting used in [38, 5], we set the mask size to be half of

the image size 224 × 224, and the dropping out location is

uniformly sampled. Similarly, for CutMix [38] and Mixup

[39] we set the mixing probability to be 0.5.

During inference time, for weakly supervised localiza-

tion, we resize the input images to a fixed size and then

resize the resulting attention map back to the original reso-

lution. We use the last convolutional layer to generate the

attention map for weakly supervised localization.

4.3. IntraClass Attention Analysis

In Table 2, we consider reporting the results by adding

positive swapping strategy and attention signal separately
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Figure 3. Weakly localization comparison under different threshold σ on CUB-200-2011, Stanford-Cars and FGVC-Aircraft.

Method
Localization Accuracy(%)

CUB-200-2011 Stanford-Car FGVC-Aircraft

best mean best mean best mean

ResNet50 + CAM 59.82 30.42 90.61 45.54 87.82 42.53

ResNet50 + Mixup 17.92 4.34 59.08 12.60 59.95 16.50

ResNet50 + Cutout 42.20 12.36 91.46 48.60 86.83 42.62

ResNet50 + CutMix 66.67 32.15 90.16 50.62 84.55 35.13

ResNet50 + InPS 72.28 37.10 91.52 51.54 90.01 45.05

Table 3. Weakly supervised object localization comparison of state-of-the-art mixing-image approaches on CUB-200-2011, Stanford-Card,

and FGVC-Aircraft.

Method
Classification Accuracy(%)

CUB Cars Aircraft

ResNet-50 85.92 93.51 91.69

Mixup 86.28 92.90 91.27

Cutout 83.41 93.78 91.51

CutMix 86.64 93.96 92.14

InPS(ours) 87.56 94.59 92.65

Table 4. Classification comparison of baseline(ResNet-50) and

state-of-the-art augmentation methods (Mixup, Cutout, CutMix)

on CUB-200-2011, Stanford-Cars, and FGVC-Aircraft.

to the CutMix method. Note that the proposed InPS can

be treated as adding these two techniques to the CutMix.

According to Table 2, one can observe that with the pos-

itive swapping added to the CutMix, the positive CutMix

achieves better performance with 0.2% improvement. By

further adding the attention signal to guide the swapping

process, our method achieves the best results. Compared

with original CutMix, we have a performance gain of 0.92%

in terms of top-1 classification accuracy, which reflects the

high quality of the fine-grained representation produced by

our approach.

CAM MixUP Cutout Cutmix InPSInput

Figure 4. Qualitative comparison of the baseline (ResNet-50),

Mixup, Cutout, CutMix and InPS for weakly supervised object

localization task on CUB-200-2011 dataset. Ground truth and pre-

dicted bounding boxes are denoted as green and red, respectively.

4.4. Weakly Supervised Localization

Weakly supervised localization methods aim to localize

objects using category labels. To measure the localization

accuracy of models, the Intersection-Over-Union(IOU) be-

tween the estimated bounding box and the ground-truth pos-

itive is larger than 0.5, and, at the same time, the estimated

class label should be correct. Otherwise, the localization ac-

curacy treats the estimation is wrong. A good model in this

task tries to find more diverse responses in target objects as
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Method Backbone
Accuracy(%)

CUB-200-2011 Stanford-Cars FGVC-Aircraft

RA-CNN [7] 3× VGG-19 85.3 92.5 88.2

RAM [17] 3× Resnet-50 86.0 -

S3N [6] 3× Resnet-50 88.5 94.7 92.8

MGN-CNN [40] 3× Resnet-50 88.5 93.9 -

STN [14] 5× Inception 84.1 - -

MA-CNN [43] 5× VGG-19 86.5 91.5 89.9

NTS-Net [37] 5× Resnet-50 87.5 93.9 91.4

B-CNN [19] 1× VGG-16 84.1 91.3 84.1

Compact B-CNN [8] 1× VGG-16 84.0 - -

Low-rank B-CNN [15] 1× VGG-16 84.2 90.9 87.3

Kernel-Activation [1] 1× VGG-16 85.3 91.7 88.3

Kernel-Pooling [3] 1× VGG-16 86.2 92.4 86.9

DFL-CNN [31] 1× VGG-16 86.7 93.8 92.0

MAMC [26] 1× Resnet-101 86.5 93.0 -

ResNet-50 1× Resnet-50 86.1 93.2 91.3

DFL-CNN [31] 1× Resnet-50 87.4 93.1 91.7

DCL [2] 1× Resnet-50 87.8 94.5 93.0

TASN [44] 1× Resnet-50 87.9 93.8 -

Mixup [39] 1× Resnet-50 87.80 94.14 92.35

Cutout [5] 1× Resnet-50 86.74 94.74 92.23

CutMix [38] 1× Resnet-50 87.88 94.64 92.77

InPS(ours) 1× Resnet-50 88.82 94.96 93.76

InPS(ours) 1× Resnet-101 89.23 95.03 94.06

Table 5. Performance comparison with state-of-the-art methods on CUB200-2011, Stanford-Cars and FGVC-Aircraft.

well as correctly recognize the category. InPS creates more

meaningful combinations of object parts so that the net-

work is trained to understand the fine-grained object from

detail to the whole. We follow the existing strategy [38]

to evaluate the localization capability on the fine-grained

benchmarks. We compared the proposed method with vari-

ous data-augmentation techniques: Mixup, Cutout, CutMix.

Meanwhile, all implementation details follow the classifica-

tion setting and all input sizes to models are 448×448. The

classification activation map (CAM) is used to estimate the

bounding box by applying a threshold on it.

Table 3 quantitative evaluates the best and average local-

ization results. The threshold is set between 0.05 and 0.9

as we notice that the localization accuracy becomes 0 when

the threshold is larger than 0.9. From the table, we consis-

tently observe that InPS outperforms the baseline method

CAM and all data-augmentation methods that are based on

image-level supervision. It is worthy to note that Mixup

poses a negative impact on localization ability, leading to

a poor localization performance on all three datasets. This

is because Mixup encourages the network to focus on the

smaller region as shown in Figure 4. Although CutMix

makes better use of pixels than Cutout, it potentially shares

a similar issue as Cutout, where irrelevant areas might also

be activated. This limits further improvement in localiza-

tion performance. The problem is alleviated by InPS, which

focuses on attended regions swapping, thus reducing inter-

ference from the background. In Table 3, InPS improves the

localization accuracy from 59.82% to 72.28%, which shows

that InPS is helpful to learning correct regions.

The proposed method also exhibits robustness to the

threshold. From Figure 3, we can see that our method

achieves the best performance under a high threshold, and

the metric declines slower than competitors. One reason for

this is that InPS finds more diverse part representation, the

response of which is strong enough to maintain influence

even when the threshold increases to a high value. This can

be further verified by Table 3, where InPS achieves com-

parable mean localization accuracy on all three benchmarks

against other data-augmentation methods.

4.5. FineGrained Classification

To evaluate the performance of the proposed method

in fine-grained classification, we include the middle-level

feature in the network. The middle-level information has

been proved to be effective in learning complementary rep-
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Method
Classification Accuracy(%)

CUB Cars Aircraft

ResNet50 84.40 91.52 90.04

Mixup 85.76 93.75 91.75

Cutout 85.95 93.35 91.18

CutMix 86.24 93.86 91.81

InPS(ours) 86.69 93.58 92.26

Table 6. Performance of middle-level representation on CUB200-

2011, Stanford-Cars and FGVC-Aircraft.

resentation for fine-grained recognition [31, 40] at a low

cost. In particular, we add (Conv1×1 - Max Pooling

- Linear Classifier) after 4th block of ResNet to

learn middle-level feature. Since the feature from the 4th

block is detached before being fed to the new sub-network,

gradients of the new branch will not propagate back to the

backbone network, thus not affect the training of the ex-

isting network (GAP branch in Table 4). We further illus-

trate the detailed performance of the new branch in Table

6. Noted that middle-level feature shows strong represen-

tative ability on fine-grained datasets. This capability can

also be enhanced using mixing strategies by different ampli-

tudes. Compared with baseline, the proposed InPS improve

the model accuracy by more than 2% on all three datasets.

The fine-grained classification is evaluated by the top-1

classification accuracy(%). As shown in Table 5, our model

significantly outperforms the ResNet-50 baseline (fine-tune

from the ImageNet) by 2.8%, 1.8%, and 2.4% on three

challenging datasets respectively, which shows the ability

of our InPS to learn good representation from fine-grained

images. Table 5 also reporting results with state-of-the-art

approaches. In particular, compared with DFL-CNN [31]

which enhances mid-level representation learning within

the CNN framework by learning a bank of convolutional

filters to capture class-specific discriminative patches, we

get a better result with a relative accuracy improvement of

1.4%. Our method outperforms MAMC [26] which uses

metrics to learn multiple attention region features by 2.3%.

Although our baseline is already strong, the improvement

with a large margin indicates that a better representation

can still be learned even with a deeper network. It is noted

that mixing strategies also boost the fine-grained classifica-

tion. Although not necessarily works on all benchmarks,

CutMix achieves better performance than all existing fine-

grained methods. We also get the best performance on

Stanford-Cars (94.96%) and FGVC-Aircraft(93.76%). By

using ResNet-101 as a strong feature extractor, the model

performance on three benchmarks can be further improved,

achieving 89.23%, 95.03%, and 94.06% respectively.

α 0.5 0.5 1.0 2.0 2.0 5.0

β 0.5 1.0 1.0 2.0 5.0 2.0

Acc(%) 87.3 87.6 87.6 86.9 87.4 86.7

Table 7. Performance comparison in terms of classification accu-

racy (Acc) under different α, β on CUB-200-2011 dataset.

4.6. Ablation Study

In this section, we conduct ablation studies to understand

the design of the proposed InPS method.

Determination of α and β. We use a beta distribution

from which we randomly sample a threshold for each sam-

ple. There are two hyper-parameters in beta distribution,

α and β, and by setting different values, we can sample

from different distributions. We report experimental results

of regularizing the baseline network (ResNet-50) guided by

high-level attention on the CUB-200-2011 dataset, illus-

trated in Table 7. Overall, the proposed method fluctuates

depending on the two hyper-parameter values, and we use

α = 1.0, β = 1.0 throughout the paper.

Model complexity analysis. Since the proposed InPS is

designed to augment the existing network, no extra parame-

ters are introduced to the baseline network. The network is

efficient to train, and the model also takes the same number

of iterations as the baseline to converge. During the testing

time, the same backbone network is used. Compared with

ResNet-50, our method is 1.6% better and after 2.9% better,

introducing middle-level features without extra time cost.

5. Conclusion

In this paper, we presented Intra-class Part Swapping

(InPS) for fine-grained recognition. In particular, InPS per-

forms attention-guided swapping on positive samples. In

this way, InPS avoids inter-class mixing, thus alleviating

label noise in the mixing process. Besides, using the at-

tention signal to guide the swapping between significant re-

gions created reasonable combinations, eliminating the po-

tential structure of new samples. Experiments demonstrated

that InPS consistently outperforms the recent augmentation

approaches on both fine-grained classification and weakly-

supervised localization. Compared with the the-state-of-art

fine-grained methods, InPS achieved superior performance

in computational efficiency, accuracy, and simplicity. We

believe InPS can be further applied to augment the low-level

feature, further saving computational resources.
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