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Abstract

ResNet or DenseNet? Nowadays, most deep learning

based approaches are implemented with seminal backbone

networks, among them the two arguably most famous ones

are ResNet and DenseNet. Despite their competitive perfor-

mance and overwhelming popularity, inherent drawbacks

exist for both of them. For ResNet, the identity shortcut

that stabilizes training might limit its representation capac-

ity, and DenseNet mitigates it with multi-layer feature con-

catenation. However, the dense concatenation causes a new

problem of requiring high GPU memory and more training

time. Partially due to this, it is not a trivial choice between

ResNet and DenseNet. This paper provides a unified per-

spective of dense summation to analyze them, which facil-

itates a better understanding of their core difference. We

further propose dense weighted normalized shortcuts as a

solution to the dilemma between them. Our proposed dense

shortcut inherits the design philosophy of simple design in

ResNet and DenseNet. On several benchmark datasets, the

experimental results show that the proposed DSNet achieves

significantly better results than ResNet, and achieves com-

parable performance as DenseNet but requiring fewer com-

putation resources.

1. Introduction

Deep neural networks (DNNs) have achieved state-of-

the-art performance in numerous computer vision tasks [17,

38, 15, 31, 59, 58, 13, 24, 35, 25, 26], and the interpre-

tation of DNNs has also be investigated from the lens of

visualization [55, 33, 34] as well as robustness [47, 16,

5, 56, 57, 6, 4, 7]. AlexNet [27] and VGGNet [42] have

been the pioneering works that demonstrate the potential of

DNNs. Inspired by the success of these seminal works, the

research focus of the community has shifted from feature

engineering [32, 11] to network design engineering and nu-

merous new network architectures have come out to boost

the performance of DNNs. ResNets, reusing preceding fea-

tures with the identity shortcut have achieved state-of-the-

art performance on several benchmark datasets, such as Im-

ageNet [12] and COCO detection dataset [30].

One of the reasons that make ResNet exceptionally pop-

ular is the simple design strategy which introduces only one

identity shortcut. Despite its large success, the weakness of

the identity shortcut has been analyzed by follow-up works.

The identity shortcut skips the residual blocks to preserve

features, and consequently might limit the representation

power of the network [54, 59]. The drawback of the iden-

tity shortcut is that it causes the collapsing domain problem

which reduces the learning capacity of the network [36] and

[59] proposed to mitigate it with non-linear shortcuts.

Another simple yet effective technique, dense concatena-

tion, has been proposed in DenseNet [21] to facilitate train-

ing deep networks. The DenseNet adopting dense concate-

nation to all subsequent layers to avoid using direct summa-

tion, preserves the features in preceding layers. DenseNet

has been shown to have better feature use efficiency, outper-

forming ResNet with fewer parameters [21]. Nonetheless,

DenseNet requires heavy GPU memory due to concatena-

tion operations. The memory issue can be mitigated by

memory-efficient implementation introduced in [37]. How-

ever, such an implementation is more complex from the en-

gineering perspective, and it also further increases the train-

ing time of DenseNet by 20% [37]. The main reason that

DenseNet requires more training time is that DenseNet uses

many small convolutions in the network, which runs slower

on GPU than compact large convolution with the same num-

ber of GFLOPS. In short, there is a dilemma in the choice

between ResNet and DenseNet for practical applications in

terms of the performance and GPU resources.

This paper proposes a dense normalized shortcut as

an alternative dense connection technique to mitigate this
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dilemma. The proposed dense normalized shortcut out-

performs ResNet [17] with a significant margin, with neg-

ligible parameter overhead, and it achieves comparable

performance as DenseNet but requiring less computation.

Our proposed network structure adopts the same backbone

(convolutional block design) as ResNet and replaces iden-

tity shortcut with our dense normalized shortcut. Our ap-

proach uses neither identity shortcut nor dense concatena-

tion. From this perspective, this work is similar to Frac-

talNet [28] whose structural layouts are precisely fractal.

FractalNet explored to train deep networks using neither

identity shortcut nor dense concatenation, however, its per-

formance is less favourable. The non-linear shortcuts intro-

duced in [59] leads to performance boost. However, without

idenity shortcut, its performance decreases when the net-

work is very deep.

Overall, this paper provides one unified perspective of

dense summation to analyze ResNet and DenseNet, which

facilitates a better understanding of their core differences.

Based on this perspective, we propose dense weighted nor-

malized shortcuts to alleviate the drawbacks of the existing

two dense connection techniques. We evaluate the proposed

DSNet on several benchmark datasets and the results show

that it outperforms ResNet by a significant margin and also

with fewer parameters achieves comparable (or slightly bet-

ter) performance as DenseNet but requiring fewer computa-

tion resources.

2. Related works

Deep CNN network design has become a very hot re-

search topic and numerous techniques contributed to the

success of deep learning in the computer vision field. Those

techniques can be roughly divided into two categories:

micro-module design and macro-architecture design.

2.1. Micromodule design

Micro-modules, such as normalization modules [23], at-

tention modules [19], group convolutions [60], and bot-

tleneck design [17], can be inserted into existing macro-

architecture networks to improve the performance. Among

them, normalization techniques [23] are the most widely

used and by default almost all the deep learning models

adopt batch normalization [23] to improve the performance

and speed up the convergence. The random sampling in

batch normalization also contributes to improving the gen-

eralization capability of the model. The fast convergence

caused by batch normalization is has been linked to the

smoothed optimization landscape [40], while internal co-

variate shift is argued by [1] to be crucial for understand-

ing how batch normalization works. Recently, it has been

shown in [9] that batch normalization increases adversarial

vulnerability due to shifting the model to rely more on the

non-robust features. [8] shows that updating the moving av-

erage statistics of batch normalization with a few (32 for in-

stance) corruption representation samples can significantly

improve the model corruption robustness. Additionally, the

effect of batch normalization on adversarial robustness has

been performed in [52, 2].

Alternative normalization techniques, such as weight

normalization [39], instance normalization [48] or layer

normalization [3], have also been investigated for address-

ing the dependency between samples during training. Those

alternative techniques can also speed up the convergence,

however, often do not provide as good performance as batch

normalization. Both instance normalization and layer nor-

malization can be seen as a special case of the later proposed

group normalization [51]. Similar to instance normaliza-

tion and layer normalization, group normalization performs

the normalization along the channel direction instead of

batch direction, enabling it to work effectively in memory-

intensive applications where only a small number of sam-

ples can be processed in one batch [51]. In previous works,

the normalization techniques have been mainly used in the

residual path but our work explores the effect of the nor-

malization techniques in the dense shortcut path, somewhat

similar to normalization in the non-linear shortcut [59]. We

explore the normalization techniques in the proposed dense

shortcut path mainly due to their lightweight property.

2.2. Macroarchitecture design

The goal of macro-architecture is to design a more

effective backbone architectures that can be adopted for

a wide range of tasks. Famous macro-architectures in-

clude AlexNet [27], VGGNet [42], GoogleNet and its vari-

ants [45, 46], ResNet [17], and DenseNet [21]. As the

pioneering networks in the deep learning field, AlexNet,

VGGNet and GoogleNet are still widely used by many re-

searchers to design a prototype network for their applica-

tions. However, there is a trend in the research community

that ResNet and DenseNet have become more favourable

choices due to their competitive performance and simple

designs.

ResNet has two famous variants: WideResnet [54] and

ResNext [53], which explore the dimensions of width and

cardinality respectively. The original ResNet has demon-

strated that identity shortcut can contribute to stabilizing

the training of deep networks; however, the performance

decreases when the network becomes extremely deep (for

example, more than 200 layers). Preactivation-ResNet [18]

mitigated this problem by re-ordering activations in the

ResNet module. The performance gain of preactivation-

ResNet over original ResNet could only be observed in

extremely deep networks [18]. Later, it has been found

that the extreme depth is unnecessary since it provides

worse performance compared with the performance by in-

creasing the width of the network with a similar number
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of parameters [54]. ResNext further explored the influ-

ence of cardinality, which is more effective than increas-

ing either depth or width. One common element in var-

ious variants ResNets is the identity shortcut. DenseNet

effectively uses the concatenation technique instead of the

identity shortcut. Moreover, CondenseNet [20], a variant of

DenseNet, exploits the power of dense connection in a more

extreme way. One of its most significant differences from

the DenseNet is that layers with different resolution feature-

maps are also densely connected. Furthermore, Dual path

network [10] and mixed link network [49] integrate ResNet

and DenseNet into one network by using both identity short-

cut and dense concatenation. Our work differentiates from

previous works in that our approach adopts neither identity

shortcut nor dense concatenation. FractalNet [28] also ex-

plored to train ultra-deep networks relying on neither iden-

tity shortcut nor dense concatenation; however, it provides

less favourable performance. Our work is also very similar

to [59] which introduces non-linear shortcuts for improving

the performance but still requires identity shortcut when the

network is very deep.

3. Proposed approach

3.1. Background: Dense connection exists in ResNet
and DenseNet

What is the difference between ResNet and DenseNet?

As the name suggests, it seems that the difference lies in

that ResNet only uses one preceding feature-map, while

DenseNet uses features of all the preceding convolutional

blocks. The shared philosophy that unifies ResNet and

DenseNet is that they both connect to the feature-maps of

all preceding convolutional blocks [21]. A similar finding

has been revealed in [10, 49]. That is to say, dense con-

nection exists in both ResNet and DenseNet [10, 49]. For a

typical convolution in DNNs, we formulate it as:

fl = Hl ∗ fl−1, (1)

where fl and fl−1 indicate the current feature-map and pre-

vious feature-map respectively; “∗” indicates convolution

operation and Hl indicates the convolution weight. For sim-

plicity, we do not take the bias term in the convolution into

account. In VGG style network [42], fl−1 is only the pre-

ceding feature-map. In DenseNet, however, fl−1 connects

the feature-maps of all preceding convolutional blocks as

illustrated in Figure 1 (b):

Yl = X0/X1/.../Xl, (2)

where Xi represents each of the preceding feature-maps and

“/” represents the operation of concatenation. Replacing

fl−1 with above Yl, we get

fl = Hl ∗ (X0/X1/.../Xl), (3)

Figure 1. (a) ResNet and (b) DenseNet.

from which it is obvious that DenseNet uses the feature-

maps of all preceding convolutional block outputs. In

ResNet

Yl = Yl−1 +Xl, (4)

and it may seem that Yl only reuses preceding feature-map

Yl−1. However, as shown in Figure 1 (a) we can recursively

extend this function and get

Yl = X0 +X1 + ...+Xl, (5)

Likewise, we insert the above Yl to Eq. 1, for ResNet we get

fl = Hl ∗ (X0 +X1 + ...+Xl), (6)

from which it is clear that ResNet also connects to the

feature-maps of all preceding convolutional blocks [21, 10,

49]. The difference between ResNet and DenseNet is that

ResNet adopts summation to connect all preceding feature-

maps while DenseNet concatenates all of them [49].

3.2. Unified perspective with dense summation

As analyzed above, DenseNet is different from ResNet

because they adopt different dense connection methods:

summation vs concatenation. Here, we demonstrate that

dense concatenation before convolution operation can be

equivalent to dense summation after convolution, thus Eq.

3 can be reformulated as:

fl = Hl ∗ (X0/X1/.../Xl)

= (H0

l
/H1

l
/.../H l

l
) ∗ (X0/X1/.../Xl)

= H0

l
∗X0 +H1

l
∗X1 + · · ·+H l

l
∗Xl,

(7)

where Hl = H0

l
/H1

l
/.../H1

l
simply dividing one convolu-

tion weight Hl into multiple small convolution weights Hi

l
.

Note that Hl indicates the first convolution in the convolu-

tional block instead of the whole convolution block. Thus,

fl is the feature-map after the first convolution in the convo-

lutional block. Overall, the above equivalence is illustrated

in Figure 2, where nin and nout are the number of input

channels and output channels respectively. Similar obser-

vation has been revealed in [53]. For ResNet, we transform

Eq. 6 into

fl = Hl ∗ (X0 +X1 + ...+Xl)

= Hl ∗X0 +Hl ∗X1 + · · ·+Hl ∗Xl.
(8)
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Figure 2. Equivalence of Dense concatenation before convolution

and Dense summation after convolution.

We summarize Eq. 7 and Eq. 8 as follows,

fl = H0

l
∗X0 +H1

l
∗X1 + · · ·+H l

l
∗Xl for DenseNet,

fl = Hl ∗X0 +Hl ∗X1 + · · ·+Hl ∗Xl for ResNet.

(9)

From Eq. 9 we observe that both ResNet and DenseNet

have dense summation of Hl(Xi). This interesting observa-

tion provides a more unified perspective to perceive ResNet

and DenseNet in terms of their resemblance to each other.

However, the main purpose of formulating this “unified per-

spective” is to better understand their core differences for

demonstrating their pros and cons. By comparing the two

formulas for DenseNet and ResNet in Eq. 9, we find that

the core difference lies in that the convolution weight Hl

in ResNet is the same for every preceding layer output Xi

while Hi

l
is different for Xi in DenseNet. This core differ-

ence results in other differences in practical use. The input

channel nin ∗ (l + 1) in Hl increases with the increase of l
and it is normally larger than that in Hl of ResNet when

l becomes large. Due to the concatenation feature, nout

in Hl is normally very small but with more layers. Thus,

DenseNet in practical use often requires more training time.

Moreover, the concatenation nature resulting in large input

channel nin∗(l+1) also requires more GPU memory. How-

ever, the merit of DenseNet design is that it exhibits more

flexibility of using previous feature-maps because each Hi

l

is different.

It is worth mentioning that Eq. 9 does not reflect their

practical implementation. Hl ∗ (X0/X1/ . . . /Xl) is much

faster than H0

l
∗X0+H1

l
∗X1+ · · ·+H l−1

l
∗Xl on GPUs;

and Hl ∗ (X0 + X1 + · · · + Xl) is much more efficient

than Hl ∗X0 +Hl ∗X1 + · · ·+Hl ∗Xl. Our above anal-

ysis only demonstrates the theoretical connection between

ResNet and DenseNet.

3.3. Dense shortcut and DSNet

With the above unified perspective, the core difference

between ResNet and DenseNet is revealed as whether the

convolution parameters Hl are shared for each preceding

output. It then results in superior performance of DenseNet

with the disadvantage of requiring more GPU resources.

The difference originates from the adoption of different

dense connection techniques, identity shortcut and dense

concatenation. In this paper we propose one alternative

dense connection that is motivated to alleviate their draw-

backs. It introduces flexibility of using preceding feature-

maps while still using the same Hl for each preceding

feature-map. Benchmarking ResNet formula in Eq. 9, we

propose

fl = Hl ∗DS0

l
(X0) +Hl ∗DS1

l
(X1) + . . .

+Hl ∗DSl−1

l
(Xl−1) +Hl ∗Xl.

(10)

which is equivalent to

fl = Hl ∗ (DS0

l
(X0) +DS1

l
(X1) + . . .

+DSl−1

l
(Xl−1) +Xl),

(11)

where “DS()” indicates dense shortcut. It refers to dense

weighted normalized shortcut consisting of normalization

and channel-wise weight. Specifically, DSi

l
(Xi) = W i

l
×

N(Xi), where W i

l
represents channel-wise weight and and

N indicates normalization operation. In this work, the term

“dense shortcut” is equivalent to “dense weighted normal-

ized shortcut” unless otherwise specified. Eq. 11 is il-

lustrated in Figure 3 (a); however, we conjecture that the

feature-map contains more useful feature in the aggregation

output Yl than its corresponding single convolutional block

output Xl, thus by replacing Xl with Yl we propose another

variant:

fl = Hl ∗ (DS0

l
(Y0) +DS1

l
(Y1) + . . .

+DSl−1

l
(Yl−1) +Xl),

(12)

which is illustrated in Figure 3 (b). The conjecture that the

feature of aggregation output Yl is more meaningful than

Xl is supported by the experimental results (see Table 1).

Therefore we mainly adopt variant (b) in Figure 3 in this

study. We term the proposed network adopting DS shortcut

DSNet. DSNet adopts the same network backbone (convo-

lutional block itself and block design) as ResNet [17]. The

ResNet backbone is tailored for the identity shortcut, not for

our proposed shortcut. It is conceivable that redesigning the

backbone structure might further improve the performance

of our DSNet, but this is beyond the scope of this work. The

only difference between our DSNet and ResNet [17] is to

replace identity shortcut with the proposed dense shortcut,

i.e. the dense weighted normalized shortcut.

For introducing dense shortcuts in ResNet, one naive ap-

proach is to just densely connect all preceding feature-maps

by replacing single identity shortcut in Eq. 4 with dense

identity shortcut, and we get

Yl = Yl−1 + Yl−2 + ...+ Y0 +Xl, (13)

which can be recursively extended as:

Yl = Xl +Xl−1 + 2Xl−2 + ...+ (l − 1)X1 + lX0. (14)
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Figure 3. Proposed DSNet adopting dense (weighted normalized)

shortcut. (a) Densely connected to Xl, (b) Densely connected to

Yl.

Comparing it with Eq. 5, we find that dense identity

shortcut is equivalent to add extra constant at the end of

each convolutional block. Such design denoted ResNet50-

dense in Table 1 does not achieve better performance than

original ResNet50. This demonstrates the failure of naive

dense identity shortcut. Next, we will illustrate our motiva-

tion for the design of our DS shortcut.

The motivation of using normalization is to normalize

all the preceding features into a similar scale to avoid any

preceding feature to dominate the whole summation and fa-

cilitate the training. Note that no affine transformation is

applied in the normalization process. The weighted sum-

mation is to provide the network freedom to assign proper

weight to each normalized feature-map depending on its

significance. It is cumbersome to manually decide the

weights for each one, thus these weights are set to learn-

able parameters. Moreover, we empirically find that insert-

ing weighted normalized shortcut within the convolutional

block on the 3×3 convolution as in [59] can further improve

the performance. For differentiation, We term it DS2Net.

3.4. Ablation study

We adopt the widely used ResNet50 backbone to do ab-

lation studies. The test is conducted on CIFAR100 and the

results are available in Table 1. Note that the width of the

network is set to 0.25 times the width of ResNet in [17]

to save computation resources. We have two major obser-

vations from Table 1. First, normalization techniques are

important to improve performance. Specifically, group nor-

malization (GN) outperforms batch normalization (BN) by

a visible margin. Instance normalization (IN) and layer nor-

malization (LN) are two special cases of GN. LN performs

slightly inferior to GN, and IN performs the worst. Sec-

ond, the weighted parameters are also critical to improve

performance. In particular, we empirically find that adopt-

ing channel-wise weight is crucial for the performance gain

which indicates that different channels should have differ-

ent weights. Overall, these two observations support the in-

tuitions of adopting weighted normalized shortcuts. Other

observations include the superiority of DS2Net to DSNet

and the inferiority of DSNet-a to DSNet.

Table 1. Classification error (%) on CIFAR-100 validation dataset

for ablation study, “-a” indicates structure (a) in Figure 3, others

by default adopts structure (b) in Figure 3.
Architecture Top-1 (%)

ResNet50 (0.25×) [17] 26.13

ResNet50-dense (0.25×) 26.33

DSNet50-a (GN + weight) (0.25×) 25.23

DSNet50 (GN + weight) (0.25×) 24.12

DS2Net50 (GN + weight) (0.25×) 23.72

DSNet50 (LN + weight) (0.2×) 24.43

DSNet50 (BN + weight) (0.25×) 24.90

DSNet50 (IN + weight) (0.25×) 28.11

DSNet50 (None + weight) (0.25×) 26.26

DSNet50 (GN + no weight) (0.25×) 25.85

Table 2. Classification error (%) on CIFAR-100 and CIFAR-10

validation dataset for different widths and depths.
Architecture CIFAR-100 CIFAR-10

ResNet50 (1×) [17] 21.43 4.82

DSNet50 (1×) 19.95 4.54

DS2Net50 (1×) 19.00 4.33

ResNet50 (0.25×) 26.13 6.65

DSNet50 (0.25×) 24.12 5.95

DS2Net50 (0.25×) 23.72 5.77

ResNet101 (0.25×) 25.00 6.00

DSNet101 (0.25×) 23.94 5.82

DS2Net101 (0.25×) 23.61 5.68

4. Experimental Results and Analysis

In this section, we conduct experiments across a range of

datasets to evaluate the proposed dense shortcut.

4.1. CIFAR experiments

We first evaluate it on CIFAR datasets. Both CIFAR-100

and CIFAR-10 contain 60,000 colour images with the res-

olution of 32 × 32. Totally 50,000 images are used as the

training dataset and the remaining 10,000 images as the val-

idation dataset. For the data augmentation, we adopt widely

adopted cropping with 4-pixel padding and horizontal flip-

ping. The preprocessing is done with the normalization

through the training dataset mean and standard deviations

values. For all CIFAR experiments, by default, we set the

weight decay to 0.0005 and train for 64k iterations and the

initial learning rate is set to 0.1 which is then divided by

10 at 32k and 48k iterations respectively similar to [17].

Since we adopt the same backbone as ResNet and replace

the identity shortcut with our dense shortcut, we mainly

compare our results with the original ResNets [17].

The results in Table 2 show that our proposed approach

outperforms ResNet by a significant margin. On CIFAR-

100, DSNet50 (×0.25) outperforms ResNet50 (×0.25) by a

margin of 2%. DS2Net further improves the performance

of DSNet by a visible margin. The same trend can be

observed for both wider (1×) and deeper networks (depth

101). CIFAR-10 mirrors the story and for simplicity in

the remainder of the paper, we only report the result for
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CIFAR-100. To further evaluate the robustness of the pro-

posed DSNet to different depths and widths, we conduct

extra experiments and the results are available in Table 3

and Table 4 respectively.

Table 3. Classification error (%) on CIFAR-100 validation dataset

for different depths with the width 0.25×.

Depth block design ResNet DSNet DS2Net

26 [2, 2, 2, 2] 27.74 26.80 26.30

38 [3, 3, 3, 3] 27.26 25.59 25.30

50 [3, 4, 6, 3] 26.13 24.12 23.72

77 [3, 4, 15, 3] 25.32 23.95 23.55

101 [3, 4, 23, 3] 25.01 23.63 23.40

Table 4. Classification error (%) on CIFAR-100 validation dataset

for different widths with ResNet as the backbone.
Width ResNet50 DSNet50 DS2Net50

0.25 26.13 24.12 23.72

0.25(WRN) 23.51 22.00 21.58

0.5 23.38 21.59 21.02

1.0 21.43 19.95 19.00

For the depth exploration, we set the width to 0.25× and

for the width exploration, we set the depth to 50 layers.

We observe that DSNet consistently outperforms ResNet

over a wide range of depth and widths. Since it has been

shown by [54] that increasing the width of the network is

more effective than increasing the depth to improve the per-

formance, in the following exploration, we always choose

the depth to be 50 layers. Furthermore, we evaluate the

proposed dense shortcut on one famous variant of Resnet:

ResNext. The results are available in Table 5. The results

show that a similar trend has been observed as the original

ResNet. Note that ResNext has a similar number of param-

eters as ResNet, while wide ResNet has almost three times

more parameters and GFLOPS. Since the wide ResNets es-

sentially adopts the same structure as ResNet and the small

difference is only doubling the Conv 3×3 feature-maps, to

avoid redundancy we only report one case in Table 4 and

do not perform more experiments on this structure. Even

though ResNeXt is a well-optimized structure, our pro-

posed approach can further improve its performance with

a significant margin. Interestingly, DS2NeXt (0.5×) can

even outperform ResNeXt (1×) with a margin of 0.66%.

This is quite surprising because ResNeXt (1×) has around

four times more parameters and GFLOPS than DS2NeXt

(0.5×). Note that the number of parameters and GFLOPS

increase linearly with the increase of depth but quadratically

with the increase of width. We further compare our per-

formance on CIFAR-100 with the performance reported in

previous works. WRN-28-10 does not adopt the bottleneck

structure, thus DS2WRN-28-10 is not applicable (the short-

cut within the Conv block can only be inserted into the Conv

3×3 in the bottleneck for the dimension to match). From

Table 5. Classification error (%) on CIFAR-100 validation dataset

for different widths with ResNeXt as the backbone.
Width ResNeXt50 DSNeXt50 DS2NeXt50

0.25 23.86 22.98 22.58

0.5 21.16 19.95 19.51

1.0 20.17 18.58 18.24

Table 6. Classification error (%) on CIFAR-100 validation dataset.
Architecture params Top-1 (%)

ALL-CNN [43] - 33.71

Deeply supervised Net [29] - 34.57

HighWay Network [44] - 32.39

FractalNet [28] 38.6M 23.30

with dropout [28] 38.6.M 23.73

ResNet [17] 1.7M 27.22

ResNet with stochastic depth [22] 1.7M 24.58

Preacitvation ResNet [18] 10.2M 22.71

DenseNet(k = 24) [21] 27.2M 19.25

DenseNet-BC (k = 24) [21] 15.3M 17.60

DenseNet-BC (k = 40) [21] 25.6M 17.18

WRN-28-10 [54] 36.5M 19.25

with dropout [54] 36.5M 18.85

ResNeXt-29, 8×64d [53] 34.4M 17.77

ResNeXt-29, 16×64d [53] 68.1M 17.31

DSWRN-28-10 36.5M 18.33

DSNeXt-29, 6×64d 34.4M 16.85

DS2NeXt-29, 6×64d 34.4M 16.39

Table 6 we observe that the networks that do not use dense

connection perform much worse than those adopting dense

connection. FractalNet adopting neither identity shortcut

nor dense concatenation but with careful engineering design

performs much better than other networks without dense

connection; however, the performance is still not compa-

rable to ResNet variants or DenseNets. Similar to Fractal-

Net our proposed DSNet adopts neither identity shortcut nor

dense concatenation, but it outperforms both ResNets (in-

cluding WRN and ResNeXt) and DenseNets. The results

show that dense weight normalized shortcuts constitute a

competitive dense connection technique.

4.2. ImageNet experiments

ImageNet is the benchmark dataset for classification

tasks to evaluate and compare different approaches. Our

implementation details follow ResNet [17]. Specifically, we

adopt the commonly used random 224× 224 cropping with

scale and aspect ratio augmentation for training and adopt

SGD as the optimizer. For typical training on ImageNet,

8 GPUs are used and the batch size is set to 256 [17]. We

used 4 GPUs to train the proposed DSNet and the batch size

is set to 128 (32 per GPU). Accordingly, taking linear scal-

ing rule into account, we set the initial learning rate to 0.05

instead of the commonly used 0.1. We train the network

for 100 epochs and the learning rate is divided by 10 after

every 30 epochs. We report the single-crop classification

errors on the validation dataset with the input image size of

224× 224. Both top-1 and top-5 errors are reported and the

results are available in Table 7.

We note that the proposed DS2Net50 can achieve sig-
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Table 7. Classification top-1 error (%) on ImageNet validation

dataset.
Architecture Params Top-1 (%) Top-5 (%)

ResNet50 [17] 25.6M 24.01 7.02

ResNet101 [17] 44.6M 22.44 6.21

ResNet152 [17] 60.2M 22.16 6.16

WRN-50-2-bottleneck [54] 69.8M 21.9 6.03

ResNeXt-50, 32×4d [54] 25M 22.2 -

SE-ResNet50 [19] 28.1M 23.29 6.62

CBAM-ResNet50 [50] 28.1M 22.66 6.31

b-RGSNet50 [59] 25.6M 22.68 6.42

Res-RGSNet50 [59] 25.6M 22.21 5.99

DenseNet201 [21] 20M 22.58 6.34

DenseNet264 [21] 33.3M 22.15 6.12

Res2Net [14] 33.3M 22.01 6.15

DSNet50 25.6M 22.49 6.29

DS2Net50 25.6M 22.03 5.93

DS2Res2Net50 25.6M 21.61 5.83

nificantly better performance than the original ResNet50.

Somewhat surprisingly, DS2Net50 can outperform SE-

Net[19] (which won the first place in ILSVRC 2017 chal-

lenge) as well as CBAM with improved attention mod-

ule by a relatively large margin. DS2Net50 can achieve

equivalent (if not better) performance with that of much

deeper ResNet152. Compared with WRN-50-2-bottleneck,

DS2Net achieves slightly worse result with the top-1 error

metric and slightly better performance with the top-5 er-

ror metric. Note that WRN-50-2 has almost three times

more parameters and GFLOPS than DS2Net. DS2Net-

50 achieves slightly better performance than ResNeXt-

50, 32×4d and Res-RGSNet50. It is claimed by [21]

that DSNet201 can achieve equivalent performance with

ResNet101 which has twice more parameters and computa-

tion GFLOPS. Even though DS2Net with a smaller number

of parameters or GFLOPS outperforms DenseNet264, we

do not aim to argue it as the main merit of DS2Net over

DenseNet. Instead, the main advantage of DS2Net over

DenseNet is that it is more time-efficient in practice with

GPU implementation. In short, DSNet shows equivalent or

better performance with DenseNet but it avoids the draw-

back of DenseNet. Our proposed DS2Net-50 also achieves

comparable performance as the recent Rese2Net-50 [14].

By applying the dense shortcuts to Res2Net, we further im-

prove the performance by 0.40% margin, which is not triv-

ial considering Res2Net is already a very well designed ar-

chitecture. Compared with ResNet50, DS2Net50 improves

the performance of ResNet50 by a large margin. The num-

ber of the added weighted parameters is less than 0.15% of

the original number of parameters and only a small com-

putation overhead is added because it still adopts the same

backbone structure as the original ResNet and only light op-

erations are needed for the added shortcut.

The training curve is shown in Figure 4. We observe that the

proposed dense weighted normalized shortcut is also bene-

ficial to speed up the convergence. It is also important to

note that the training error of DS2Net is much smaller.

Figure 4. Training curves on ImageNet.

4.3. COCO detection dataset experiments

To evaluate the dataset generalization capability of the

proposed DSNet, we further evaluate it on MS COCO 2014

detection dataset [30]. Faster-RCNN [38] is chosen as the

detection method. The network is pre-trained on ImageNet

and then finetuned on the COCO dataset with 5 epochs for

fast performance validation. The results are available in Ta-

ble 8. On COCO detection dataset, our proposed DSNet

achieves better performance than ResNet50.

Table 8. mAP (%) on MS COCO validation dataset.
Backbone mAP.5 mAP.75 mAP [.5, .95]

ResNet50 51.3 33.6 31.4

DSNet50 54.2 36.0 33.7

DS2Net50 54.3 36.2 33.7

4.4. Visualization with GradCAM

We apply the widely used Grad-CAM [41] to

ResNet50 [17] and our proposed DSNet/DS2Net, on the im-

ages from the ImageNet validation set. The visualization

results are available in Figure 5. Grad-CAM calculates the

gradients concerning a certain class, thus Grad-CAM result

shows the attended regions in the image. We observe that

the DSNet attends more on the objects and have a sharper

focus (i.e. attention) than ResNet50. No obvious difference

is observed between DSNet50 and DS2Net50.

4.5. Implementation design and memory/speed test

The straightforward implementation of dense normal-

ized shortcut is to do normalization with affine transforma-

tion in every shortcut. This will cause unnecessary compu-

tation and slightly more parameter overhead burden. First,

the normalization process is shared for a certain preceding

layer feature. Second, the affine transformation by default

has both scale and bias, while the summation of dense bias
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Figure 5. Grad-CAM [41] visualization results of ResNet50 (second row), DSNet50 (third row) and DS2Net50 (llast row).

is mathematically redundant. In our implementation, for

every aggregation output Yl, we only perform the normal-

ization process once which is then shared by all the dense

shortcuts linked to it. Thus, for the dense shortcut path, the

operation is only to multiply the shared normalized feature

by the corresponding weight, which is very light. This im-

plementation choice does not influence the performance but

requires less computation time.

Table 9. GPU memory and training time on ImageNet; memory

indicates that per GPU and time indicates that per iteration.
Architecture Top-1 (%) memory (MB) time (s)

ResNet50 [17] 24.01 3929 0.31

ResNet152 [17] 22.16 7095 0.63

DenseNet264 [21] 22.15 9981 0.60

DSNet50 22.49 4777 0.37

DS2Net50 22.03 5133 0.39

With the above implementation, we measure the Ima-

geNet training memory and speed on the same machine

(equipped with four 1080Ti GPUs) with the hyperparam-

eters specified above. We report consumed memory per

GPU and computation time per iteration in Table 9. DS2Net

(with a smaller number of parameters as shown in Table

7) performs relatively better than ResNet152 and Dense264

with the advantage for both memory and speed. Compared

with ResNet50, the increase of memory and computation

for DSNet/DS2Net is marginal.

For the speed evaluation, we mainly report the training

time. Note, however, that the inference time is proportional

to training time and thus our DS2Net50 also has the advan-

tage of being fast during the inference stage compared with

ResNet152 and DenseNet264.

5. Conclusions

We provide a unified perspective of dense summation

to facilitate the understanding of the core difference be-

tween ResNet and DenseNet. We demonstrate that the

core difference lies in whether the convolution parame-

ters are shared for the preceding feature-maps. We pro-

posed a dense weighted normalized shortcut as an alterna-

tive dense connection method, which outperforms the two

existing dense connection techniques: identity shortcut in

ResNet and dense concatenation in DenseNet. We found

that Dense summation from the aggregation output provides

superior performance to that from the convolutional block

output. In short, the dense shortcut mitigates the prob-

lem of representational capacity decrease in ResNet while

avoiding the drawback of requiring more GPU resources

in DenseNet. The proposed DSNet has been evaluated on

multiple benchmark datasets to show superior performance

than its counterpart ResNet. For example, on ImageNet,

DenseNet50 can achieve better performance than the much

deeper ResNet152. On ImageNet with few parameters and

computation, it also achieves comparable performance as

DenseNet. Moreover, it also achieves comparable perfor-

mance as the recent Res2Net which can be further boosted

by our dense shortcuts. Compared with other “free” per-

formance boost module such as SE and CBAM, our dense

shortcut also achieves more superior performance. The

Grad-CAM result shows that DSNet, in general, focuses

better on the object in the image than its counterpart ResNet.
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