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Abstract

With the explosion of digital data in recent years, con-

tinuously learning new tasks from a stream of data without

forgetting previously acquired knowledge has become in-

creasingly important. In this paper, we propose a new con-

tinual learning (CL) setting, namely “continual representa-

tion learning”, which focuses on learning better represen-

tation in a continuous way. We also provide two large-scale

multi-step benchmarks for biometric identification, where

the visual appearance of different classes are highly rele-

vant. In contrast to requiring the model to recognize more

learned classes, we aim to learn feature representation that

can be better generalized to not only previously unseen im-

ages but also unseen classes/identities. For the new setting,

we propose a novel approach that performs the knowledge

distillation over a large number of identities by applying the

neighbourhood selection and consistency relaxation strate-

gies to improve scalability and flexibility of the continual

learning model. We demonstrate that existing CL methods

can improve the representation in the new setting, and our

method achieves better results than the competitors.

1. Introduction

Biometric identification [22,52], including face recogni-

tion [10, 37, 69] and person re-identification (re-id) [34, 68,

73], has achieved significant progress in the recent years

due to the advances in modern learnable representations

[7, 8, 10, 19, 34, 53, 61, 69] and emerging large datasets

[15, 21, 27, 29, 68, 79, 81]. In particular, deep neural net-

works (DNN) [17,50,57,60] are shown to learn features that

encode complex and mosaic biometrics traits and achieve

better feature generalization ability, when trained on large-

scale datasets. However, the paradigm of training DNNs of-

fline becomes impractical and inefficient with the increase

in stream data such as surveillance videos and online im-

ages/texts. For example, the intelligent security system

[66, 80] in a city or an airport captures millions of new im-

ages every day. In this scenario, training a model with all
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Figure 1: The proposed continual representation learning (CRL) v.s. the

traditional continual learning (CL). The model is trained online on newly

obtained tasks without access to old classes. Our CRL aims to learn better

representation that is generalized to unseen classes, while traditional CL

aims to learn and remember more old classes.

the images in one step can never be realized. To contin-

uously improve our model with limited computational and

storage resource, we expect the model to be trained online

only with the newly obtained data.

Motivated by this, we propose a new but realistic set-

ting named “continual representation learning” (CRL) for

this real-world biometric identification problem. The new

setting aims to learn from continuous stream data, mean-

while continuously improving model’s generalization abil-

ity on unseen classes/identities.

In the standard offline learning paradigm, the model can-

not preserve the previous knowledge well when being con-

tinuously trained on new tasks without access to old tasks,

which is known as the Catastrophic Forgetting [12, 13, 42,

43, 48]. Continual learning (CL) [6, 39, 45, 49, 54, 55] be-

comes an important research topic to alleviate such prob-

lem. For image recognition, continual learning is typi-

cally formulated as the class-incremental classification task.

The training process includes a sequence of training steps,

and each step involves training with the images from new

classes. Once the model is trained on the data of new

classes, its performance is measured on a set of images from

both old and new classes. The classes in the testing set are

all previously seen (appeared) in the training set, thus the

main goal is to recognize as many classes as possible with-

out forgetting old classes.

Yet, this setting is not ideal for the biometric identifica-

tion problems for various reasons. First, biometric identifi-

cation typically consists of train and test sets which are dis-
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joint in terms of classes (or identities). The performance on

learned old classes in CRL is easily kept high while learning

new classes, which means CRL suffers little from the tradi-

tional forgetting problem, i.e. forgetting old classes. Hence,

it is not suitable to measure model’s generalization ability

on seen (old and new) classes in the new setting. We give

the experimental evidence in Sec. 5.2. Thus, the main goal

of our CRL is to generalize to previously unseen classes

which is in contrast to the typical CL setting. The compar-

ison of two settings is illustrated in Figure 1. Second, bio-

metric identification focuses on a more challenging setting

which is similar to fine-grained classification [2,65,72,75].

The intra-class appearance variations are significantly sub-

tler than the standard object classes in the commonly used

CIFAR-100 [30] and ImageNet [51] datasets. Hence, it is

particularly challenging for continual representation learn-

ing, as the model has to learn better representation during

many learning steps and improve the ability to discriminate

unseen classes/identities.

Most existing CL benchmarks, illustrated in Table 1, are

for either small-scale (e.g. MNIST [31], CIFAR-100 [30],

CUB [63]) or coarse-grained (e.g. CORe50 [38] and Ima-

geNet [51]) object recognition. To the best of our knowl-

edge, there is no large-scale continual learning benchmark

for biometric identification. To simulate the continuous

stream setting for biometric identification, we propose two

large-scale benchmarks for face recognition and person re-

id, which contain around 92K and 7K identities respec-

tively. As shown in Table 1, the proposed two benchmarks

are larger than all existing CL benchmarks when both class

and image numbers are considered.

The traditional continual learning methods usually learn

classifiers for small-scale seen classes, and they are hardly

scalable to a large number of identities in the real sce-

nario. For example, the popular LWF method [36] regu-

larizes the consistency of outputs of all old classifiers in old

and new models for knowledge distillation, in addition to

minimizing the classification loss for learning new classes.

A large number of identities will prohibit the usage of previ-

ous methods, because the limited memory and computation

resources of GPU cannot handle the huge fully connected

classification layer. To solve this problem, we also propose

a method that implements knowledge distillation regarding

the outputs of selected classes instead of all classes. In

particular, the knowledge distillation is based on KL diver-

gence instead of cross-entropy to regularize the difference

between the outputs of old and new models. We then relax

the regularization by an adaptive margin to give the model

more flexibility to learn new knowledge.

In summary, our contributions are two-fold: (1) We pro-

pose a new continual learning setting for learning better rep-

resentation in biometric identification. Such setting requires

a large-scale multi-step training set and a third-party testing

set with identities that have never appeared in the training

set. For this reason, we introduce two large-scale bench-

marks for continual face recognition and continual person

re-id. (2) To address the new setting, we propose a novel

method with neighbourhood selection (NS) and consistency

relaxation (CR) for knowledge distillation, which signifi-

cantly improves the scalability and learning flexibility. Ex-

tensive experiments show that the representation can actu-

ally be improved in the continual representation learning

setting by existing knowledge distillation strategies, and the

proposed method achieves better results.

2. Related Work

Biometric Identification. Much progress has been

achieved in biometric identification including face recog-

nition [10, 37, 69] and person re-id [34, 68, 73] by learn-

ing better representation with different losses, e.g., softmax-

based losses [10, 34, 69], triplet-based losses [8, 19, 53] and

other kinds of losses [7, 61], on large-scale image datasets

[15,21,27,29,68,79,81]. Different from object recognition,

biometric identification focuses on learning better represen-

tation for large-number of fine-grained identities.

However, few works concern how to learn better rep-

resentation from biometric data stream. The existing re-

lated works are different from our setting in terms of goal,

training/testing protocol and dataset scale. Some methods

[41, 59, 64] were proposed for online person re-id. Unfor-

tunately, all observed training data need to be stored. In

contrast, data of old classes are not accessible in our CRL

setting. [35] proposed an online-learning method for one-

pass person re-id. They used a fixed feature extractor, while

we aim to continually learn better representation.

Continual Learning. Continual learning is also named life-

long learning [46,56,58,67], incremental learning [6,49,55]

and sequential learning [5, 9] in previous works. Existing

continual learning works focus on general object recogni-

tion [6, 28, 49], object detection [14, 55]), image genera-

tion [33,70], reinforcement learning tasks [1,26,74] and un-

supervised learning tasks [11]. The popular continual learn-

ing setting is to continuously learn new data/classes and test

on all seen (both old and new) classes, and it suffers from

the catastrophic forgetting problem.

A number of methods are proposed to avoid the catas-

trophic forgetting of deep models. Generally speaking, they

can be divided into two kinds. The one is based on re-

hearsal [6, 39, 49] or pseudo-rehearsal [25, 54, 70], which

requires an extra memory or generative model to remember

old task data. The other one is based on the regularization

on weights [3, 28, 77], features [24], and outputs [6, 36].

The popular benchmarks for evaluating these CL meth-

ods are (original or permuted) MNIST [31], CORe50 [38],

CIFAR-100 [30], CUB [63] and ImageNet [51]. Except Im-

ageNet (with 1K classes and 1.3M images), all other bench-
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Task Scale Concept
Classes Images

Train Test Total Train Test Total

MNIST [31]

Cls
Small

number 10 10 10 60,000 10,000 70,000

CORe50 [38] coarse-grained objects 50 50 50 120,000 45,000 165,000

CIFAR-100 [30] coarse-grained objects 100 100 100 50,000 10,000 60,000

CUB [63] fine-grained birds 200 200 200 5,994 5,794 11,788

ImageNet [51]

Large

coarse-grained objects 1,000 1,000 1,000 1,281,167 50,000 1,331,167

CRL-face
Rpt

fine-grained face 85,738 5,829 91,567 5,783,772 4,000 5,787,772

CRL-person fine-grained person 2,494 4,512 7,006 59,706 30,927 90,633

Table 1: Statistics of popular CL benchmarks and the proposed CRL-face and CRL-person. Cls: Classification. Rpt: Representation.

marks are small-scale in terms of class (≤ 200) and image

(≤ 170K) numbers. In addition, except CUB, all bench-

marks are about coarse-grained objects. Hence, they are

not suitable for evaluating the representation ability of deep

models. Different from the popular CL setting and bench-

marks, the proposed CRL aims to continuously learn more

generalized representation model for identifying many un-

seen classes/identities. The proposed two benchmarks are

the first large-scale benchmarks for CRL, and they are much

larger than existing CL benchmarks in terms of class (92K

and 7K) and image (5.8M and 91K) numbers.

3. CRL Setting and Benchmarks

CRL Setting. As illustrated in Figure 1, the model will

be trained for in total T = 5 steps starting from step 0.

Each training step includes L classes, and training classes

of different steps are disjoint. The model can only access

the training data of current learning step t. For example,

assuming current step t = 2, the model is trained only on

training data of new classes c2L, . . . c3L�1. Without access-

ing old classes c0, . . . c2L�1, the model will gradually for-

get the knowledge obtained from previous learning steps.

In each step, CRL tests the model on previously unseen

testing classes c00, . . . c
0

J�1 for evaluating model’s general-

ization ability, which is frequently used as the performance

metric in biometric identification tasks.

We present continual representation learning bench-

marks for two popular biometric identification tasks,

namely, face recognition and person re-id. The statistics

of the two benchmarks are shown in Table 1. The presented

benchmarks are different from existing continual learning

benchmarks in three main aspects.

• The proposed CRL benchmarks are the first ones de-

signed for biometric (face and person) identification in con-

tinual learning.

• The number of classes in our benchmarks (92K and

7K) is much larger than existing benchmarks (≤ 1K).

• We test the model on novel identities that have never

appeared in the training set, while existing benchmarks test

on new images of learned (seen) classes.

CRL-face Benchmark Continual face recognition requires

large-scale training data for each learning step. Ms1M

dataset [15] is a suitable option for constructing CRL-

face benchmark, because there are 85,738 identities and

5,783,772 images in the dataset. We divide identifies in

Ms1M into 5 and 10 subsets randomly and equally. Each

split subset has around 17,148 identities for 5-step setting

and 8,573 identities for 10-step setting, respectively. The

number of images in each subset varies because the number

of images associated with each identity is not equal. Each

subset serves as the training set in each learning step.

Two testing datasets, namely LFW [21] and Megaface

[27], are used for evaluating the representation ability of

models. The LFW dataset is the most widely used as the

testing benchmark that contains 6,000 testing pairs from

5,749 identities. We follow the unrestricted with labelled

outside data protocol, where features are trained with ad-

ditional data and the verification accuracy is estimated by

a 10-fold cross validation scheme. 9 folders are combined

as the validation set to determine the threshold , and the

10th folder is used for testing. The Megaface benchmark

is another challenge for face recognition. It contains 1M

images of 690K different individuals as the gallery set and

100K photos of 530 unique individuals from FaceScrub as

the probe set. For testing, the target set has 4000 images of

80 identities, and the distractor set has over 1M images of

different identities. The Top 1 accuracy is reported.

CRL-person Benchmark To obtain enough identities

for implementing continual learning, we combine three

popular person re-id datasets, namely, Market1501 [79],

DukeMTMC-reID [81] and MSMT17 V2 [68]. The mixed

dataset (CRL-person) contains 2,494 training identities.

Specifically, the three datasets contribute 751, 702 and

1,041 training identities respectively. In total, 59,706 train-

ing images of the 2,494 identities are employed as the train-

ing set. The training set is split into 5 subsets and 10 subsets

for 5-step and 10-step learning respectively.

For testing, we combine the testing sets of the three

datasets. However, evaluating the model on all testing data

is computational expensive, as there are 17,255 query im-

ages and 119,554 gallery images in total. Thus, we apply

two strategies to reduce the image number: (1) We keep

all query identities and remove those identities only in the

gallery set. (2) We randomly select at most one image for

each identity under each camera in query and gallery set re-

spectively. After applying the two strategies, the final test-

ing set has 11,351 query images and 19,576 gallery images
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Figure 2: Illustration of the proposed method. Our method consists of three modules, namely representation, neighborhood selection and consistency

relaxation. Representation: The image xt
i is fed into both old and new models, f(xt

i, θ
t�1) and f(xt

i, θ
t), followed by corresponding old and new

classifiers wt�1 and wt. The activation of old and new models, ai and bi, are produced. We use the activation of new classes produced by the new model

to calculate the classification loss Lnew . Neighborhood selection: We determine the neighborhood of the given datum based on activation of old model

ai and choose top ones of old and new models in the neighborhood to calculate KL divergence DKL(pi||qi). Consistency Relaxation: The margin δi is

introduced to KL divergence for consistency relaxation, and the relaxed KL divergence is produced as the distillation loss Lold. The overall loss L is the

weighted combination of the classification loss Lnew and distillation loss Lold.

of 4,512 identities. Mean average precision (mAP) and top1

accuracy are reported in each learning step.

4. Flexible Knowledge Distillation for CRL

According to our protocol, we need to continuously train

our identification model for multi-steps. The tth step pro-

vides new data Ot = {(xt
i, y

t
i)}

n
i=1, where each instance

(xt
i, y

t
i) is composed by an image xt

i ∈ X t and a label

yti ∈Yt. n = |Ot| is the number of all new data. The goal

of CRL is to construct an embedding function f , which can

compute a feature representation φi to better associate with

yti . To accomplish this, we consider the f(xt
i, θ

t) parame-

terized by θt, and define a classification loss based on the

tth step data Ot:

Lnew(θt,wt;Ot) =
1

n

nX

i=1

l(φi, y
t
i , θ

t
,w

t),

φi = f(xt
i, θ

t),

l(φi, y
t
i , θ

t
,w

t)=− log
exp(φ>

i w
t
yt

i

)
P

j=1
exp(φ>

i w
t
j)
.

(1)

wt
j indicates the classifier for the jth class. Obviously, min-

imizing the loss in Eq. 1 will result in overfitting to the

instances in Ot. As an alternative, we could additionally

maintain a memory data set to keep the predictions at the

past steps invariant, which will lead to the problem on how

to select the most useful samples from the past data. This

paper focuses on the scenarios where there are no memory

data. We only have the model f(xt
i, θ

t�1) and classifiers

wt�1 in the last step. It is suitable to employ knowledge

distillation(KD) to optimize a loss function based on the old

model and the current data.

4.1. Knowledge Distillation

The idea of knowledge distillation was found by Hin-

ton et al, which works well for encouraging the output of

one network to approximate that of another network. Sup-

pose wt�1 is about L classes, the output probability of

yti generated by the old model f(xt
i, θ

t�1) given wt�1 is:

pi = {pi,1, pi,2, ..., pi,L}. The cross-entropy loss is utilized

to regularize the new probability qi = {qi,1, qi,2, ..., qi,L}
generated by the new model f(xt

i, θ
t):

Lold(θt,wp;Ot) = −
1

n

nX

i=1

LX

l=1

pi,l log qi,l, (2)

where l is the index of the class.

Discussion. Compared with the existing CL scenarios, a

crucial difference for the proposed setting is that it han-

dles a large number of classes/identities. For example, ex-

isting CL methods are evaluated on 10 classes of MNIST,

100 classes of CIFAR and 1,000 classes of ImageNet, while

the model for biometric identification usually needs to be

trained over thousands to millions classes. The scalability

and efficiency of training methods become important due

to the limited memory and computation resources. Further-

more, the current knowledge distillation require the strict

consistency between the outputs of new and old models, and

it largely restricts the ability to learn new knowledge. Based

on the above concerns, we propose Flexiable Knowledge

Distillation(FKD), where we perform neighbour selection

and consistency relaxation over the loss related to the old

model Lold. The proposed method is illustrated in Figure 2.

4.2. Neighbourhood Selection

In the standard knowledge distillation(Eq.2), the proba-

bility distribution is calculated based on the activation (the
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Algorithm 1 Flexible Knowledge Distillation

Require:

Ot = {(xt
i, y

t
i)}

n
i=1

: training data in current learning step;

θt�1 : old model; wt�1 : old classifiers;

Ensure:

θt : new model; wt : new classifiers;

1: Initialize θt, wt by θt�1, wt�1;

2: for a batch in Ot do

3: Compute classification loss Lnew using Eq. 1;

4: for (xt
i, y

t
i) in the batch do

5: Determinate the neighborhood Si based on activations ai (old)

and bi (new);

6: Compute relaxed KL Divergence D0

KL
using Eq. 6;

7: Compute distillation loss Lold using Eq. 7 and the final loss L
using Eq. 8;

8: Update θt and wt by back-propagation with L.

direct output of the classifiers) by a softmax layer. When the

number of classifies increases to thousands even millions,

its not scalable for maintaining such a large fully-connected

classifier layer. At the same time, the computation of soft-

max probability is not effective for such a large number of

classes, as the probability values are weakened by many un-

related classes. Hence, we select a few “similar” classes

from all old classes to implement selected knowledge dis-

tillation.

Given a sample xt
i, the activation generated by the

old model is denoted by ai = {ai,1, ai,2, ..., ai,L} and

the activation of the new model is denoted by bi =
{bi,1, bi,2, ..., bi,L}. We rank the activation units of the old

model (ai) with descending order, select the top K ones,

and put their indices into the set Si, i.e., the neighborhood

of the ground-truth class yti . The probabilities generated by

the old and new model are pi and qi, which are calculated

based on the selected label set Si:

pi,l =
exp(ai,l/T )P

j2Si
exp(ai,j/T )

, qi,l =
exp(bi,l/T )P

j2Si
exp(bi,j/T )

,

(3)

where T is the hyper-parameter of knowledge distillation.

Instead of using cross-entropy loss, we utilize the Kullback

Leibler(KL) divergence, i.e. KLD, to measure the differ-

ence between pi and qi:

DKL(pi||qi) =
X

l2Si

(pi,l log pi,l − pi,l log qi,l). (4)

As
P

l2Si
pi,l log pi,l is a constant in the optimization, the

KL-divergence is equivalent to the cross-entropy in Eq. 2,

and DKL(pi||qi) will be 0 if pi and qi are the same.

4.3. Consistency Relaxation

The new model needs to learn knowledge from both old

and new classes. The best parameters of new model should

not be exactly the same as the old model. Hence, we in-

troduce an adaptive margin δi to relax the consistency con-

straint. The margin for xi is set to be:

δi = −β
X

l2Si

pi,l log pi,l, (5)

where β is the coefficient that controls the magnitude of

margin and the term −
P

l2Si
pi,l log pi,l is the minimal

value of cross-entropy −
P

l2Si
pi,l log qi,l. With the mar-

gin, the KL-divergence is relaxed by:

D0

KL(pi||qi) = [DKL(pi||qi)− δi]+, (6)

where [·]+ indicates the hinge loss. Minimizing the relaxed

KL-divergence D0

KL(pi||qi) indicates the cross-entropy

should be as small as −
P

l2Si
pi,l log pi,l until it is smaller

than −(1 + β)
P

l2Si
pi,l log pi,l. With the selection and

relaxation, the loss term Lold(θt,wp;Ot) can be reformu-

lated by:

Lold(θt,wt;Ot) = −
1

n

nX

i=1

D0

KL(pi||qi) (7)

4.4. Learning Algorithm

The overall objective function combines the classifica-

tion loss (Eq.1) and flexible knowledge distillation loss

(Eq. 7) by a balance weight λ0, which is used to optimize

θt,wt,wp:

L = Lnew(θt,wt;Ot) + λoL
old(θt,wt;Ot). (8)

Algorithm 1 shows the main steps for training the new

model and classifiers. First, we initialize the new model θt

and classifiers wt by copying weights from the old model

θt�1 and classifiers wt�1. As the number of new classi-

fiers increases, we randomly initialize the added weights.

For a batch of taining data, we compute the classification

loss Lnew using Eq. 1. Then, for each datum (xt
i, y

t
i),

we do the flexible knowledge distillation. The activation

ai = {ai,1, ai,2, .., ai,L} and bi = {bi,1, bi,2, .., bi,L} are

produced by the old and new models. The valid units in the

neighborhood Si are selected as the top K ones in ai, and

the rest units are ignored. We also select the correspond-

ing units for bi based on Si. With the selected units, we

compute the probabilities pi and qi using Eq. 3. Then, KL

divergence DKL and margin δi are calculated using Eq. 4

and 5 for obtaining the relaxed KL divergence D0

KL using

Eq. 6. The distillation loss Lold for the batch is calculated

by Eq. 7. The final loss L is calculated as the weighted

combination of Lnew and Lold using Eq. 8. With loss L,

we update θt and wt by back-propagation.

5. Experiments

5.1. Implementation Details

We use ResNet-50 as the backbone for all experiments.

The temperature T is set to be 2 for all knowledge distil-

lation based methods in experiments. The balance weight
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λo is chosen from 10{�2,�1,0,1} for different methods indi-

vidually. We use hold-off validation data to determine the

two hyper-parameters (K and β), we first select the best K
without CR module, then we choose the best β based on the

selected K. The details will be given in Sec. 5.4. The clas-

sification/retrieval of testing data is based on the similarity

(Euclidean distance) of feature embeddings. For all exper-

iments, we repeat five times and report the mean value and

standard deviation. We run experiments on four NVIDIA

GTX1080-Ti GPUs.

Continual Face Recognition. All images are aligned and

then resized to 112 × 112. The feature dimension is 256,

and the batch size is 384. SGD optimizer with initial learn-

ing rate 10�2 is used in face experiments. We follow the

face testing protocol in [10,27]. For 5-step setting, we train

the model for 20000 iterations in each learning step, and the

learning rate is reduced by ×0.1 at 8000th and 16000th it-

eration. For 10-step setting, the model is trained for 10000

iterations and the learning rate is reduced by ×0.1 at 4000th

and 8000th iteration.

Continual Person Re-id. All images are resized to 256 ×

128. The feature dimension is 2,048, and the batch size is

256. We use the popular person re-id testing protocol [40].

In each training batch, we randomly select 64 identities and

sample 4 images for each identity. Adam optimizer with

learning rate 3.5 × 10�4 is used. We train the model for

50 epochs, and we decrease the learning rate by ×0.1 at the

25th and 35th epoch.

5.2. Preliminary Experiment

We first give a simple preliminary experiment to illus-

trate that Catastrophic Forgetting of old classes is not the

main problem of CRL and the performance on old classes is

not suitable to evaluate CRL methods. In this experiment,

the model is continually finetuned without any regulariza-

tion, on 5 subsets of CRL-face, and evaluated on the hold-

off testing data of the first subset (Step0). In other words,

the finetuned model is always evaluated on classes of Step0.

According to Table 2, the performance on classes of the first

subset does not show obvious decrease after finetuning on

other subsets. The performance even increased on Step1

due to learning new classes. It means that CRL models suf-

fer little from Catastrophic Forgetting of old classes. Hence,

it is more suitable to evaluate model’s generalization ability

on unseen classes in the CRL setting.

Step0 Step1 Step2 Step3 Step4

Finetune 93.38 95.05 94.20 94.08 93.82

Table 2: The performance (%) on old classes on CRL-face dataset. The

training set of CRL-face is split into 5 subsets with 17,148 classes per sub-

set. The performances are evaluated on classes of the first subset (Step0).

5.3. Comparison to the State-of-the-art

Our goal is not improving SOTA face recognition or per-

son reid performance, instead we aims to extend continual

learning to biometric identification and propose a scalable

CL method. Unless otherwise stated, no extra memory is

provided to store old data. In this main setting, we compare

to four popular CL methods with the same backbone and

classification loss, namely, Baseline, Finetune, LFL [24]

and LWF [36]. As our method is compatible with any mem-

ory rehearsal mechanism, we also compare to two memory

based methods GSS [4] and GDumb [47] by integrating our

method with the memory rehearsal mechanism in [47].

We choose LFL and LWF as competitors because they

are efficient enough for large-scale training on 5.8M im-

ages and 86K classes, while those generative model [54,

70,71], meta-learning [18,20,23,62] and dynamic-network

[5,44,76] based methods are not salable or efficient to train

on such large benchmarks. As shown in the most recent

works [16, 32, 78], LWF is still a competitive method under

the same memory setting. Baseline means that the model

is trained from scratch (without old model) in every learn-

ing step. In this method, the model totally forgets knowl-

edge learned from old classes. Finetune is a naive con-

tinual learning method in which the model is updated by

finetuning the old model on new classes. LFL aims to re-

strict the difference of features produced by old and new

models. In this way, the new model can produce similar

features like the old model. LWF is based on knowledge

distillation, which minimizes the cross-entropy between the

outputs of old and new models. We also provide the upper-

bound of each experimental setting. The upper-bound is

calculated by jointly training on all data (of all steps). The

performance in the final learning step is given in Table 3

and 4, while the detailed results of every learning step are

illustrated in Figure 3 and 4. Comparison to memory based

methods is shown in Table 5.

Continual Face Recognition. Table 3 shows the final re-

sults of our method on LFW and Megaface, compared to

the state-of-the-art. Clearly, on the same dataset, perfor-

mance of 10-step learning is worse than that of 5-step learn-

ing, because of fewer training data per step. Generally

speaking, our method outperforms all other methods in all

settings. Especially, when tested on Megaface, ours over-

whelms the runner-up (LWF) by 1.01% and 1.25% on 5-

step and 10-step settings respectively. As 5-step learning

on LFW dataset is easy, Finetune also achieves good per-

formance. However, on harder setting (10-step learning)

and dataset (Megaface), the gap between Finetune and oth-

ers widens. Figure 3 (a) and (b) illustrate the performance

evaluated on Megaface in every learning step. We find that,

except Baseline, performance of all methods increases after

learning more classes. Our method shows obvious advan-

tages compared to others.
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Figure 3: Experimental results on continual face recognition (tesed on Megaface). Top 1 accuracy (%) is reported. Figure (a) and (b) are 5-step and

10-step continual learning. We compare our method to Baseline, Finetune, LFL and LWF. Figure (c) is the ablation study. We compare the variants of our

method with/without Neighborhood Selection (NS) and Consistency Relaxation (CR) modules.

Baseline Finetune LFL LWF Ours Upper-bound

5-step
LFW 98.85 ± 0.02 99.00 ± 0.01 98.97 ± 0.02 98.95 ± 0.01 99.10 ± 0.01 99.42 ± 0.01

Megaface 68.20 ± 0.21 72.40 ± 0.12 71.48 ± 0.23 73.25 ± 0.22 74.26 ± 0.23 82.93 ± 0.12

10-step
LFW 98.52 ± 0.02 98.72 ± 0.04 98.65 ± 0.02 98.82 ± 0.02 99.05 ± 0.01 99.42 ± 0.01

Megaface 60.78 ± 0.22 66.85 ± 0.21 67.00 ± 0.12 69.03 ± 0.24 70.28 ± 0.13 82.93 ± 0.12

Table 3: Comparison to SOTA: face recognition. Top 1 accuracy (%) in the final learning step. Upper-bound means joint training.

Continual Person Re-id. Table 4 shows Top1 and mAP

performance of 5-step and 10-step learning settings on the

proposed dataset. The gap between different methods is

obvious. Our method outperforms the runner-up (LWF)

by around 2% on all settings. Compared to Baseline, our

method improves the performance by 13.9% (Top1) and

12.5% (mAP) on 10-step learning, which means our method

effectively leverages knowledge from old classes. However,

our results are still obviously lower than the upper-bound.

The gap indicates the challenging of continual person re-id

on the proposed benchmark. Figure 4 (a) and (b) illustrate

the performance (Top1 and mAP) of different methods in

every learning step. Our method shows obvious advantage

compared to other methods, especially on 10-step learning.

Comparison to SOTA with memory. Our method is also

compatible with memory based rehearsal, and the perfor-

mance on unseen testing set can be improved. We compare

to the recent works GSS [4] and GDumb [47] with a fixed

size of memory (25000 images) under the setting of 5-step

face recognition evaluated on Megaface. We use the mem-

ory strategy presented in [47]. We simplify GSS and com-

pute the similarity of two images based on gradients of the

final layer instead of the whole network, because of its huge

computational cost on large-scale datasets. Table 5 shows

that our method outperforms GSS [4] and GDumb [47] by

0.59% and 2.37% after 5-step learning.

5.4. Ablation Study

Effectiveness of Proposed Modules. We do ablation study

on two modules of the proposed method, namely, Neigh-

borhood Selection (NS) and Consistency Relaxation (CR).

To verify the effectiveness of two modules, we compare the

four variants of our method: (1) Basic: Plain knowledge

distillation without NS or CR; (2) Basic+NS: Basic with

Neighborhood Selection; (3) Basic+CR: Basic with Con-

sistency Relaxation; (4) Basic+NS+CR (Ours): Basic with

both Neighborhood Selection and Consistency Relaxation.

We do ablation study on 5-step continual face recogni-

tion and person re-id. Table 6 and 7 show the results on the

two benchmarks. Clearly, both NS and CR modules benefit

the final performance. The improvement is obvious in con-

tinual person re-id. By adding NS module, Basic+NS over-

whelms Basic by 0.7% of Top1 and 0.7% of mAP. Mean-

time, Basic+CR outperforms Basic by 2.1% of Top1 and

2.6% of mAP. In continual face recognition, Basic+NS+CR

outperforms Basic+NS by 0.13% and 0.83% on LFW and

Megaface respectively.

Figure 3 (c) shows the results of four variants in con-

tinual face recognition. NS module may hinder knowl-

edge transfer in first three steps because of fewer distilla-

tion bases (selected old classes). Finally, Basic+NS out-

performs Basic. Basic+NS+CR has the best performance

compared to other variants. Figure 4 (c) illustrates how the

two modules influence continual person re-id performance.

We find that NS module of Basic+NS stably improves the

performance compared to Basic. In addition, CR module

also significantly and stably promotes the performance. Al-

though ours (Basic+NS+CR) is slightly weaker (≤ 0.2% in

the final step) than Basic+CR in continual person re-id, ours

is more suitable for large-scale continual learning because

of its better scalability and efficiency. This priority will be

further discussed in Sec. 6.

Sensitiveness of Hyper-parameters. We further analyze

the sensitiveness of performance w.r.t. the two key hyper-

parameters, namely, K: neighborhood size and β: margin

magnitude. These experiments are based on 5-step contin-

ual person re-id.

Neighborhood Size. First, we change K in Basic+NS
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Figure 4: Experimental results on continual person re-id. Top 1 accuracy and mAP (%) are reported. Figure (a) and (b) are 5-step and 10-step continual

learning. We compare our method to Baseline, Finetune, LFL and LWF. Figure (c) is the ablation study. We compare the variants of our method with/without

Neighborhood Selection (NS) and Consistency Relaxation (CR) modules.

Baseline Finetune LFL LWF Ours Upper-bound

5-step
Top1 51.6 ± 0.5 53.0 ± 0.3 56.4 ± 0.5 59.0 ± 0.3 61.1 ± 0.2 75.5 ± 0.1

mAP 40.6 ± 0.4 43.3 ± 0.2 46.2 ± 0.5 47.0 ± 0.2 49.5 ± 0.2 64.6 ± 0.1

10-step
Top1 39.2 ± 0.3 39.5 ± 0.6 42.4 ± 0.4 51.3 ± 0.1 53.1 ± 0.2 75.5 ± 0.1

mAP 29.8 ± 0.3 31.6 ± 0.4 33.9 ± 0.3 40.1 ± 0.1 42.3 ± 0.2 64.6 ± 0.1

Table 4: Comparison to SOTA: person re-id. Top 1 and mAP accuracy (%) in the final learning step. Upper-bound means joint training.

Step0 Step1 Step2 Step3 Step4

GSS [4] 68.20 71.00 74.52 75.42 77.94

GDumb [47] 68.20 69.80 73.53 75.23 76.16

Ours 68.20 70.20 74.66 76.54 78.53

Table 5: Comparison to SOTA with memory. Top 1 accuracy (%) on

Megaface at each learning step. Std deviations are around ±0.22 %. Ours

outperforms GSS and GDumb by 0.59% and 2.37% after 5-step learning.

Basic Basic+NS Basic+CR Basic+NS+CR (Ours)

LFW 98.95 ± 0.02 99.05 ± 0.02 98.97 ± 0.01 99.10 ± 0.01

Megaface 73.25 ± 0.31 73.51 ± 0.22 73.43 ± 0.24 74.26 ± 0.22

Table 6: Ablation study: face recognition. The Top 1 accuracy (%) of

different variants of our method, i.e., with/without NS and CR modules.

Basic Basic+NS Basic+CR Basic+NS+CR (Ours)

Top1 59.1 ± 0.1 59.8 ± 0.2 61.2 ± 0.2 61.1 ± 0.2

mAP 47.1 ± 0.1 47.8 ± 0.1 49.7 ± 0.1 49.5 ± 0.2

Table 7: Ablation study: person re-id. The Top 1 accuracy (%) and mAP

of different variants of our method, i.e., with/without NS and CR modules.

which only includes the neighborhood selection module.

The range of K is {0, 20, 200, 500, 1000}. If the number

of old classes in current step is less than K, all old classes

will be used. As shown in Table 8, when K = 200, Ba-

sic+NS achieves the best performance. The best K is about

10% of the number of all old classes in the final step.

Margin Magnitude. For simplicity, we analyze the perfor-

mance of Basic+NS +CR with fixed K and varying β. The

range of β is {0, 2, 5, 10, 50} × 10�3. According to Table

8, β = 10�2 is the best parameter when K = 200. Overall,

the changing of performance w.r.t K and β is smooth.

6. Discussion and Conclusion

Scalability & Efficiency. In continual learning, the old

classes accumulate quickly along with more learning steps.

Especially, in face recognition and person re-id, thousands

even millions of identities are involved in real applications.

K 0 20 200 500 1000

Top1 59.1 ± 0.1 59.1 ± 0.3 59.8 ± 0.2 59.1 ± 0.3 58.9 ± 0.4

mAP 47.1 ± 0.1 47.4 ± 0.1 47.8 ± 0.1 47.4 ± 0.1 47.0 ± 0.2

β⇥10
−3 0 2 5 10 50

Top1 59.8 ± 0.2 59.7 ± 0.3 60.7 ± 0.4 61.1 ± 0.2 59.4 ± 0.2

mAP 47.8 ± 0.1 47.9 ± 0.2 49.0 ± 0.3 49.5 ± 0.2 48.4 ± 0.2

Table 8: The sensitive analysis of performance (%) w.r.t hyper-

parameters K and β. The upper results are based on Basic+NS with vary-

ing K. The lower results are based on Basic+NS+CR with fixed K = 200
and varying β (×10�3). The results are of 5-step continual person re-id.

If we use constant K as the neighborhood size, the memory

and time cost for back-propagation of popular methods (

e.g. LWF [36], iCaRL [49] and End2End [6]) which use all

old classes for knowledge distillation is O(t) times of ours,

and it increases along with step t. If we use a constant ratio
1

r
of old classes, where r > 1, their memory and time cost

is O(r) times of ours. Although we need do feed-forward

on all old classes for neighborhood selection, it is not time-

consuming compared to back-propagation. Besides, feed-

forward can be implemented on CPU with RAM which is

×10 to ×1000 larger than GPU memory.

Conclusion & Future Work. In this paper, we propose

the continual representation learning for biometric identi-

fication with two large-scale benchmarks. Flexible knowl-

edge distillation with Neighborhood Selection and Consis-

tency Relaxation modules are proposed for better scalability

and flexibility in large-scale continual learning. Extensive

experiments show that our method outperforms the state-of-

the-art on two benchmarks. Effectiveness of the two mod-

ules is verified by ablation study. In the future, more effort

should be devoted to improving the generalization ability

and scalability of continual learning models in large-scale

real-world applications.
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