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Abstract

The human visual system can detect objects of unseen

categories from merely a few examples. However, such

capability remains absent in state-of-the-art detectors. To

bridge this gap, several attempts have been proposed to

perform few-shot detection by incorporating meta-learning

techniques. Such methods can improve detection perfor-

mance on unseen categories, but also add huge computa-

tional burden, and usually degrade detection performance

on seen categories. In this paper, we present PNPDet, a

novel Plug-and-Play Detector, for efficient few-shot detec-

tion without forgetting. It introduces a simple but effective

architecture with separate sub-networks that disentangles

the recognition of base and novel categories and prevents

hurting performance on known categories while learning

new concepts. Distance metric learning is further incor-

porated into sub-networks, consistently boosting detection

performance for both base and novel categories. Experi-

ments show that the proposed PNPDet can achieve compa-

rable few-shot detection performance on unseen categories

while not losing accuracy on seen categories, and also re-

main efficient and flexible at the same time.

1. Introduction

Deep convolutional neural networks based models have

achieved state-of-the-art performance on many visual un-

derstanding tasks, such as image classification and object

detection. The success of such models relies heavily on

large-scale and fully-annotated datasets. On the other hand,

such large-scale and annotated datasets are not always avail-

able for various specific applications [25, 60] due to expen-

sive human labelling costs and/or difficulty in data acqui-

sition. In addition, it is difficult to directly apply a deep

model trained on large-scale datasets to deal with new con-

cepts with limited training data available. Despite poor

performance on new concepts, it usually requires heavy
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fine-tuning efforts and usually degrades the performance on

learnt concepts undesirably, as reported by [11, 16, 57, 55],

et al. These limitations restrict further applications of exist-

ing visual understanding models in many real-world scenar-

ios. In contrast, by leveraging previous knowledge, we hu-

mans have a much more powerful and flexible visual system

that can handle unseen object categories easily by spotting

just one or only a few examples without causing negative

effects on seen categories.

Researches to bridge the gap of learning new concepts

from a small amount of data are usually termed as few-

shot learning, which primarily focus on few-shot classifi-

cation [19, 45, 34, 47, 49, 31, 11, 2, 44, 21]. Recently,

there are also several attempts to investigate the task of few-

shot detection [16, 1, 44, 30, 57, 54, 8]. The mainstream

of current few-shot detection approaches are based on in-

tegration of meta-learning techniques and general detectors

like Faster R-CNN [41]. Such methods need to perform a

separate feed-forward process for each category, thus are

computationally expensive and slow.

Another gap between existing visual models and human

visual system is the ability to learn unseen categories (novel

categories) from a small amount of data without sacrific-

ing performance on categories that the visual models are

initially trained on (base categories). Spyros Gidaris and

Nikos Komodakis [11] make a first attempt to achieve learn-

ing without forgetting in the task of few-shot classification.

However, current state-of-the-art approaches on few-shot

object detection either completely lose the ability to detect

seen categories [1], or cause a dramatic degrade on detec-

tion performance of seen categories after learning new con-

cepts [16, 44, 30, 54, 57, 8].

An ideal few-shot object detector should be efficient,

flexible, accurate and is able to perform few-shot object

detection on novel categories without impeding the perfor-

mance on base categories. This goal of learning novel cat-

egories without sacrificing accuracy on base categories re-

mains an open challenge due to the following difficulties.

First, few-shot detection is naturally a much more diffi-

cult task compared with few-shot classification, as it needs
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to perform dense classification and localization simultane-

ously. Second, the classification task in object detection in-

volves an additional ‘background’ category that almost al-

ways outnumbers positive categories, restricting the direct

application of few-shot classification methods on the detec-

tion task. More importantly, under certain scenarios, objects

in few-shot detection that are initially classified into ‘back-

ground’ can become positive object instances after adding

novel categories. Such ambiguity will cause heavy alter-

nation in network parameters, which costs a lot of time in

optimization and even leads to performance drop on base

categories. Third, unlike classification models, most exist-

ing object detectors adopt deep network architectures that

are more prone to over-fitting to limited number of training

samples of novel categories.

To address the challenges mentioned above, we propose

PNPDet – a single-stage Plug-and-Play Detector for effi-

cient few-shot detection without forgetting. Its architecture

is illustrated in Fig. 1. Unlike most existing few-shot detec-

tion methods, one unique feature of the proposed PNPDet

is that learning novel categories is as simple as attaching an

additional sub-network to existing model without interfer-

ing the the performance over base categories or requiring

high extra computational cost. Specifically, PNPDet intro-

duces a novel single-stage object detection architecture into

few-shot detection where feature extractor and bounding

box generator are shared among base and novel categories,

and the recognition of base and novel categories is disentan-

gled with separate sub-networks. Inspired by the success

distance metric learning (DML) in few-shot classification

tasks, we incorporate Cosine Similarity Comparison Head

(CosHead) into the PNPDet which helps to improve the ob-

ject recognition and object localization performance signif-

icantly. By adopting cosine distance (cosine similarity) as

the distance metric, PNPDet can better model objects’ rela-

tionship with corresponding prototypes and background as

‘similar’ and ‘irrelevant’, respectively, and this brings con-

sistent improvements for both object detection with abun-

dant training data and few-shot detection. To handle vari-

ous intra-category variances of feature representations, we

propose Adaptive CosHead to learn a scale factor for each

novel category to normalize the intra-category variance of

feature representations, further boosting few-shot detection

accuracy.

Our contributions are fourfold: (1) We proposed a novel

PNPDet, which performs few-shot object detection on novel

categories without degrading the accuracy on base cate-

gories by disentangling their recognition processes with

separate sub-networks. (2) We introduce Cosine Similar-

ity Comparison Head (CosHead), bringing distance metric

learning (DML) into the proposed PNPDet, which consis-

tently improves object detection performance either with

abundant training data or with few-shot training data. Be-

sides, we extend it to Adaptive CosHead that further im-

proves few-shot detection by learning a scale factor for

each novel category to normalize the intra-category vari-

ance of feature representations. (3) Despite its simplic-

ity, flexibility and efficiency, experiments demonstrate that

PNPDet can achieve comparable few-shot detection perfor-

mance on novel categories and even superior overall de-

tection performance, compared with existing state-of-the-

art meta-detectors. (4) We pose an alternative direction for

few-shot detection – simply attaching sub-networks to learn

new concepts other than mainstream approaches of meta-

learning.

2. Related Works

General Object Detection. Over the past few years, deep

neural networks have achieved remarkable improvements

in object detection. State-of-the-art object detection meth-

ods can be broadly classified into two categories, namely,

two-stage detectors and single-stage detectors. Two-stage

detectors mainly refer to Region-based Convolutional Neu-

ral Networks (R-CNN), including the original R-CNN [13],

Fast R-CNN [12] and the most commonly used Faster R-

CNN [41]. Two-stage detectors are generally more ac-

curate and robust, leading to many variants and applica-

tions [61, 14, 29, 51, 15, 10, 56, 50]. Single-stage de-

tectors mainly include SSD [27], YOLO [38, 39, 40],

RetinaNet [23], RefineDet [62], etc. The recently pro-

posed anchor-free detectors such as CornerNet [20], Cen-

terNet [64] and FCOS [48] can also be classified as single-

stage detectors. Single-stage detectors do not require pro-

posal generation stage, and directly predict bounding boxes

and detection confidences of multiple categories, thus are

conceptually simpler and significantly faster compared with

two-stage detectors. In this work, the proposed PNPDet fol-

lows the fashion of CenterNet [64], a simple yet effective

single-stage object detector.

Few-shot Learning. Few-shot learning refers to learning

from just a few training samples for each novel category.

There exist many research works on this topic, mostly

concentrating on few-shot classification [35, 58, 6, 31, 43,

53, 9, 3, 21, 46, 37, 17, 22, 11, 32, 36, 42, 63, 26, 25]. Most

of these works [9, 3, 21, 46, 37, 17, 22, 11, 32, 36, 42, 26]

adopt meta-learning techniques to attack few-shot classifi-

cation task. Besides, some other approaches [49, 45, 47,

44, 2] are based on distance metric learning (DML), which

try to learn feature representations that preserve the cat-

egory neighborhood structure under certain distance met-

ric, where features corresponding to the same category are

closer than features from different categories. However,

they still lack the ability to attend to novel categories with

no drop of accuracy on base categories. To enable few-shot

classification with this property, [11] further introduces an
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Figure 1. Illustration of the proposed PNPDet architecture: Feature extractor F (·) generates feature maps that are shared by all downstream

sub-networks. Sub-networks generate heatmaps for object recognition and localization, while regressor predicts heights and widths of

bounding boxes at different locations for both base and novel categories. Parameters of blue-colored components are learned from large-

scale datasets with bounding box annotations, and parameters of orange-colored components are learned from few-shot training samples

during the few-shot training stage.

attention-based mechanism to generate weights for novel

categories.

On the other hand, there are only several attempts to at-

tack the problem of few-shot object detection. Low-Shot

Transfer Detector (LSTD) [1] is the first work to attack the

problem of few-shot detection. It integrates SSD [27] and

Faster R-CNN [41] into a unified detector and achieves few-

shot detection in transfer learning manner. However, LSTD

has limitations in terms of low inference speed, low adap-

tation speed, and completely losing the ability to detect ob-

jects of base categories after fine-tune. Most other works

on few-shot detection are based on integration of meta-

learning techniques and general detectors like Faster R-

CNN [41], YOLO [39], etc. Using YOLO v2 [39] as back-

bone, FeatReweight [16] proposes to meta-learn a group of

weights to re-weight the importance of features, generat-

ing category-specific feature maps for both base and novel

categories. In addition, [30, 57, 54, 8] all extend Faster R-

CNN [41] by meta-learning over Region of Interest (RoI)

features and/or image features. Such meta-learning based

approaches need to perform a separate feed forward com-

putation for each category to be detected, thus require large

amount of computational resources, and are inefficient. Be-

sides, such approaches still severely deteriorate detection

performance on base categories after adding novel cate-

gories into consideration.

We notice that two concurrent works on few-shot detec-

tion adopt several similar ideas as ours. ONCE [33] also

adopt CenterNet [64] as backbone to achieve incremental

few-shot detection without forgetting. However, it still falls

into the fashion of meta-learning, while our proposed PN-

PDet simply attaches sub-networks on existing networks

to achieve few-shot detection. FsDet [52] also incorpo-

rates distance metric learning into Faster-RCNN with FPN,

and achieves state-of-the-art performance on few-shot de-

tection. However, it still cannot guarantee no forgetting on

base categories. And it is based on a very deep backbone

architecture (ResNet101 + FPN), thus also requires heavy

computational resources.

By taking ideas from distance metric learning (DML)

and combine them with a simple yet effective architecture

with multiple sub-networks, our proposed PNPDet achieves

comparable few-shot detection performance on unseen cat-

egories while preserving high detection performance of

seen categories as well as efficient and flexible inference.

3. Task Definition

Given two sets of categories Cbase and Cnovel which

are mutually exclusive to each other, the model is initially

trained to detect objects of base categories Cbase on dataset

Dbase, which is a large-scale dataset with bounding box an-

notations over Cbase. Few-shot detection without forgetting

requires the model to learn to detect categories from both

Cbase and Cnovel, provided with only a few annotated ex-

amples Dnovel for novel categories Cnovel. We define the

task of N-shot object detection as detecting objects from

Cnovel with exactly N object instances as training examples

for each novel category.

4. Method

In this section, we present details of our proposed Plug-

and-Play Detector (PNPDet). First, we introduce the ba-

sic architecture of PNPDet. Then, we introduce Co-

sine Similarity Comparison Head (CosHead) and Adap-

tive CosHead, which effectively incorporate distance metric

learning (DML) into the architecture of object detection for

object recognition. Finally, we describe the training and in-

ference strategy of the proposed few-shot detection frame-

work.
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4.1. Basic Architecture

We first review the architecture of CenterNet [64], which

will be used as the underlying architecture in our proposed

PNPDet. CenterNet is a recently proposed anchor-free ob-

ject detection network, which performs object detection in

keypoint detection manner. Precisely, CenterNet consists of

three parts: a feature extractor to generate high-resolution

feature maps, a class-specific heatmap prediction branch,

and a class-agnostic regressor for bounding box regression.

Each category corresponds to one heatmap, and the peaks in

the heatmap represent object centers. Widths and heights of

bounding boxes are directly regressed through the bounding

box regressor. For more detailed introduction of CenterNet,

readers are strongly encouraged to read the original paper.

The proposed PNPDet is built upon the architecture of

CenterNet. The overview of the proposed PNPDet is illus-

trated in Fig. 1. We follow most of the settings as the origi-

nal CenterNet [64]: modified DLA-34 [59] with deformable

convolutional networks [4, 65] pre-trained on ImageNet [5]

as backbone, loss functions and target generations stated

in [64], etc. As is shown in Fig. 1, to make predictions

on novel categories, the proposed PNPDet adds a parallel

heatmap prediction sub-network to generate heatmaps for

novel categories. Heatmaps generated by both base and

few-shot sub-networks are then merged to produce final de-

tection results, together with bounding box regression infor-

mation provided by class-agnostic regressor. In Fig. 1, blue-

colored components are trained with abundant data of base

categories, and few-shot sub-network in orange is trained

with few-shot training samples of novel categories. Each

sub-network is made up of only four standard convolutional

layers with ReLU as activation function, such a lightweight

design allows fast inference and adaptation speed, and pre-

vents potential over-fitting.

Such architecture has several advantages under few-shot

detection settings. First, it models the ‘background’ cate-

gory implicitly based on similarity to the prototypes, which

simplifies the network and makes the model easy to be

modified for novel categories. Second, base and novel

categories are disentangled by incorporating two separate

sub-networks for heatmap prediction, so that the updat-

ing from novel categories will not interfere with base sub-

network, which achieves few-shot detection without for-

getting. Third, the class-agnostic bounding box regression

branch can be directly applied to novel categories through

a transfer learning manner, effectively transferring knowl-

edge learned from base categories.

However, although such architecture ensures no forget-

ting over base categories when learning new concepts, it

fails to produce satisfactory results for novel categories with

limited training samples. To address this problem, we incor-

porate distance metric learning (DML) by replacing the last

layer of sub-networks with the proposed CosHead or Adap-
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Figure 2. Illustration of the proposed CosHead and Adaptive

CosHead in generating heatmaps for object recognition and lo-

calization in distance metric learning manner. CosHead is illus-

trated with solid parts while Adaptive CosHead is illustrated with

both solid and dashed parts. Learnable scale factors of Adaptive

CosHead act to normalize intra-category feature variances.

tive CosHead, more details to be described in Section 4.2.

Detailed training and inference strategy for PNPDet will be

discussed in Section 4.3.

4.2. Metric Learning for Fewshot Detection

The key difficulty of few-shot object detection lies in

the recognition of objects from novel categories. The ob-

ject recognition (classification) task in few-shot detection

is even more challenging than the task of few-shot classifi-

cation. Few-shot classification task is usually evaluated in

an episodic manner, where the model only needs to deter-

mine the category of reference images that the testing im-

age is most similar to. Distance metric learning (DML) is

a widely adopted technique to achieve satisfactory few-shot

learning for classification, which aims to learn feature rep-

resentations that preserve the category neighborhood struc-

ture. It is very natural to apply DML to search for the clos-

est reference category within an episode. However, in the

task of object detection, there exists a special ‘background’

category that almost always outnumbers samples from pos-

itive categories. And it is hard to find an appropriate proto-

type for the background category due to the large intra-class

variations, which restricts the ability to apply existing DML

based methods in image classification to the objection de-

tection task.

To better solve the object recognition problem in few-

shot detection, we introduce Cosine Similarity Comparison

Head (CosHead) into the detection architecture mentioned

above. We show that with simple modification, distance

metric learning can be incorporated into our detection archi-

tecture, and greatly boost detection performance over novel

categories under low-shot setting.
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The intuition behind the introduced CosHead is very

simple: rather than directly learning discriminative feature

representations, we learn a feature space where features cor-

responding to the same category are closer than features

from different categories under certain distance metric. To

achieve this, the model needs to learn a prototype for each

category as the best representative of the corresponding cat-

egory and performs dense comparisons between prototypes

and features from different locations. In the context of de-

tection, the ‘background’ category is modeled implicitly

and considered as ‘irrelevant’ objects with the learned cate-

gory prototypes. To model the relationship of ‘resemblance’

and ‘irrelevance’, we adopt cosine distance (cosine similar-

ity) as our pre-defined distance metric.

The proposed CosHead is illustrated in Fig. 2, and can

be formulated as follows. It takes as input a feature map

F ∈ R
d×H×W , and generates heatmaps S ∈ R

C×H×W

ranging from 0 to 1 indicating the similarities between fea-

tures and the learned prototypes at all locations. Here d

denotes dimension of input feature representations, and C

denotes number of categories. Heatmaps are computed as:

Sc,x,y = σ(τ ·
Wc

T · Fx,y

|Wc| · |Fx,y|
) (1)

where σ(·) denotes sigmoid function, | · | denotes L2-norm,

Sc,x,y ∈ R indicates the similarity score at location (x, y)
with category c, Fx,y ∈ R

d is the feature vector extracted

by the feature extractor at location (x, y), Wc ∈ R
d denotes

the learnable feature prototype for category c, τ ∈ R is a

scalar to extend the range of cosine similarity, which is fixed

at 10.0 in all experiments. The learnable prototypes W ∈
R

C×d can be learned directly through back propagation.

Besides, since the network is not trained on novel cat-

egories with abundant samples, the feature representations

for novel categories are not as compact as features for base

categories. In addition, unlike few-shot classification where

each image is a good representative of its corresponding cat-

egory, in the task of few-shot object detection, each bound-

ing box serves as a representation of its category. In this

context, objects have larger-scale variations, and could even

be vague or occluded. As a result, there exists larger intra-

category variance for each category, making it even harder

for novel category recognition. Different few-shot training

samples can also exhibit different intra-category variances.

To alleviate this problem, we further propose Adaptive

CosHead, as shown in Fig. 2. In addition to the prototype

for each category, Adaptive CosHead further learns an adap-

tive scale factor for each category in order to normalize dif-

ferent intra-category variances. Adaptive CosHead can be

formulated as:

Sc,x,y = σ(τ · τc ·
Wc

T · Fx,y

|Wc| · |Fx,y|
) (2)

where τc is a learnable scalar for category c, which is also

directly learned through back propagation.

The proposed CosHead and Adaptive CosHead have sev-

eral advantages in the context of low-shot detection. First,

feature representations learned by distance metric learning

have better generalization ability for novel categories. Sec-

ond, using cosine similarity can effectively model the re-

lationship of ‘irrelevance’, which perfectly models the re-

lationship between learned prototypes and background re-

gions. By doing this, the model does not need to model

‘background’ specifically, making it easier to adapt to novel

categories which is initially classified as ‘background’.

Third, under low-shot setting, there is no guarantee that the

support set of novel categories are representative enough to

generate high responses for objects of novel categories. In-

corporating cosine distance with CenterNet architecture can

alleviate this issue as it only deals with peak values and co-

sine distance tends to generate smooth responses. This can

be further supported by Fig. 3.

We clarify that incorporating cosine distance metric with

neural networks is not our contribution, as this has been in-

vestigated in [49, 2, 11, 34], etc. to solve few-shot classifi-

cation tasks. Instead, we investigate the potential of com-

bining distance learning metric into the detection frame-

work. We demonstrate that with simple modifications, co-

sine distance metric learning can be incorporated into the

detection framework, and can greatly boost detection per-

formance under low-shot settings.

4.3. Training and Inference Procedure

The training procedure for our proposed PNPDet con-

sists of two stages. First, we perform initial training on the

large-scale dataset for object detection with bounding box

annotations over base categories. During this initial training

stage, the detector is trained to detect objects of base cate-

gories. In addition to a sub-network to generate heatmaps

for base categories, it learns a class-agnostic bounding box

regression branch, a class-agnostic center point regression

branch, and a feature extractor which preserves the cate-

gory neighborhood structure under cosine distance metric.

Everything is trained end-to-end during this stage. Then,

we perform few-shot training on the small-scale dataset

to train a sub-network to generate heatmaps for novel cat-

egories. During this stage, all parameters except the sub-

network for novel categories are set fixed. The sub-network

for novel category is initialized using weights from the sub-

network to generate heatmaps for base categories in order

to reuse the high-level knowledge learned from large-scale

base categories.

During inference, the sub-networks for both base and

novel categories are stacked on the feature extractor in par-

allel to produce heatmaps for all categories. Regressor pro-

duces bounding box guidance for all categories. Detection
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results for both base and novel categories are generated at

one go with marginal extra computational expenses.

5. Experiments

5.1. Experimental Setup

We follow the setups of previous works for few-shot

object detection [16, 54, 57, 33]. Specifically, widely

adopted object detection datasets Pascal VOC [7] and MS

COCO [24] are used for few-shot detection setups.

Pascal VOC dataset consists of images covering 20 ob-

ject categories. We follow previous works [41, 39, 16] to

use Pascal VOC 07 and 12 train/val images for training and

use Pascal VOC 07 test set for evaluation. Following [16],

we use 3 novel/base category split settings, i.e., (“bird”,

“bus”, “cow”, “motorbike”, “sofa”/ others); (“aeroplane”,

“bottle”,“cow”,“horse”,“sofa” / others) and (“boat”, “cat”,

“motorbike”,“sheep”, “sofa”/ others). The number of shots

is set to 1, 3 and 10, following previous settings. Mean av-

erage precision (mAP) at IoU threshold 0.5 is used as eval-

uation metrics. Results are aggregate over 10 randomly se-

lected support sets of novel categories.

MS COCO dataset covers 80 object categories including

the 20 categories in PASCAL VOC. We use the 20 shared

categories as novel categories, and use the remaining 60

categories in COCO dataset as base categories. We use

train2017 set as the training set, and perform evaluation on

the val2017 set. Evaluation metrics defined by COCO [24]

are adopted. Results are aggregate over 10 randomly se-

lected support sets of novel categories.

5.2. Implementation Details

Our model is trained on a single NVIDIA GeForce

2080Ti GPU with 11GB memory. Images are resized to

384 × 384 before feeding into the networks. Standard

data augmentation techniques, including horizontal flip-

ping, random crop and color jittering are adopted in both

initial and few-shot training stages. The detailed architec-

ture for sub-networks is Conv3×3−ReLU−Conv3×3−
ReLU −Conv3× 3−ReLU −Head, where Head is ei-

ther a plain convolutional layer, or the proposed (Adatpive)

CosHead. For initial training stage, we follow the train-

ing scheme of [64] to train the model until convergence.

For few-shot training stage, initial learning rate is set to

1.0 × 10−5 and decays to 1.0 × 10−6 with cosine anneal-

ing decay [28] to convergence; Network is optimized using

Adam optimizer [18]. During inference, Non-Maximum

Suppression (NMS) with an IoU threshold of 0.6 is adopted

to generate final results.

5.3. Ablation Experiments

We first conduct ablation experiments over the design

choice of sub-networks, i.e., plain convolutional layer,

Table 1. Detection performance (mAP@0.5) after initial training

on base categories at different category splits on Pascal VOC.

Split 1 Split 2 Split 3

Plain Conv 74.4 72.2 73.8

CosHead 75.5 73.1 74.6

Adaptive CosHead 74.4 72.3 74.0

CosHead or Adaptive CosHead for base and novel sub-

networks.

Before presenting few-shot detection performance, we

first report detection performance on base categories of dif-

ferent models after the initial training stage in Table 1. For

fair comparison, the only difference among three methods

is the last layer of sub-networks. Bold numbers indicate the

best performance obtained within each category split. As

Table 1 shows, CosHead is able to consistently outperform

Plain Conv, which potentially demonstrates the advantages

of DML as stated in Section 4.2. Incorporating CosHead

can thus be deemed as an improvement over the original

CenterNet [64] for object detection. Surprisingly, Adaptive

CosHead performs slightly worse than CosHead. We be-

lieve it is because when training data is sufficient, feature

representations of the same category under the learned fea-

ture space are already compact, so it is unnecessary to learn

an extra scale factor to normalize the intra-category vari-

ance of each category.

Based on experiment results in Table 1, we use CosHead

by default in all the following experiments for base category

sub-networks.

We further present ablative experiment results in few-

shot detection settings on Pascal VOC dataset. As shown in

Table 2, simply fine-tuning CenterNet to fully convergence

will cause dramatic performance drop on base categories.

Unlike naive fine-tune strategy, since the proposed PNPDet

disentangle the recognition of different category split with

different sub-networks, the performance on base categories

will not drop even after learning to recognize new con-

cepts. However, without introducing distance metric learn-

ing, detection accuracy of PNPDet on novel categories is

still unsatisfactory, especially at extremely low-shot settings

(1 shot and 3 shot). With CosHead and Adaptive CosHead

introduced, without adding any extra computational burden,

the few-shot detection performance on novel categories in-

crease a lot, especially at extremely low-shot settings. This

demonstrate the effectiveness of introducing cosine distance

as distance metric in few-shot detection. We also notice that

Adaptive CosHead is able to outperform CosHead under

low-shot setting, especially at 1 and 3 shots. In 10 shot ex-

periments, Adaptive CosHead can only boost marginal per-

formance gain on novel categories. This aligns with exper-

iments in Table 1, which also indicates Adaptive CosHead

is able to effectively help to normalize the intra-category
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Table 2. Few-shot detection performance (mAP@0.5) of some variants of PNPDet on both base and novel categories under Pascal VOC.

Split 1 Split 2 Split 3 Avg

1 shot 3 shot 10 shot 1 shot 3 shot 10 shot 1 shot 3 shot 10 shot 1 shot 3 shot 10 shot

CenterNet-ft-full

base 68.2 65.0 59.8 66.0 66.2 61.0 64.6 62.9 58.3 66.3 64.7 59.7

novel 8.5 14.4 32.5 9.0 11.6 32.9 9.0 14.0 26.4 8.8 13.3 30.6

overall 53.3 52.4 53.0 51.8 52.6 54.0 50.7 50.7 50.3 51.9 51.9 52.4

PNPDet

Plain Conv

base 75.5 75.5 75.5 73.1 73.1 73.1 74.6 74.6 74.6 74.4 74.4 74.4

novel 8.3 10.7 29.4 6.9 9.4 27.6 8.5 11.0 28.2 7.9 10.4 28.4

overall 58.7 59.3 64.0 56.6 57.2 61.7 58.1 58.7 63.0 57.8 58.4 62.9

CosHead

base 75.5 75.5 75.5 73.1 73.1 73.1 74.6 74.6 74.6 74.4 74.4 74.4

novel 15.7 25.3 41.8 15.9 24.6 34.9 17.8 25.9 36.3 16.5 25.3 37.7

overall 60.6 63.0 67.1 58.8 61.0 63.6 60.4 62.4 65.0 59.9 62.1 65.2

AdaptiveCosHead

base 75.5 75.5 75.5 73.1 73.1 73.1 74.6 74.6 74.6 74.4 74.4 74.4

novel 18.2 27.3 41.0 16.6 26.5 36.4 18.9 27.2 36.2 17.9 27.0 37.9

overall 61.2 63.5 66.9 59.0 61.5 63.9 60.7 62.8 65.0 60.3 62.6 65.3

variance of each category when training data is extremely

scarce for the convolutional feature extractor to do so. But

when training data for each category is efficient for the fea-

ture extractor to adjust the intra-category variance, its per-

formance gain will be marginal.

We further visualize and compare heatmaps for novel

categories generated by (1) Plain Conv and (2) Adaptive

CosHead in Fig. 3. Heatmap responses of CosHead is very

similar with Adaptive CosHead visually, therefore we do

not show them. Models of both settings are trained using

the same 3-shot training samples. As is shown in Fig. 3,

the first row contains input images that contain objects of

novel categories (motorbike, cow, bus, and bird from left to

right). The second and third rows show heatmaps generated

by (1) Plain Conv and (2) Adaptive CosHead, respectively.

It is obvious that heatmaps generated by Adaptive CosHead

contain clearer peak responses at center points, and contain

fewer artifacts. This further demonstrates the superiority of

heatmap generation in cosine distance metric learning man-

ner.

Through these ablation study, for the following exper-

iments, we choose Adaptive CosHead as the default set-

ting for novel category sub-networks, and choose CosHead

as the default as the default setting for base category sub-

networks.

5.4. Benchmark Experiments

We further benchmark the proposed PNPDet with state-

of-the-art meta-learning based few-shot detectors as well as

naive fine-tune approaches. Results under commonly used

Pascal VOC 15 ⇒ 5 is shown in Table 3. Note that listed

methods are based on different backbone networks and de-

tection architectures.

Table 3 suggests the incompetence of naive fine-tune

strategy over both two-stage and single-stage detectors.

Specifically, detection performance on novel categories is

low due to over-fitting, and base category performance suf-

fers from catastrophic forgetting. Meanwhile, by incorpo-

Figure 3. Heatmaps for novel categories generated by different

methods: The heatmaps generated with Adaptive CosHead in row

3 exhibit stronger and cleaner responses at the center of objects as

compared with the heatmaps generated with Plain Conv in row 2.

rating meta-learning techniques with Faster R-CNN [41]

and YOLO v2 [39] respectively, Meta R-CNN [57] and

FeatReweight [16] tend to produce better detection perfor-

mance on novel categories and suffer less from forgetting

on base categories. This can be attributed to meta-learning

techniques that acquire meta-level knowledge, which is

more powerful to generalize to other unseen categories.

However, such state-of-the-art meta-detectors still have a

large performance gap on base categories after few-shot

learning, compared with detection performance by general

object detectors. By adopting a novel strategy of attaching

sub-networks for few-shot detection, our proposed PNPDet

is able to achieve comparable performance over novel cate-

gories without forgetting, achieving superior overall perfor-

mance after learning new concepts.

We specifically focus on comparison between PNPDet

and FeatReweight [16], since it is the state-of-the-art meta-

detector with efficient single-stage architecture. Compared

with it, the proposed PNPDet achieves superior overall few-
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Table 3. Few-shot detection performance (mAP@0.5) benchmark on both base and novel categories under Pascal VOC dataset. RED and

BLUE indicate state of the art and the second best. N/A indicates no published performance available.

Split 1 Split 2 Split 3 Avg

1 shot 3 shot 10 shot 1 shot 3 shot 10 shot 1 shot 3 shot 10 shot 1 shot 3 shot 10 shot

FRCNN-ft-full w/ Res101 FPN

base 62.6 61.3 59.8 63.2 61.0 59.8 63.7 62.1 60.5 63.2 61.5 60.0

novel 9.9 21.6 35.6 9.4 17.4 29.8 8.1 19.0 31.0 9.1 19.3 32.1

overall 49.4 51.4 53.8 49.7 50.1 52.3 49.8 51.3 53.1 49.6 51.0 53.1

Meta R-CNN [57] w/ Res101

base N/A 64.8 67.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

novel 19.9 35.0 51.5 10.4 29.6 45.4 14.3 27.5 48.1 14.9 30.7 48.3

overall N/A 57.3 63.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

CenterNet-ft-full w/ DLA34

base 68.2 65.0 59.8 66.0 66.2 61.0 64.6 62.9 58.3 66.3 64.7 59.7

novel 8.5 14.4 32.5 9.0 11.6 32.9 9.0 14.0 26.4 8.8 13.3 30.6

overall 53.3 52.4 53.0 51.8 52.6 54.0 50.7 50.7 50.3 51.9 51.9 52.4

FeatReweight [16] w/ YOLO v2

base 66.4 64.8 63.6 68.2 66.0 64.7 65.9 65.0 63.1 66.8 65.3 63.8

novel 14.8 26.7 47.2 15.7 22.7 40.5 21.3 28.4 45.9 17.3 25.9 44.5

overall 53.5 55.3 59.5 55.1 55.2 58.7 54.8 55.9 58.8 54.5 55.5 59.0

PNPDet (Ours) w/ DLA34

base 75.5 75.5 75.5 73.1 73.1 73.1 74.6 74.6 74.6 74.4 74.4 74.4

novel 18.2 27.3 41.0 16.6 26.5 36.4 18.9 27.2 36.2 17.9 27.0 37.9

overall 61.2 63.5 66.9 59.0 61.5 63.9 60.7 62.8 65.0 60.3 62.6 65.3

Table 4. 10-shot detection performance (AP, AR maxDet=1) bench-

mark under COCO dataset. N/A indicates no published perfor-

mance available.

Base Class Novel Class Overall

AP AR AP AR AP AR

CenterNet-ft-full 20.7 23.4 1.4 8.2 15.8 19.6

FeatReweight [16] N/A N/A 5.6 10.1 N/A N/A

Meta R-CNN [57] N/A N/A 8.7 12.6 N/A N/A

ONCE [33] 22.9 29.9 5.1 9.5 18.4 24.8

PNPDet (Ours) 25.8 25.5 5.5 12.6 20.7 22.3

shot detection performance. More specifically, as PNPDet

learns to detect novel categories, it does not lose accuracy

on base categories, and is able to generate superior detection

performance over novel categories under extremely low-

shot settings (1 shot and 3 shot). However, PNPDet de-

tection performance on novel categories seems to be satu-

rated when more training samples of novel categories are

provided, compared with FeatReweight. We believe this

is because when more samples are provided, meta-learning

based approaches are able to use such samples to train a

better feature extractor for such novel categories. Updating

feature extractor comes at a price of catastrophic forgetting

of base category knowledge. However, our proposed PN-

PDet can only update its corresponding sub-networks. We

expect adopting deeper sub-networks with PNPDet can fur-

ther boost few-shot detection performance with larger shots.

10-shot detection results under COCO 60 ⇒ 20 set-

ting are presented in Table 4. Under this setting, the pro-

posed PNPDet can also achieve superior overall perfor-

mance among all categories, and comparable novel cate-

gory detection performance with state-of-the-art few-shot

meta-detectors. Note our proposed PNPDet outperforms

ONCE [33] – a meta-learning version of CenterNet for few-

shot detection, for AP in both base and novel categories.

The proposed PNPDet is also very efficient. In our Pas-

cal VOC setting with input image size of 384 × 384, it runs

at 47 FPS on a NVIDIA 2080Ti, only adding marginal extra

computational cost compared with CenterNet, which runs

at 52 FPS. The additional sub-network for novel categories

detection only involves ∼0.7M extra parameters. The adap-

tation speed is also very fast, which only takes about 140s

under our setting. On the other hand, meta-detectors need to

perform one feed forward for each category to be detected,

adding large extra computational expenses. Besides, Meta

R-CNN [57] adopts two-stage architecture with deep back-

bone, which is slow for inference. Such properties make

PNPDet a preferable few-shot detector that is suitable to be

deployed in many real-world scenarios, especially those re-

quires frequent modifications.

However, we also note that the proposed PNPDet’s per-

formance on novel categories under larger shots (e.g., 10

shot) is significantly inferior to those meta-learning few-

shot detectors. Further in-depth researches are encouraged

to bridge this gap.

6. Conclusion

This paper presents PNPDet – a Plug-and-Play Detector

for efficient few-shot detection without forgetting. By dis-

entangling recognition of base and novel categories via sub-

networks, the proposed PNPDet can detect novel categories

without degrading the accuracy of base categories. We fur-

ther incorporate metric learning in base and novel category

recognition sub-networks, boosting detection performance

of both base and novel categories. Experimental results

demonstrate the superiority of PNPDet, which achieves su-

perior overall performance and comparable novel category

performance, and possesses the merits of fast adaptation,

fast inference and flexibility.
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