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Abstract

Automatic animation line art colorization is a challeng-

ing computer vision problem, since the information of the

line art is highly sparse and abstracted and there exists a

strict requirement for the color and style consistency be-

tween frames. Recently, a lot of Generative Adversarial

Network (GAN) based image-to-image translation methods

for single line art colorization have emerged. They can gen-

erate perceptually appealing results conditioned on line art

images. However, these methods can not be adopted for the

purpose of animation colorization because there is a lack

of consideration of the in-between frame consistency. Ex-

isting methods simply input the previous colored frame as a

reference to color the next line art, which will mislead the

colorization due to the spatial misalignment of the previous

colored frame and the next line art especially at positions

where apparent changes happen. To address these chal-

lenges, we design a kind of correlation matching feature

transfer model (called CMFT) to align the colored reference

feature in a learnable way and integrate the model into an

U-Net based generator in a coarse-to-fine manner. This en-

ables the generator to transfer the layer-wise synchronized

features from the deep semantic code to the content pro-

gressively. Extension evaluation shows that CMFT model

can effectively improve the in-between consistency and the

quality of colored frames especially when the motion is in-

tense and diverse.

1. Introduction

Nowadays, animation has become part of our daily en-

tertainments, thousands of animations have accounted for a

large proportion of the global viewership both on TV and

online video platforms. According to the AJA’s 2018 report

[1], the popularity of animation is still growing. Six years

of continuous growth has been seen in Japan’s anime mar-

ket. However, animation production is a complex and time-

consuming process that requires a large number of workers

to collaborate in different stages. The key-frame sketches

that define the major character movements are portrayed

by lead artists while the in-between sketches of motions

are completed by inexperienced artists. Then, the labor

workers repetitively colorize all the line arts on the basis of

the character’s color chart previously designed by the lead

artists. This colorization procedure is considered to be a te-

dious and labor-intensive work. Thus, finding an automatic

method to consistently colorize the sketch frames can sig-

nificantly improve the efficiency of animation production

and greatly save the expenses and labour cost.

The image-to-image translation method presented by

Isola et al [11] utilize Generative Adversarial Networks

(GANs) to learn a mapping model from the source im-

age domain to the target image domain. The similar idea

has been applied to various tasks such as generating pho-

tographs from attribute and semantic distributions. There

has been a lot of learning based methods [11, 36, 3, 17, 16,

13, 6, 33, 7, 9, 5, 34] for single sketch colorization, most

of which treat the problem as an image-to-image transla-

tion task, aiming at generating a perceptual pleasing re-

sult. However, due to the lack of consideration of the in-

between consistency, this kind of methods can not be di-

rectly adopted to colorize frame sequences.

In [27], temporal informations are incorporated into the

image-to-image translation network to encourage the con-

sistency between colorized frames by simply taking the

previous colored frame as an input to predict the cur-

rent colored frame. Two problems exist in these methods.

Firstly, the semantic distribution between the previous col-

ored frame and the current sketch frame is misaligned in

the spatial domain, which will mislead the colorization, es-

pecially at positions where apparent changes happen. Sec-

ondly, although information of the previous colored frame

and the current sketch frame is used to do prediction, in-

formation of the previous sketch which is highly related to

both the previous colored frame and the current sketch is

ignored.
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Figure 1. Animation sequence colorization example. The first row shows a sketch sequence, the second row shows the colored frames

generated by our network conditioned on the colored frame in the first column, the third row shows the original animation frames. The

example sequence is from the film Princess Mononoke.

To address the above problems, we propose a coherent

line art colorization framework with a learnable correlation

matching feature transfer model (called CMFT) to match

the correlation in feature maps. The CMFT model utilizes

two kinds of consistencies of four frames, which consist of

the domain style consistency and the spatial content con-

sistency. On the one hand, because of the domain style

consistency between the previous and next line art, the in-

between content transformation can be presented by the cor-

relation of continuous frames. On the other hand, because

of the spatial content consistency of the next line art and col-

ored image, we assume that the in-between motion can be

maintained across two style domains obviously. Therefore,

the transformation can be applied to color domain to recon-

struct the target image from semantic or texture patches of

the previous color image. To simulate the animation col-

orization behviour that artists usually determine the global

color composition before local details, we integrate a series

of CMFT models into a coarse-to-fine decoder. Simultane-

ously, we introduct a network to decrease the matching dif-

ficulty brought by the serious sparsity of line art. Overall,

our contributions are as follows:

• We propose a learnable CMFT model to reconstruct

the target color image by matching the correlation of

feature maps and applying the in-between motion to

the color domain.

• We design a coherent line art sequence colorization

framework consisting of four encoders and one de-

coder, which can generate high-quality colorized im-

ages effectively and efficiently.

• We devise a method to build diverse and discrimina-

tive dataset from cartoon films for the coherent frame

sequence colorization task.

2. Related work

2.1. Sketch Line Art Colorization

Recently, GAN[19] has offered superior quality in gen-

eration tasks compared to conventional image generation

methods. Several studies have been conducted on GAN for

line art colorization, which train CNNs on large datasets to

combine low-level local details and high-level semantic in-

formation to produce a perpetual appealing image. Isola et

al[11], Zhu et al [36] and Chen et al [3] learn a direct map-

ping from human drawn sketches (for a particular category

or with category labels) to realistic images with generative

adversarial networks. PaintChainer [17] develops an online

application that can generate pleasing colorization results

for anime line arts based on an U-Net based generator. [5]

improves colorization quality by adding an independent lo-

cal feature network to the generator. To increase the color

diversity and control the style of image, reference are added

to the generator. In [5, 34], points or lines with specified

colors are input to a generator as hints to change color lay-

outs of the target drawing positions or areas. In [7], a color

palette is used to guide the color distribution of the result.

In [33], the VGG features of the sample image is added

to the generator as a style hint. Style2Paints [34] extends

the method by adding a refinement stage, which provides a

state-of-the-art result in single sketch colorization.

Howerver, none of these works can be directly trans-

planted to the frame sequence colorization. Since no

meticulous-designed dense reference has been introduced to

affect details of the result, rigid color consistency required

in the frame sequence colorization task can not be well gu-
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ranteed. Thasarathan et al [27] is the first study working on

colorizing sketch frame sequences, which takes the previous

colored image as a dense reference and simply concatenates

it with the sketch as an input of the encoder. This will mis-

lead the colorization because of the spatial misalignment

between a sketch and the corresponding color reference. In

this paper, we reconstruct the aligned color reference by

finding the correlation of sketch features.

2.2. Traditional Sketch Correlation

Despite a strong correlation between every two adjacent

frames, finding the correction between sketches is a difficult

task, because features of sketches are sparse and highly-

abstracted. Some studies [24, 30, 35, 22] assume that

the line art is closed and can be segmented into different

shape areas, and they use shapes and topological features

to find the correlation between adjacent sketches. Some

other studies [26, 25, 18] are proposed to model the cor-

respondence between two frames as a as-rigid-as-possible

deformation, which is interatively found by matching local

features. Those methods can not handle complex sketch

changes, because they depend on the stability of shapes,

topology or local feautres, which often varies from adjacent

animation frames.

2.3. Deep CNN Feature Matching based Transfer

Another way to find the correspondence between im-

ages is deep feature matching. Local patches in deep fea-

tures have characteristic arrangements of feature activations

to describe objects, and higher-up code becomes more in-

variant under in-class variation [14]. It has been shown in

high-level image recognition tasks that such deep features

are better representations for images [32]. Li et al [14] re-

alizes the image-to-image translation between photograph

and style image via matching local patches of features ex-

tracted from a pre-trained VGG network. In order to trans-

fer an image I of domain A to domain B, the features of do-

main B is aligned to the content of image I by matching the

patches of deep features, and then the transferred image is

reconstructed from aligned features. Liao et al [15] formu-

lates the transfer mapping as a problem of image analogies

[10, 4] by seperating the matching into one in-place map-

ping (spatial invariant) and one similar-appearance mapping

(style invariant) to improve the transfer quality and presi-

cion. The pre-trained VGG network can offer adequate se-

mantics for correct patch matching, but it only adapts gen-

eral photographs instead of sparse and highly-abstracted

sketch representations. In order to learn effective sketch

features, we design a learnable correlation matching model

and integrate it to our generator for training. This module

will guide the network to learn a good representations for

the sketch frame sequence colorization task by itself.
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Figure 2. An illustration of correlation matching feature transfer

(CMFT) model.
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Figure 3. Overview of our network. There are mainly 4 encoders

and 1 decoder in our network. Encoder Eh and decoder D com-

pose an U-Net structure, which is our backbone network. The pre-

vious colored image cp is encoded by Ec as Ec(Cp), the previous

sketch and the current sketch are encoded by Es as Es(Sp) and

Es(Sn) respectively. Then, in CMFT model, Es(Sp) and Es(Sn)
are matched to generate a mapping matrix which is used to warp

Ec(Cp) to (Ec(Cn))e. Taking (Ec(Cn))e as a dense estimation

of Ec(Cn), we reconstruct the estimation of Cn by integrating

(Ec(Cn))e to the decoder D.

3. Method

This section describes the proposed line art sequence

colorization method shown in Figure 4. We first build the

learnable feature transfer model called correlation matching

feature transfer model, which can account for consistency

between frames to take into consideration temporal infor-

mation. Then, we propose the line art correlation matching

feature transfer network(LCMFTN) to integrate a series of

CMFT models that can act on semantic or texture features.

3.1. Correlation Matching Feature Transfer Model

Similar to the representation in [15], let xA, yA ∈

R
H

′

×W
′

×3 be two images in style domain A, let xB , yB ∈

R
H

′

×W
′

×3 are two images in style domain B. We arrange

xA, yA, xB , yB as image analogy xA : xB :: yA : yB ,

where xB are unknown variable. This analogy implies two

constraints: 1) xA and xB(also yA and yB) correspond at
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Figure 4. Architecture of our generator Network with corresponding number of feature maps (n), stride (s) and dilation (d) indicated for

each convolutional block.

the same spatial content; 2) xA and yA (also xB and yB)

are similar in style (color, lighting, texture and etc). Let

FA(x
A), FA(y

A), FB(x
B), FB(y

B) be the corresponding

DCNN features of xA, yA, xB , yB , where FA(·), FB(·) ∈
R

H×W×L, our goal is to build a learnable network struc-

ture to find the correlation matrix CA ∈ R
HW×HW of

FA(x
A) and FA(y

A) , then using FB(y
B) and the matrix

CA to transfer FA(x
A) to the unknown FB(x

B).

Firstly, let i ∈ HW and j ∈ HW denote the index

of spatial positions of the image features. Each element

CA
i,j represents the correlation intensity between position i

in FA(x
A) and position j in FA(y

A), and it is calculated as

below:

CA
ij = f(FA(x

A)i, FA(y
A)j), (1)

in which f denotes a kernel function computes the similar-

ity of the scalars. We apply the gaussian function in this

paper (f(a, b) = ea
T b). As xA and yA are in the same style

domain, the local pixels with the similar semantic content

are similar in features, the correlation can be represented

as similarities. Then, we estimate the feature FB(x
B) by

matching the pixels from FB(y
B) and the estimation of

FB(x
B) is written as χ. Each pixel in χ is resumed by

accumulating all the pixels in FB(y
B) as follows:

χi =
∑

∀j

wijFB(y
B)j , (2)

wij =
1∑
∀j c

A
ij

cAij , (3)

in which wij denotes the weight of the pixel j in FB(y
B)

to reconstruct the unkown feature pixel FB(x
B)i. Notice

that CB
ij is necessary to precisely transfer the FA(x

A) to

FB(x
B). However, we replace it with CA

ij feasibly, since

xA and xB (also yA and yB ) contains the same spatial con-
tent. Equation 1 and 2 can be summarized as follow:

χi = CMFT (FA(xA), FA(yA), FB(yB))i

=
1∑

∀j f(FA(xA)i, FA(yA)j)

∑

∀j

f(FA(xA)i, FA(yA)j)FB(yB)j .

(4)

Equation 4 is called correlation matching feature transfer

(CMFT) model, which reconstruct the unknown FB(x
B)

with FA(x
A), FA(y

A) and FB(y
B). CMFT model can be

integrate to the generator of the image-to-image domain

translation task. Different from the matching procedure in

[15] and [14], the matching model will guide the learning of

DCNN features. Allowing the network to be able to learn

a matching-friendly and task-friendly deep feature from the

whole dataset instead of a few images will improve the ro-

bustness and accuracy for a given task. Figure 2 shows the
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calculation process of the CMFT model. In the next section,

we will introduce the temporal reference in a coarse-to-fine

manner by appling CMFT model to the frame colorization

task.

3.2. Line Art Correlation Matching Feature Trans-
fer Network

As for the coherent sketch frame colorization, the anal-

ogy can be writen as Sp : Cp :: Sn : Cn, in which Sp

(Sn) and Cp (Cn) represent the previous (current) sketch

frame and previous (current) color frame respectively. Our

generator takes Sn as input conditioned on previous frame

pair Sp and Cp and returns a color estimation Ce temporally

consistent to the previous colored frame. This step can be

summarized as the following formula:

Ce = G(Sp, Cp, Sn). (5)

U-Net[20] has recently been used on a variety of image-

to-image translation tasks [11][36][5]. In an U-Net based

network structure, the features of the encoder are directly

added to the decoder by skip connections.

In our task, however, the encoding feature of the Cp

can not be directly added to the decoder for decoding Cn,

because of the spatial inconsistency. We aim to align the

feature of Cp to Cn and add the aligned feature to the de-

coder in a coarse-to-fine manner with the help of the CMFT

model.

As shown in Figure 4, our generator consist of four en-

coders and one decoder. The backbone of our network (Eh

and D) is an U-Net based structure. The input of the en-

coder Eh is the current sketch frame Sn, which contains

four convolution layers that progressively halved the feature

spatially from 256× 256 to 32× 32. As for the decoder D,

inspired by [5], we stack the ResNeXt blocks [29] instead

of Resnet blocks [8] to effectively increase the capacity of

the network and use the sub-pixel convolution layers [23] to

increase the resolution of the features after each ResNeXt

blocks. We represent each combination of ResNeXt blocks

and sub-pixel convolution layer as RU in our paper. Two

extra encoders are introduced to encode sketches and col-

ored images respectively, called Es and Ec. Ec has the the

same structure as Eh, and Es consists of 6 convolution lay-

ers. We add dilation [31] to some layers of Es to increase

the receptive fields, which will enable the network to fur-

ther learn some nonlocal topology features of the sketch.

Inspired by [5], we introduce a extra pre-trained sketch clas-

sification network EI to bring more abundant semantic im-

plications to the matching process. We use the activations

of the 6th convolution layer of the Illustration2Vec network

[21] that is pretrained on 128w illustrations including col-

ored images and line art images. The decoder D mixes the

encoding features and reconstructs the color result from a

coarse-to-fine manner. In each resolution layer of the de-

coder, there exists a CMFT model to accumulate the en-

coded features.
As shown in Figure 4, the intermediate output of Es

(Ec) is denoted as E3

s , E
2

s , E
1

s , E
0

s (E3

c , E
2

c , E
1

c , E
0

c ), the

intermediate code of Eh is denoted as E3

h, E
2

h, E
1

h, E
0

h.
The CMFT model of each resolution is represented
as CMFT 0, CMFT 1, CMFT 2, CMFT 3. In the first
CMFT model (CMFT 0), we aim to estimate the unknown
feature E0

c (Cn) by aligning E0

c (Cp) in spatial domain, and

we call the prediction result (E0

c (Cn))e. In order to make

the matching more accurate and robust, we concatenate E0

s
with EI as the matching feature so that the caculation of
model CMFT 0 can be writen as Equation 6 (we represent
the concatenate operation as ca()).

(E0

c (Cn))e

= CMFT 0(ca(E0

s (Sn), EI(Sn)), ca(E
0

s (Sp), EI(Sp)), E
0

c (cp))

= CMFT (ca(E0

s (Sn), EI(Sn)), ca(E
0

s (Sp), EI(Sp)), E
0

c (cp))

(6)

The predicted (E0

c (Cn))e contains the same style as

E0

c (Cp) and it is consistent with the E0

h(Sn) in spatial do-

main, which makes the (E0

c (Cn))e a good reference for the
network to further construct the higher resolution features.
We concatenate the (E0

c (Cn))e with E0

h(Sn) and input it to

the first ResnetXT upsample block (RU0) to further recon-
struct the higher resolution features. We treat the output of
RU0 as a coarse estimation of E1

c (Cn), so now we have the

analogy as E1

s (Sn):RU0::E1

s (Sp):E
1

c (Cp). We can match

RU0, E1

s (Sn) with E1

c (Cp), E
1

s (Sp) to reconstruct a more

accurate prediction (E1

c (Cn))e and thus the calculation of

CMFT 1 can be represented as Equation 7:

(E1

c (Cn))e = CMFT 1(RU0, E1

s (Sn), E
1

c (Cp), E
1

s (Sp))

= CMFT (ca(RU0, E1

s (Sn)), ca(E
1

c (Cp), E
1

s (Sp)), E
1

c (cp)).
(7)

Let k denotes the label of the layer of the CMFT model,

for k > 1. Since we can treat each RUk−1 as a coarse es-
timation of corresponding Ek

c (Cn), the rest CMFT model

(CMFT 2 and CMFT 3) can be induced from Equation of
CMFT 1. Then, we write the calculation in an united Equa-
tion 8:

(Ek
c (Cn))e = CMFTk(RUk−1, Ek

s (Sn), E
k
c (Cp), E

k
s (Sp))

= CMFT (ca(RUk−1, Ek
s (Sn)), ca(E

k
c (Cp), E

k
s (Sp)), E

k
c (cp))

, k > 1.

(8)

From Equation 8, we can discover that the features of Cp is

aligned to Cn in a coarse-to-fine manner. With the increas-

ing of the feature resolution, more detailed information in

features is considered for matching and a more fine result

can be reconstructed. At the end of the decoder, we use

two convolution layers to decode the aligned features to the

RGB color domain.

3.3. Loss Objective

Color Loss. We apply a color loss to the output of the

generator G and the ground truth image using the following
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objective function:

L1(G) = EX,Y ‖Y −G(X)‖1, (9)

where X = (Cp, Sp, Sn) and Y = Cn

Perceptual Loss. While using only the L1 loss will make

the generated result blurry, perceptual loss can help the

model to better reconstruct fine details and edges[12]. We

calculate the perceptual loss on the feature maps of the

VGG-19 model pre-trained on ImageNet at different depths.

LV GG(G) =
∑

f∈F

‖V GGf (Y )− V GGf (G(X))‖2 (10)

where F is the set of depths of VGG-19 which are consid-

ered, in our case F = 1, 3, 5, 9, 13.

Objective. By combing all the mentioned losses, the final

objective function can be represented as follows:

LG = λ1L1 + λ2LV GG, (11)

where λ1, λ2 influence the relative importance of the differ-

ent loss functions.

3.4. Implementation Details

The inputs of CMFT 3 are two size 256 × 256 feature

maps and the shape of the relevent correlation matrix is

65536× 65536, which will cause the memory overhead for

a single GPU and also greatly extend the training and in-

fering time. Thus we remove the CMFT 3 model in our

implementation by directly connecting the output of RU2

to the last convolution layers.

4. experiment

4.1. Experimental Setup

Dataset. We collect 10 different cartoon films of Hayao

Miyazaki(Howl’s Moving Castle, Whisper of the Heart,

The Wind Rises, Ki-ki’s Delivery Service, Porco Rosso, My

Neighbor Totoro, The Secret World of Arrietty, Spirited

Away, Princess Mononoke, Ponyo), three of which (The Se-

cret World of Arrietty, Whisper of the Heart, My Neighbor

Totoro) are used for training and the rest for testing. We di-

vide these training films into shots by utilizing the method

described in[2]. Since frames from two different shots may

not be strongly correlated and mislead the training process,

we only extract training frame pairs from the same shot.

In order to train the model to handle more diverse and in-

tense frame variations, we design a strategy to extract more

differential training pairs from a single shot. We apply a

sliding window to every squence to obtain the frame pairs,

first of which is the start frame of the window, and sec-

ond of which is the last frame of the window. The stride

of window is set to 5, and the width is set to 40. In this

way, we extract 60k pairs of training color frames and then

Table 1. PSNR/SSIM result of frame sequence with stride=1
method frame1(iv:1) frame2(iv:2) frame3(iv:3) frame4(iv:4)

LCMFTN 30.24/0.9790 29.10/0.9747 28.24/0.9710 27.89/0.9688

LCMFTN(w/o CMFT) 29.44/0.9731 28.06/0.9675 27.28/0.9629 26.93/0.9602

TCVC(our loss) 23.45/0.9086 22.78/0.9026 22.50/0.8989 22.37/0.8970

TCVC 23.73/0.9164 23.05/0.9107 22.77/0.9073 22.64/0.9055

Pix2Pix(with ref/our loss) 29.76/0.9593 27.98/0.9530 26.74/0.9471 26.30/0.9441

Pix2Pix(with ref) 28.59/0.95594 26.82/0.9510 25.65/0.9433 25.20/0.9394

DeepAnalogy 29.90/0.9773 27.22/0.9701 26.14/0.9645 25.79/0.9629

Table 2. PSNR/SSIM result of frame sequence with stride=5
method frame1(iv:5) frame2(iv:10) frame3(iv:15) frame4(iv:20)

LCMFTN 27.88/0.9669 26.84/0.9595 26.03/0.9539 25.59/0.9506

LCMFTN(w/o CMFT) 26.21/0.9559 25.02/0.9459 24.23/0.9388 23.73/0.9336

TCVC(our loss) 21.98/0.8954 21.44/0.8872 21.04/0.8810 20.78/0.8769

TCVC 22.22/0.8979 21.71/0.8905 21.30/0.8843 21.02/0.8801

Pix2Pix(with ref/our loss) 25.44/0.9389 24.11/0.9274 23.25/0.9119 22.77/0.9141

Pix2Pix(with ref) 24.41/0.9331 23.15/0.9196 22.35/0.9098 21.90/0.9037

DeepAnalogy 24.77/0.9567 23.59/0.9462 22.67/0.9401 22.28/0.9364

Table 3. PSNR/SSIM result of frame sequence with stride=10
method frame1(iv:10) frame2(iv:20) frame3(iv:30) frame4(iv:40)

LCMFTN 26.84/0.9595 25.59/0.9506 24.58/0.9440 24.18/0.9397

LCMFTN(w/o CMFT) 25.02/0.9459 23.73/0.9336 22.24/0.9190 21.88/0.9134

TCVC(our loss) 21.44/0.8872 20.78/0.8769 20.46/0.8713 20.20/0.8664

TCVC 21.71/0.8905 21.02/0.8801 20.69/0.8782 20.43/0.8735

Pix2Pix(with ref/our loss) 24.11/0.9274 22.77/0.9141 22.13/0.9066 21.69/0.9005

Pix2Pix(with ref) 23.15/0.9196 21.90/0.9037 21.34/0.8957 20.95/0.8890

DeepAnalogy 23.59/0.9462 22.28/0.9364 21.47/0.9241 21.07/0.9199

Table 4. Average time spent for colorize one frame
method LCMFTN LCMFTN(w/o CMFT) TCVC Pix2Pix DeepAnalogy

time(s) 0.90 0.82 0.22 0.17 7.24

convert this color frame set to simulate artificial line art by

paintchainer’s LeNet [17] and take it as the sketch training

set.

Parameter Setting. Our proposed method is implemented

in PyTorch, and trained and tested on a single Tesla P40

GPU. For every experiment, we feed our network with in-

put resized to 256 × 256 for 40 epochs, and the batch size

is set to 2. We use the Adam optimizer with the momentum

terms b1 = 0.5 and b2 = 0.9, and the initial learning rate

for Adam optimizer is 1e−4. For hyper-parameters setting,

we fix λ1 = 10 and λ2 = 2e− 2.

Evaluation Metric. In order to validate results of our

method, we employ Structural Similarity Index (SSIM) [28]

and Peak Signal to Noise Ratio (PSNR) metrics to evaluate

the difference between the generated images and the ground

truth frames.

4.2. Model Analysis

In the subsection, we investigate the influence of the

CMFT model. We gather all shots of 7 test films into a

shots set (7000 shots total). To see how the motion inten-

sity and diversity influence the result, for each shot, we ran-

domly selected 5 continuous frames at a stride of S, which

is varied from 1 to 10. Obviously, the intervals between the

reference frame and the generated frames range frame 1 to

40 (the interval is represented as iv in tabel). We take the
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Figure 5. Example of all the compared method at stride=1, from

top to bottom is the ground truth and the results of LCMFTN,

LCMFTN (w/o CMFT), TCVC (our loss), TCVC, Pix2Pix (with

ref/our loss), Pix2Pix (with ref), DeepAnalogy. The first colum of

each rows is the origin colored image, and the successive coloum

is the predicted frame conditioned on the first colored reference.

The example sequence is from the film Spirited Away.

first frame of this sequence as the color reference for the

model to predict the successive frame. We eliminate the se-

quence from the test dataset when there exist an unchanged

frame compared with the first frame, since it is not nessas-

ery to predict the colorization when no change happens. We

also eliminate the sequence from the test dataset when big

region of uncorrected semantics shows up (for example, a

character not shown in the first frame suddenly comes in in

the following frames). After the clean, we get a dataset of

3500 shot sequences for testing. Tabel 1,2,3 have shown the

result of the evaluation and Figure 5, 6, 7 have shown the

examples of the results.

To evaluate the influence of correlation mathing feature

transfer model, we completely remove CMFT models from

the LCMFTN network, and directly concatenate the output

Figure 6. Example of all the compared method at stride=5, from

top to bottom is the ground truth and the results of LCMFTN,

LCMFTN (w/o CMFT), TCVC (our loss), TCVC, Pix2Pix (with

ref/our loss), Pix2Pix (with ref), DeepAnalogy. The first colum of

each rows is the origin colored image, and the successive coloum

is the predicted frame conditioned on the first colored reference.

The example sequence is from the film Ponyo.

of each RU model to the succesive RU . As shown in Ta-

ble 1, there is a relatively smaller advantage of LCMFTN

over LCMFTN (w/o CMFT) when the interval is less than

5. This is because most of the test sketch cases only change

slightly and locally between coherent frames when the in-

terval is small, and some unknown part of frames can be

easily predicted by the local ability of the network. How-

ever, when we increase the interval to enhance the motion

intensity and diversity, LCMFTN is apparently better than

LCMFTN (w/o CMFT) as is shown in Table 2, 3. This is

because the CMFT model is global, the correlation matrix

contains similarity scores between the corresponding fea-

ture in image xA and all the features in image yA (see Fig-

ure 2). This makes the CMFT able to learn to estimate the

large transformation between coherent frames.
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Figure 7. Example of all the compared method at stride=10, from

top to bottom is the ground truth and the results of LCMFTN,

LCMFTN (w/o CMFT), TCVC (our loss), TCVC, Pix2Pix (with

ref/our loss), Pix2Pix (with ref), DeepAnalogy. The first colum of

each rows is the origin colored image, and the successive coloum

is the predicted frame conditioned on the first colored reference.

The example sequence is from the film Porco Rosso.

4.3. Comparison against the State-of-the-Art

We compare our method with TCVC [27], Pix2Pix [11]

and DeepAnalogy [15]. In order to adjust the Pix2Pix

model to fit example based sketch colorization task, we

directly concatenate the reference to the input just as the

same as the strategy introduced in TCVC. As we can see in

Table 1, 2, 3, the TCVC and Pix2Pix model is no better than

LCMFTN both with our loss or the original loss, especially

when the frame interval is big, since they are constrained

by the locality of their generator. Since small changes

between coherent sketch frames can be colorized by the

local ability of U-Net, the Pix2Pix model can reach a good

performance when interval=1. With the increasing of the

stride between frames, however, the performance decreases

dramatically. When we replace the loss of Pix2Pix to our

loss, the consistency of the colorization has improved. This

is because the GAN loss is learned from the whole data

set, which will introduce some color bias when considering

a single generated image. The results of the TCVC are

unstable as some results suffer from a color inconsistency.

As can be seen in row 5 and 6 of Figure 5, TCVC model

tends to change the color slightly even at unchanged sketch

positions.

The original DeepAnalogy suppose to utilize xA and yB
to predict xB . DeepAnalogy calculates the patch matching

in the same image domain to guarantee the matching preci-

sion, namely, matching between DCNN features of xA and

yA and DCNN features of xB and yB respectively. In the

original version, the feature of xB (yA) is estimated by fus-

ing the feature of xA (yB) and the previous layers’ match-

ing result. But every reference colored image has its cor-

responding sketch image in our task, so we eliminate the

procedure of estimating the feature of yA and replace it with

the real feature of yA layer-wise. Simultaneously, the proce-

dure of estimating the feature of xB is still kept unchanged.

The result of DeepAnalogy can reach a good performance

when the change between frames is small (interval=1), but

more matching errors show up with the increasing of mo-

tion intensity. Different from learnable and task-specified

deep features extracted by LCMFTN, the VGG features

of the sparse sketch can not provide an adequate semantic

representation for the correct patch matching. Because of

the lack of considering semantic correctness which can be

learned by generator based method from abundant images

in the training dataset, the result of DeepAnalogy suffers

from a serious discontinuity and distortion (as can be seen

in row 9 in Figure 5, row 9 in Figure 7). As shown in Ta-

ble 4, the calculating speed of DeepAnalogy is far slower

than other methods, since the patch matching and the re-

construction of the feature of xB in each layers are both

time-consuming.

5. CONCLUSION

In this paper, we first introduced a sketch correlation

matching feature transfer model that can mine and trans-

fer feature representations. Then we integrated the CMFT

model into a U-Net generator by designing two extra line

art and colored frame encoders. Furthermore, we collected

a sequential colorization dataset and designed a strategy to

get the training frame pair with intense and diverse varia-

tions to learn a more robust line art correlation. Experiments

showed that our LCMFTN can effectively improve the in-

between consistency and quality, expecially when big and

complicated motion occurs.
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