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Abstract

Existing few-shot learning (FSL) methods make the im-

plicit assumption that the few target class samples are from

the same domain as the source class samples. However,

in practice, this assumption is often invalid – the target

classes could come from a different domain. This poses an

additional challenge of domain adaptation (DA) with few

training samples. In this paper, the problem of domain-

adaptive few-shot learning (DA-FSL) is tackled, which is

expected to have wide use in real-world scenarios and re-

quires solving FSL and DA in a unified framework. To this

end, we propose a novel domain-adversarial prototypical

network (DAPN) model. It is designed to address a specif-

ic challenge in DA-FSL: the DA objective means that the

source and target data distributions need to be aligned, typ-

ically through a shared domain-adaptive feature embedding

space; but the FSL objective dictates that the target do-

main per class distribution must be different from that of

any source domain class, meaning aligning the distribution-

s across domains may harm the FSL performance. How to

achieve global domain distribution alignment whilst main-

taining source/target per-class discriminativeness thus be-

comes the key. Our solution is to explicitly enhance the

source/target per-class separation before domain-adaptive

feature embedding learning, to alleviate the negative effect

of domain alignment on FSL. Extensive experiments show

that our DAPN outperforms the state-of-the-arts. The code

is available at https://github.com/dingmyu/DAPN.

1. Introduction

Unlike many visual recognition methods [17, 34, 60, 7,

1, 6, 8] that require a lot of supervision, few-shot learning

(FSL) [9, 28, 23, 27, 16] aims to recognize a set of target

∗Equal Contribution
†Corresponding Author

Figure 1. Illustration of the difference among four related visu-

al recognition problems (i.e. objection recognition, FSL, domain

adaptation, and domain-adaptive FSL).

(rare/new) classes by learning with sufficient labeled sam-

ples from a set of source/seen classes but only with a few

labeled samples from the target classes.

FSL [42, 51] is often stated as a transfer learning prob-

lem [37] from the source classes to the target ones. The ef-

forts so far are mainly on how to build a classifier with few

samples. However, there is an additional challenge that has

largely been neglected, that is, the target classes not only

are poorly represented by the few training samples but also

may come from a different domain from the source class-

es. For example, the target class samples could be collect-

ed by different imaging devices (e.g., mobile phone camer-

a vs. single-lens reflex camera), resulting in different pho-

to styles. In more extreme cases, the source classes could

be captured in photos and the target ones in sketch or car-

toon images. This means that the visual recognition model

trained from the source classes needs to be adapted to both

new classes and new domains, with few samples from the

target classes. This problem is termed as domain-adaptive

few-shot learning (DA-FSL), which is illustrated in Fig. 1.

DA-FSL is a more challenging problem due to the added

objective of few-shot domain adaption. Neither convention-
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al FSL [48, 49, 35, 21, 57, 52, 41] nor DA [54, 12, 3, 30,

2, 19, 62, 43, 50, 22] methods can be directly extended to

DA-FSL, though they have drawn much attention. As far

as we know, addressing both the few-shot DA and few-shot

recognition problems jointly has never been attempted be-

fore. A straightforward solution seems to be combining an

FSL with an existing DA method. In particular, most exist-

ing FSL methods [49, 52, 41, 11] rely on feature reuse to the

target classes in a feature embedding space learned from the

source [39]. It is thus natural to introduce the DA learning

objective by aligning the source and target data distributions

in that embedding space. Nevertheless, a naı̈ve combination

of existing DA and FSL methods fails to offer an effective

solution (see Tables 2–4). This is because existing UDA

methods assume that the target and source domains have i-

dentical label space. Given that they are mainly designed

for distribution alignment across domains (recently focus-

ing on per-class alignment [47, 32, 5, 25, 46]), they are in-

trinsically unsuited for FSL whereby the target classes are

completely different from the source ones: either global or

per-class distribution alignment would have a detrimental

effect on class separation and discriminativeness. How to

achieve domain distribution alignment for DA whilst main-

taining source/target per-class discriminativeness thus be-

comes the key for DA-FSL.

To this end, we propose a domain-adversarial prototypi-

cal network (DAPN) to solve the DA-FSL problem. Specif-

ically, based on prototypical learning for few training sam-

ples [49], we introduce a novel adversarial learning method

for few-shot domain adaptation. Note that domain adversar-

ial learning has been popular among existing UDA methods

[12, 19, 54, 30] for global (as opposed to per-class) distri-

bution alignment. Since per-class alignment is the ultimate

goal for UDA, its successful use in these UDA methods

suggests that, global distribution alignment would indirect-

ly lead to per-class alignment. That is an unwanted effect

for our DA-FSL problem as the target classes are different

from those of the source. Therefore, in addition to the do-

main confusion objective commonly used by existing UDA

methods for learning a domain-adaptive feature embedding

space, new losses are introduced before feature embedding

to enforce source/target class discriminativeness. The result

is that we would have the better of both worlds: the global

distributions of the source and target are aligned to reduce

the domain gap for DA; in the meantime, the per-class dis-

tribution are not aligned and the source and target classes

remain well-separable, benefiting the FSL task. With two

sets of losses designed for DA and FSL respectively, to re-

move the need for weight selection for multiple losses, an

adaptive re-weighting module is also introduced to further

balance the two objectives.

Our main contributions are three-fold: (1) The DA-FSL

problem is formally defined and tackled. For the first time,

we address both the few-shot DA and few-shot recognition

problems jointly in a unified framework. (2) We propose a

novel adversarial learning method to learn feature represen-

tation, which is not only domain-confused for domain adap-

tation but also domain-specific for class separation. (3) Ex-

tensive experiments show that our proposed model outper-

forms the state-of-the-art FSL and domain adaptation mod-

els (as well as their naı̈ve combinations).

2. Related Work

Few-Shot Learning. FSL is dominated by meta-learning

based methods. They can be organized into three groups:

(1) The first group adopts model-based learning strategies

[48, 35] that fine-tune the model trained from the source

classes and then quickly adapt it to the target classes. (2)

The second group [21, 57, 49, 52, 41] focuses on dis-

tance metric learning for the nearest neighbor (NN) search.

Matching Network (MatchingNet) [57] builds different en-

coders for the support set and the query set. Prototypical

Network (ProtoNet) [49] learns a metric space in which ob-

ject classification can be performed by computing the dis-

tance of a test sample to the prototype representation of

each target class. [41] makes improvements over ProtoNet

towards a scenario where the unlabeled samples are also

available within each episode. Relation Network (Relation-

Net) [52] recognizes the samples of new/target classes by

computing relation scores between query images and the

few samples of each new class. (3) The third group [40, 11]

chooses to utilize novel optimization algorithms instead of

gradient descent to fit in the few-shot regime. Although our

model belongs to the second group with ProtoNet as a com-

ponent, it is designed to address both few-shot DA and few-

shot recognition problems (included in DA-FSL) jointly in

a unified framework, which has not been studied before.

Domain Adaptation. Note that the domain adaptation

problem involved in our DA-FSL setting cannot be solved

by supervised domain adaptation (SDA) [34, 1]. Although

there exists a small set of labelled samples from the target

domain used for DA under our DA-FSL setting, the class-

es from the target domain have no overlap with the classes

from the source domain. Recently, unsupervised domain

adaptation (UDA) has dominated the studies on DA. The

conventional UDA models [10, 15, 36, 13, 55, 56, 64, 29,

31] typically leverage the subspace alignment technique.

Many modern UDA methods [54, 12, 3, 30, 2, 19, 62, 43,

50, 22] resort to adversarial learning [14], which minimizes

the distance between the source and target features by a

discriminator. However, as mentioned early, even if global

domain distribution alignment is enforced, it often leads to

per-class alignment which reduces the discriminativeness of

the learned feature representation for the FSL task. More-

over, since existing UDA methods still assume that the tar-
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get domain contains the same classes as the source domain,

recent methods focus on per-class cross-domain alignment

[47, 32, 5, 25, 46] are unsuitable for our DA-FSL problem.

Global domain data distribution alignment [54, 24, 19] is

thus adopted in our DAPN with a special mechanism intro-

duced to prevent per-class alignment.

Domain Adaptation + Few-Shot Learning. Note that a

cross-domain dataset (miniImageNet [40] → CUB [58]) is

used for FSL in [4, 53]. However, it is only for evaluat-

ing the cross-dataset generalization, rather than developing

a new cross-domain FSL method. In contrast, this work fo-

cuses on much larger domain change (e.g., natural images

vs. cartoon-like ones). Importantly, we develop a novel

DA-FSL model to address the problem. Note that a new set-

ting called few-shot domain adaptation (FSDA) is proposed

[33]. However, the FSDA setting in [33] is very different

from ours: both source and target domains share the same

set of classes under the FSDA setting, while the source and

target classes have no overlap under our DA-FSL setting.

[45] proposes a DA-based FSL setting, but again it is very

different from our work: in addition to few labeled samples,

[45] assumes the access to a large number of unlabeled sam-

ples from the target domain. In contrast, we do not make

this assumption. Therefore, the problem setting in [45] is

much easier than ours, and designed to exploit unlabeled

target domain data, the method in [45] cannot be used here.

3. Methodology

3.1. Problem Definition

Under our DA-FSL setting, we are given a large sample

set Ds from a set of source classes Cs in a source domain,

a few-shot sample set Dd from a set of target classes Cd in

a target domain, and a test set T from another set of tar-

get classes Ct in the target domain, where Cs ∩ Cd = ∅,

Ct ∩ Cd = ∅, and Cs ∩ Ct = ∅. Our focus is then on training

a model with Ds and Dd and then evaluating its generaliza-

tion ability on T . Note that there is also a few-shot sample

set Dt (i.e. the support set) from the set of target classes Ct,
which could also be used for model training. However, we

follow the FSL methods that do not require finetuning [4]

and thus ignore Dt in the training phase. Due to the domain

differences, the data distribution Ps(x) for the set of source

classes Cs is different from that (i.e. Pt(x)) for the set of tar-

get classes Ct∪Cd, where x denotes a sample. Formally, we

have Ds = {(x1, y1), . . . , (xN , yN ) | xi ∼ Ps(x), yi ∈ Cs}
and Dd = {(x1, y1), . . . , (xK , yK) | xi ∼ Pt(x), yi ∈ Cd},

where yi denotes the class label of sample xi. The goal of

our DA-FSL is to exploit Ds and Dd for training a classifier

that can generalize well to T . The proposed DAPN model

is illustrated in Fig. 2.

3.2. Few­Shot Learning Module

3.2.1 Episode Training

To simulate the few-shot test process in the training phase,

a small amount of data from both Ds and Dd are sampled

to form episodic training sets. Specifically, we first build

training episodes from the large sample set Ds. To for-

m a training episode es, we randomly choose Nsc classes

from Ds and then build two sets of samples from the Nsc

classes: the support set Ss consists of k × Nsc samples (k
samples per class), and the query set Qs is composed of

samples from the same Nsc classes. For an Nmeta-way k-

shot problem, we train our model with an Nsc-way k-shot

training episode, where Nsc > Nmeta, as in [57, 49]. In this

work, for 5-way classification and 5-shot learning in the test

phase, each training episode is generated with Nsc = 20
and k = 5. In addition to the training episodes from Ds,

we also build training episodes from the few-shot sample

set Dd. Since the samples in Dd are scarce and even can-

not form a single training episode, we perform the standard

data augmentation method (i.e. horizontal flips and 5 ran-

dom crops widely used for training existing CNN models)

on Dd, and obtain an augmented sample set D̂d. To form a

training episode ed, we then randomly choose Ndc classes

from D̂d and build two sets of samples from the Ndc classes:

the support set Sd contains k×Ndc samples with k samples

per class, and the query set Qd is sampled from remainder

of the same Ndc classes. In this work, we set Ndc = Nmeta.

3.2.2 Prototypical Learning

We adopt the idea of prototype learning [49] in our few-

shot learning module. We learn a prototype of each class in

the support set Ss and classifies each sample in the query

set Qs based on the distances between each sample and

different prototypes (i.e. the nearest neighbor classifier is

used). Specifically, the M -dimensional prototypes are com-

puted through an embedding function fϕ : Rd → RM with

learnable parameters ϕ. With the embedding function fϕ,

the samples are projected from the d-dimensional visual s-

pace into an M -dimensional feature space where the sam-

ples from the same class are close to each other and the

samples from different classes are far away.

Formally, the prototype psc of class c in the support set

Ss is defined as the mean vector of the embedded support

samples belonging to this class:

psc =
1

|Sc|

∑

(xi,yi)∈Sc

fϕ(xi), (1)

where Sc = {(xi, yi) : (xi, yi) ∈ Ss, yi = c} denotes the

set of support samples from class c.
Our prototypical network then produces the class distri-

bution of a query sample x based on the softmax output
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Figure 2. Overview of the proposed DAPN model for DA-FSL. Prototype learning and adversarial-based domain adaptation modules are

integrated into a unified framework. We utilize feature embedding in prototype learning, and impose domain discrimination and domain

confusion in the spaces before and after embedding, respectively.

w.r.t. the distance between the sample embedding fϕ(x)
and the class prototype psc as follows:

pϕ(y = c|x) =
exp(−dist(fϕ(x), p

s
c))

∑

c′ exp(−dist(fϕ(x), psc′))
, (2)

where dist(·, ·) denotes the Euclidean distance in the RM

space. With the above class distribution, the loss function

over each episode es is defined based on the negative log-

probability of query sample x w.r.t. its true class label c:

Lps = ESs,Qs
[−

∑

(x,y)∈Qs

log pϕ(y = c|x)]. (3)

Similarly, the loss function over each episode ed can be

formulated based on the negative log-probability of query

sample x w.r.t. its true class label c:

Lpd = ESd,Qd
[−

∑

(x,y)∈Qd

log pϕ(y = c|x)]. (4)

The above two losses for prototype learning are em-

ployed in our proposed DAPN model on the feature output

of a domain-adaptive embedding module (see Fig. 2), which

is described next.

3.3. Domain Adversarial Adaptation Module

As mentioned, the main objective of domain adaptive

module is to learn a feature embedding space where the

global distribution of the source and target domains are

aligned, while the domain-specific discriminative informa-

tion is still kept. To this end, we choose to enforce domain

discriminativeness and domain alignment learning objec-

tives before and after an embedding module. The task of

balancing these two objectives are then handled by an adap-

tive loss re-weighting module to be described in Sec. 3.4.

3.3.1 Domain Adaptive Embedding

As shown in Fig. 2, the input to the embedding module is

the output of a feature extraction CNN (ResNet18 in this

work), which represents each sample (image) x as a 512-

dimensional feature vector: f̃ = F̃ (x). The embedding

module consists of an autoencoder and an attention sub-

module. Concretely, the autoencoder takes f̃ as input and

output an embedding vector f̄ = F̄ (x). Moreover, to en-

force f̄ to be as domain-confused as possible, we impose an

attention sub-module composed of a fully-connected (FC)

layer on it: the attention score sigmoid(FC(f̃)) is used to

remove any domain-specific information (where FC(·) de-

notes the output of the FC layer). Combining the autoen-

coder and attention sub-module together, we have the final

output of the embedding module as f = F (x).

3.3.2 Domain Adaptive Loss

Although both the autoencoder and attention sub-module

can implicitly align the two domains, further alignment is

needed by introducing domain adaptive losses. Motivated

by the superior performance of Conditional Domain Adver-

sarial Network (CDAN) [30] on the domain adaptation task,

we define a domain adversarial loss function E on the do-

main discriminator D across the source distribution Ps(x)
and target distribution Pt(x), as well as on the feature rep-

resentation f = F (x) after the feature embedding module
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and the classifier prediction g = G(x):

min
D

max
F,G

E =− Exs
i
∼Ps(x) log[D(fsi , g

s
i )]

− Ext
j
∼Pt(x) log[1−D(fj

t, gtj)].
(5)

Let h = (f, g) be the joint variable of feature representa-

tion f and classifier prediction g. Concretely, the multilinear

map T⊗(h) = f ⊗ g is chosen to condition D on g, which

is defined as the outer product of multiple random vectors.

However, multilinear map faces dimension explosion. Let

df and dg denote the dimensions of vectors f and g, respec-

tively. The multilinear map has a dimension of df × dg,

which is often too high dimensional to be embedded into

deep learning models. To address this dimension explosion

problem, the inner-product T⊗(f, g) can be approximated

by the dot-product T⊙(f, g) =
1√
d
(Rf f)⊙ (Rgg), where ⊙

is the element-wise product, Rf ∈ Rd×df and Rg ∈ Rd×dg

are two random matrices sampled only once and fixed in the

training phase, and d ≪ df × dg. Note that each element in

Rf or Rg follows a symmetric distribution with invariance

such as the uniform distribution and Gaussian distribution.

Finally, we adopt the following conditioning strategy:

T (h) =

{

T⊗(f, g) if df × dg ≤ dfeat

T⊙(f, g) otherwise,
(6)

where dfeat denotes the dimension of the output of the

fully-connected layer. For domain adaptation, we solve an

optimization problem derived from Eq. (5):

min
D

max
T

E =− Exs
i
∼Ps(x) log[D(T (hsi ))]

− Ext
j
∼Pt(x) log[1−D(T (htj))],

(7)

where the subproblem of maxT E is solved by adding a gra-

dient adversarial layer (see Fig. 2) as in [12], and the sub-

problem of minD E is solved with the standard back prop-

agation algorithm.

Note that some samples are easy-to-transfer, while oth-

ers are hard-to-transfer. If the loss function imposes equal

importance for different samples, it could weaken the effec-

tiveness of the learned model. We thus modify the original

CDAN [30] formulation by adopting the entropy criterion

H(g) = −
∑C

c=1 gc log gc, where C is the number of class-

es and gc is the probability of the sample belong to class c.
We re-weight training samples by an entropy-aware weight

w(H(g)) = 1 + e−H(g) to make easy-to-transfer exam-

ples priority to hard ones. The loss for learning domain-

confused feature representation is formulated as:

Ldc =− Exs
i
∼Ps(x)w(H(gsi )) log[D(T (hsi ))]

− Ext
j
∼Pt(x)w(H(gtj)) log[1−D(T (htj))],

(8)

which is illustrated after the embedding module in Fig. 2.

3.3.3 Domain Discriminative Loss

Note that the domain adaptive/confusion loss in Eq. (8)

is useful for bridging the domain gap between source and

target, but it also has the unwanted side-effect of over-

alignment at the per-class level which will harm the FSL

performance. To alleviate this problem, we introduce a do-

main discrimination loss so that the per-class distributions

within each domain are different from each other. Note that

there is already a domain discriminator for domain align-

ment after embedding via gradient reversal (see Fig. 2),

so it makes little sense to add another on the same em-

bedding space. Instead, our domain discriminative loss is

added to the output of the feature extraction CNN. In this

way, the features before and after the embedding layer with

self-attention are distinguished and confused, respectively.

Compared to the vanilla DA model, the powerful ability for

class-level feature extraction of the backbone network is en-

hanced in our proposed model.

Concretely, we first define a conventional classification

loss function Ẽ on the domain discriminator D̃ across the

source distribution Ps(x) and target distribution Pt(x), as

well as on the feature representation f̃ = F̃ (x) before fea-

ture embedding and the classifier prediction g̃ = G̃(x):

min
D̃,F̃ ,G̃

Ẽ =− Exs
i
∼Ps(x) log[D̃(f̃si , g̃

s
i )]

− Ext
j
∼Pt(x) log[1− D̃(f̃tj , g̃

t
j)].

(9)

Let h̃ = (f̃, g̃). The loss for learning domain-specific fea-

ture representation is:

Lds =− Exs
i
∼Ps(x) log[D̃(T (h̃si ))]

− Ext
j
∼Pt(x) log[1− D̃(T (h̃tj))],

(10)

3.4. Adaptive Re­weighting Module

Our DAPN model is trained with multiple objectives

mentioned above (i.e. Eqs. (3) (4) (8) (10)), which can be

viewed as multi-task learning. Among the losses, the FSL

losses in Eqs. (3) (4) and the domain discriminative loss in

(10) are pulling in different directions as the domain adap-

tive loss in (8). This makes it more crucial to balance a-

mong them, especially since in different episodes, different

recognition tasks are sampled which pose different level of

demand for these competing learning objectives. A naı̈ve

weighted sum of losses thus does not suffice. More sophis-

ticated adaptive loss re-weighting mechanism is required.

As reported in [20], there exists task-dependent uncer-

tainty in multi-task learning, which stays constant for all in-

put data and varies between different tasks. Therefore, we

adopt an adaptive multi-task loss function based on maxi-

mizing the Gaussian likelihood with task-dependent uncer-

tainty, in order to determine the weights of the objectives
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automatically. Let the output of a neural network model

with weights W on input x be denoted as f
W(x) (with

fW
c (x) be the c-th element of fW(x)) and the discrete out-

put of the model be denoted as y. We utilize the classifi-

cation likelihood to squash a scaled version of the model’s

output with a softmax function as follows:

p(y|fW(x)) = softmax(fW(x)). (11)

Specifically, with a positive scalar σ, the log likelihood for

this output can be formulated as:

log p(y|fW(x), σ) =
1

σ2
fW
c (x)−log

∑

c′

exp(
1

σ2
fW
c′ (x)).

(12)

In this work, our DAPN has four discrete outputs

y1, y2, y3, y4, modeled with multiple softmax likelihoods,

respectively. The joint loss L(W, σ1, σ2, σ3, σ4) is:

L(W, σ1, σ2, σ3, σ4)

= softmax(y1=c; fW(x), σ1) · softmax(y2=c; fW(x), σ2)

· softmax(y3=c; fW(x), σ3) · softmax(y4=c; fW(x), σ4)

= − log p(y1|f
W(x), σ1)− log p(y2|f

W(x), σ2)

− log p(y3|f
W(x), σ3)− log p(y4|f

W(x), σ4)

≈
1

σ2

1

L1(W) +
1

σ2

2

L2(W) +
1

σ2

3

L3(W) +
1

σ2

4

L4(W)

+ log σ1 + log σ2 + log σ3 + log σ4.

In this paper, the adaptive weights among L1, L2, L3 and

L4 are directly defined as: wj = log σ2
j (j = 1, 2, 3, 4).

Let L1 = Lps (see Eq. (3)), L2 = Lpd (see Eq. (4)), L3 =
Ldc (see Eq. (8)) and L4 = Lds (see Eq. (10)). The overall

loss of our model is thus formulated as follows:

L = w1/2 + exp(−w1)Ls + w2/2 + exp(−w2)Ld

+ w3/2 + exp(−w3)Ldc + w4/2 + exp(−w4)Lds.
(13)

4. Experiments

4.1. Datasets and Settings

Datasets. (1) miniImageNet [40]: This dataset is a sub-

set of ILSVRC-12 [44]. It consists of from 100 classes,

with 600 images per class. We follow the widely-used class

split as in [40] and adapt it to our domain-adaptive FSL set-

ting: 64 classes for Cs, 16 for Cd, and 20 for Ct. Further,

we utilize the style transfer algorithm [63] to transfer the

samples from Cd and Ct into a new domain. In this work,

the samples of the source domain are natural pictures while

the samples of the new/target domain are pencil paintings.

(2) tieredImageNet [41]: This dataset is a larger subset of

ILSVRC-12. We use 351 classes for Cs, 97 classes for Cd,

and 160 classes for Ct. The same style transfer is performed

on the Cd and Ct splits of tieredImageNet to form a new do-

main. (3) DomainNet [38]: To generate a new dataset for

Datasets Cs (source) Cd (target) Ct (target)

miniImageNet [54] 64 16 20

tieredImageNet [19] 351 97 160

DomainNet [62] 275 55 70

mini → CUB [59] 100 (mini) 50 (CUB) 50 (CUB)

Table 1. Cross-domain settings of four datasets. The class set Cs

from the source domain and the class set Cd from the target domain

are used for episode training and domain adaptation, and the class

set Ct is for DA-FSL testing. Note that each class in Cd contains

only k samples (see Sec. 3.2 for details).

domain-adaptive FSL, we exploit an existing multi-source

domain adaptation dataset, which is the largest UDA dataset

until now. There are 275 classes for Cs, 55 classes for Cd,

and 70 classes for Ct. In this work, we use the real split in

DomainNet as the source domain and the sketch split as the

target domain. (4) miniImageNet → CUB [58]: The CUB-

200-2011 dataset contains 200 classes and 11,788 natural

images of birds. Under our DA-FSL setting, we use 100

classes from miniImageNet for Cs, and 50/50 classes from

CUB for Cd and Ct. We use the same class split as in [4].

Overall, the cross-domain settings of the four datasets are

given in Table 1, and all images are resized to 84× 84.

Evaluations. We make the evaluation on the test set un-

der the 5-way 1-shot and 5-way 5-shot settings, as in previ-

ous works. The top-1 accuracy is computed for each test

episode, and the average top-1 accuracy is reported over

2,000 test episodes (with 95% confidence intervals).

Baselines. (1) FSL Baselines: Representative FSL base-

lines include relation network [52], MatchingNet [57], S-

GM [61], ProtoNet [49], MetaOptNet [26] and Baseline++

[4]. We report the test results under the 5-way 1-shot and

5-way 5-shot settings. (2) UDA Baselines: Representa-

tive UDA baselines include CDAN [30], ADDA [54], AFN

[62], M-ADDA [24], and CyCADA [19]. For testing un-

der the 5-way 1-shot and 5-way 5-shot settings, we first

train the CNN backbone with these UDA methods, and

then extract the features of test/target samples so that a

naı̈ve nearest neighbor classifier can be used to recognize

the test/target classes. (3) UDA+FSL Baselines: Repre-

sentative baselines for directly combining UDA and FS-

L include CDAN+ProtoNet and CDAN+MetaOptNet (both

trained end-to-end). We select the UDA+FSL baselines

based on two criteria: 1) UDA baselines are latest/state-of-

the-art (e.g. CDAN [30] is state-of-the-art); 2) FSL base-

lines are representative/state-of-the-art (e.g. ProtoNet [49]

is representative and MetaOptNet [26] is state-of-the-art).

Implementation Details. Our model is implemented in Py-

Torch. The ResNet18 model [18] is used as the backbone

for all compared methods. We pretrain the backbone from

scratch using the training set and then finetune it to solve

the DA-FSL problem. In this work, each training episode is

generated with Nsc = 20 and k = 1/5, and the query set

for each category contains 15 images. The training process
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Model 5-way 1-shot 5-way 5-shot

ADDA [54] 22.83± 0.26 29.13± 0.43
CyCADA [19] 22.65± 0.28 29.36± 0.33
AFN [62] 23.83± 0.22 32.56± 0.30
CDAN [30] 23.82± 0.24 31.77± 0.28
M-ADDA [24] 23.54± 0.29 30.30± 0.23
RelationNet [52] 23.87± 0.82 33.29± 0.96
MatchingNet [57] 23.35± 0.64 32.42± 0.55
SGM [61] 23.49± 0.29 32.67± 0.32
ProtoNet [49] 23.23± 0.32 32.92± 0.41
MetaOptNet [26] 24.53± 0.20 33.23± 0.63
Baseline++ [4] 24.06± 0.46 32.74± 0.81
CDAN+ProtoNet 25.36± 0.21 35.51± 0.25
CDAN+MetaOptNet 25.78± 0.23 35.87± 0.25
DAPN (ours) 27.25± 0.25 37.45± 0.25

Table 2. Comparative accuracies (%, top-1) with 95% confidence

intervals on the test split of miniImageNet.

Model 5-way 1-shot 5-way 5-shot

ADDA [54] 25.31± 0.31 30.22± 0.44
CyCADA [19] 25.28± 0.33 32.14± 0.33
AFN [62] 25.74± 0.24 33.06± 0.39
CDAN [30] 25.82± 0.30 34.11± 0.31
M-ADDA [24] 25.92± 0.32 33.56± 0.33
RelationNet [52] 24.12± 0.84 33.15± 0.94
MatchingNet [57] 25.53± 0.46 32.59± 0.46
SGM [61] 24.03± 0.26 33.42± 0.31
ProtoNet [49] 23.54± 0.33 33.38± 0.29
MetaOptNet [26] 25.06± 0.33 34.36± 0.25
Baseline++ [4] 24.65± 0.74 34.29± 1.09
CDAN+ProtoNet 26.52± 0.23 37.43± 0.29
CDAN+MetaOptNet 26.87± 0.41 37.79± 0.32
DAPN (ours) 28.47± 0.25 39.90± 0.29

Table 3. Comparative accuracies (%, top-1) with 95% confidence

intervals on the test split of tieredImageNet.

is optimized by stochastic gradient descent (SGD) with a

momentum of 0.9 and a weight decay of 0.01 for 100000

iterations. The learning rate is initially set to η0 = 0.001,

and then adjusted (as in [30]) by ηp = η0(1+αp)−β , where

α = 10, β = 0.75, and p is the training progress ranging

from 0 to 1. Since the whole framework is trained end-

to-end with an adaptive re-weighting module, there are no

other free hyper-parameters to tune.

4.2. Main Results

The comparative results under our DA-FSL setting on

four datasets are shown in Tables 2, 3, 4 and 5, respective-

ly. We can observe that: (1) On all datasets, our DAPN

significantly outperforms the state-of-the-art FSL and UDA

methods, because of its ability to tackle both problems. (2)

Our DAPN model also clearly performs better than the two

UDA+FSL baselines, showing that the naı̈ve combination

Model 5-way 1-shot 5-way 5-shot

ADDA [54] 31.14± 0.36 45.86± 0.48
CyCADA [19] 32.27± 0.34 48.11± 0.52
AFN [62] 32.78± 0.31 50.22± 0.49
CDAN [30] 33.55± 0.35 51.56± 0.34
M-ADDA [24] 31.71± 0.35 47.23± 0.39
RelationNet [52] 31.98± 0.72 51.12± 0.58
MatchingNet [57] 32.10± 0.73 51.07± 0.74
SGM [61] 33.29± 0.27 51.42± 0.24
ProtoNet [49] 33.66± 0.36 51.72± 0.34
MetaOptNet [26] 34.50± 0.36 51.76± 0.52
Baseline++ [4] 34.34± 0.77 51.73± 0.70
CDAN+ProtoNet 35.10± 0.42 52.10± 0.42
CDAN+MetaOptNet 35.46± 0.36 52.72± 0.41
DAPN (ours) 36.96± 0.35 54.32± 0.36

Table 4. Comparative accuracies (%, top-1) with 95% confidence

intervals on the test split of DomainNet.

Model Dd 5-way 1-shot 5-way 5-shot

RelationNet [52] 42.91± 0.78 57.71± 0.73
MatchingNet [57] 45.59± 0.81 53.07± 0.74
ProtoNet [49] 45.31± 0.78 62.02± 0.70
Baseline++ [4] 43.04± 0.60 62.04± 0.76
RelationNet [52] X 44.86± 0.69 62.34± 0.64
MatchingNet [57] X 46.03± 0.67 57.92± 0.70
ProtoNet [49] X 45.31± 0.74 63.32± 0.71
Baseline++ [4] X 45.10± 0.68 65.86± 0.70
ADDA [54] X 45.21± 0.33 66.03± 0.44
CyCADA [19] X 45.98± 0.35 66.28± 0.43
CDAN [30] X 45.65± 0.52 65.77± 0.55
M-ADDA [24] X 44.01± 0.45 65.17± 0.41
CDAN+ProtoNet X 46.23± 0.49 67.29± 0.53
DAPN (ours) X 48.08± 0.50 68.47± 0.44

Table 5. Comparative accuracies (%, top-1) with 95% confidence

intervals on the test split of mini → CUB. X denotes whether to

use k-shot data Dd from the target domain for training.

of UDA and FSL is not as effective as our specifically de-

signed DAPN model for DA-FSL. (3) Interestingly, when

combined with a naı̈ve nearest neighbor classifier (for FSL),

the performance of existing UDA methods is as good as that

of any existing FSL methods. This suggests that solving the

domain adaptation problem is the key to our DA-FSL set-

ting. (4) As shown in Table 5, we extend the mini → CUB

setting in [4] to show the effectiveness of our approach for

the DA-FSL setting. By additionally using k-shot data Dd

as the training data, the traditional FSL methods only obtain

small boost and achieve comparable performance w.r.t. the

DA methods. However, our method outperforms all FSL

and DA methods and their simple combinations. (5) Given

the same 5-way 5-shot (or 5-way 1-shot) evaluation setting,

the test results on the first two datasets are clearly worse

than those on the DomainNet and mini → CUB datasets.

This indicates that the domain gap (induced by style trans-
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Figure 3. Ablation study results for our full model under the

domain-adaptive FSL setting (5-way 5-shot) on the first three

datasets. The error-bars show the 95% confidence intervals.

fer) and the category gap (induced by FSL) of the first two

datasets are even bigger than those of the widely-used re-

alistic datasets (i.e. DomainNet and mini → CUB), which

justifies the necessity of using the two synthesized datasets

for the novel DA-FSL setting.

4.3. Further Evaluations

Ablation Study on Our Full Model. To demonstrate the

contribution of each module of our full model, we make

the comparison to its three simplified versions: (1) FS-

L – only the few-shot learning (FSL) module (described

in Sect. 3.2) is used; (2) DAA – the domain adversar-

ial adaptation (DAA) module (described in Sect. 3.3) is

combined with a naive nearest neighbor classifier; (3) F-

SL+DAA – the FSL and DAA modules are combined for

domain-adaptive FSL without using adaptive re-weighting.

Since our full model combines the two main modules us-

ing adaptive re-weighting (ARW), it can be denoted as Full

or FSL+DAA+ARW. The ablation study is performed un-

der the 5-way 5-shot domain-adaptive FSL setting. The

obtained ablative results are presented in Figure 3. It can

be seen that: (1) The performance continuously increas-

es when more modules are used for domain-adaptive FSL,

showing the contribution of each module. (2) The improve-

ments achieved by DAA over FSL suggest that the domain

adaptation module is important for domain-adaptive FSL

and it can perform well even with the naive nearest neigh-

bor classifier. (3) The ARW module clearly yields perfor-

mance improvements, validating its effectiveness in deter-

mining the weights of multiple losses.

Ablation Study on Our DAA Module. We further conduct

ablation study to show the contribution of each component

of our DAA module. Five methods are compared: (1) F-

SL – FSL using the two losses Lps defined in Eq. (3) and

Lpd defined in Eq. (4); (2) FSL+DC – domain-adaptive F-

SL using the three losses Lps, Lpd, and Ldc defined in E-

Figure 4. Ablation study results for our DAA module under the

domain-adaptive FSL setting (5-way 5-shot) on the first three

datasets. The error-bars show the 95% confidence intervals.

q. (8); (3) FSL+DC+DC – based on (2), another domain

confusion loss is added to the features before the embed-

ding module. (4) FSL+DC+CLS – based on (2), a classifi-

cation loss is added to the domain-invariant embedding for

class separation. (5) FSL+DC+DS – our domain-adaptive

FSL using the four losses Lps, Lpd, Ldc, and Lds defined

in Eq. (10). For a fair comparison, adaptive re-weighting is

used for all five methods. The ablative results are shown

in Fig. 4. We have the following observations: (1) The

significant improvements achieved by FSL+DC over FSL

show that domain fusion after the embedding module is es-

sential for our domain-adaptive FSL setting. (2) Imposing

domain confusion on CNN features leads to over-alignment

at the per-class level that harms the FSL performance. (3)

FSL+DC+DS consistently outperforms all alternatives, val-

idating the effectiveness of domain discrimination before

the embedding module.

5. Conclusion

In this work, we have investigated a new FSL setting

called DA-FSL. This challenging FSL setting is closer to

some realistic problems where the category gap and domain

gap exist at the same time. To simultaneously learn a classi-

fier for new classes with a few shots and bridge the domain

gap, we proposed a novel DAPN model by integrating pro-

totypical metric learning and domain adaptation within a

unified framework. The domain discriminative and domain

confusion learning objectives are introduced before and af-

ter a domain-adaptive embedding module, which are further

balanced with an adaptive re-weighting module. Extensive

experiments showed that our DAPN model outperforms the

state-of-the-art FSL and domain adaptation models.
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