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Abstract

Food-related applications and services are essential for

the health and well-being of people. With the rapid devel-

opment of social networks and mobile devices, food images

captured by people can offer rich knowledge about the food

and also necessary dietary assistance for people that re-

quire special care. Known food recognition frameworks

and approaches in computer vision have heavy reliance on

many-shot training of a deep network on existing large-

scale food datasets. However, it is common for many food

categories that it is difficult to collect enough images for

training. Traditional few-shot learning is unable to properly

address the problem due to the complex characteristics and

large variations of food images, and most few-shot frame-

works cannot perform classification for many-shot and few-

shot categories at the same time. In this paper, we propose a

new fusion learning framework for food recognition. It uni-

fies many-shot and few-shot under a single framework, by

leveraging on extracted image representations and context

sensitive semantic embeddings. Further, considering food

categories are often correlated to each other for many com-

monalities such as same ingredients, cooking methods, the

fusion learning framework utilizes a Graph Convolutional

Network (GCN) to capture the inter-class relations between

both image representations and semantic embeddings of dif-

ferent food categories. The final output fusion classifier will

be more robust and discriminative. Comprehensive experi-

mental results on two popular food benchmarks have shown

the proposed framework achieves the state-of-the-art fusion

performance.

1. Introduction

Food-related study gains increasing popularity for its im-

portance in people’s life. Understandings of daily food in-

Figure 1. Some food image examples with class labels.

takes can greatly benefit the health of people and also help

in personal dietary management. Over the past few years,

great progress has been made in food recognition using just

food images, thanks to the rapid advances in the develop-

ment of powerful deep learning networks.

Traditional food recognition approaches capture hand-

crafted global and local image features, such as SIFTs, Lo-

cal Binary Patterns (LBP) [27]. K-Nearest Neighbor (k-

NN) [12], Support Vector Machine (SVM) [27] and ran-

dom forest techniques [2] are amongst the commonly used

classifiers. In contrast to the traditional approaches, simple

and automatic food recognition approaches using deep net-

works give better performance in general [30, 10, 40]. It

can be applied for various food applications, such as mobile

visual food recognition, food logging and nutrition analysis

services.

Visual food recognition using images, just like other

types of fine-grained recognition tasks, often suffers from

the difficulty to get discriminative image representations

with good generalization ability for each class. Food recog-

nition tasks are especially difficult to be addressed since

many categories of food do not have distinctive appearance

or obvious layout structure. A common strategy to alleviate

the problem is by introducing additional information during
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training and testing. For example, ingredient information

associated with the food images, cooking recipes from In-

ternet, and geographical locations of restaurants [44, 46].

Although it is proven the food recognition performance can

be improved by incorporating such information, these ap-

proaches are often considered as less cost-effective given

the extra human labors and other costs required to collect

the additional information, and also sometimes, the sources

may not be available.

To make the issue worse, it is common that many food

categories cannot be collected with enough image data to

train the deep networks. Few-shot learning is designed to

address the issue of limited training data by either fully ex-

ploiting the features can obtained from the few sample im-

ages or introducing additional side information [18, 45, 17,

33]. Unfortunately, existing few-shot learning frameworks

often under-utilize the possible inter-class relations between

different fine-grained categories such as in food recognition.

As a result, they struggle to properly classify food images.

In order to address the abovementioned issues, in this

work, we propose a fusion learning framework that uni-

fies both many-shot and few-shot classification for visual

food recognition, by leveraging on image representations

and context sensitive semantic embeddings. It conducts a

two-stage fusion learning which fuses many-shot and few-

shot learning under a single framework, where the final clas-

sifier can perform food recognition on both many-shot and

few-shot categories. The first stage of fusion learning lever-

ages on extracted image representations from a state-of-the-

art deep network and semantic embeddings based on class

labels. The motivation to incorporate class label semantic

embeddings is that the labels of food names are the easi-

est accessible information which contain important charac-

teristics of the food, such as dedicated food terminologies,

common ingredients and cooking methods,etc.

Figure 1 shows some commonly seen food categories but

that are not easy to distinguish each pair using only image

features. For example, ”Hot Dog” is a dedicated food name,

with the dominant component of ”Sausage”. In order to

correctly classify it without confusing with other food with

”Sausage”, we can generate such context sensitive embed-

ding based on the class label ”Hot Dog”, so that it provides

additional semantic meaningful information. Here the con-

text sensitive refers that the embedding is generated based

on context, in this example, it is in the context of food, not

the animal. Other examples in the figure also show that the

additional information given by the class label can be used

in food recognition together with image representations. As

a result, we propose to generate context sensitive semantic

embeddings for each food category using the class labels.

Therefore, the performance of the trained network can be

improved by injecting such side information.

Furthermore, in order to capture possible inter-class re-

lations and correlations of different food categories, the sec-

ond stage of fusion learning of the proposed framework in-

corporates Graph Convolutional Network (GCN) as a mean

to map the relations in terms of the similarity of the im-

age representations and semantic embeddings for different

food categories. The final resulting GCN representations

are more robust and discriminative, which further boost the

performance of food recognition. The contributions of this

paper can be summarized as follows:

• We propose a fusion learning framework for visual

food recognition, which is a two-stage fusion unifies

both many-shot and few-shot learning. Its perfor-

mance is enhanced by incorporating image representa-

tions from a state-of-the-art deep network and context

sensitive semantic embeddings of class labels during

training. A final robust classifier can be produced by

further capturing the inter-class relations using GCN.

• We conduct comprehensive experiments on two pop-

ular food benchmark datasets, with different configu-

rations and ablation study. The experimental results

show that our approach can achieve state-of-the-art

performance on both datasets.

• We design the fusion learning framework to be com-

patible with different types of backbone Convolu-

tional Neural Networks (CNNs), we have demon-

strated the effectiveness of the proposed framework

using ResNet [11] and EfficientNet [39]. It could be

further expanded to real-life food applications

2. Related Work

2.1. Visual food recognition

Visual food recognition using deep learning framework

emerges as one of the most popular food-related studies. In

recent years, automatic food recognition by simply scan-

ning or capturing food images allows many health applica-

tions to be developed. For example, nutrition analysis [28],

diet management [3, 21], food recommendation [6]. A

comprehensive survey on food computing is provided by

Min et al. [24]. Most existing methods deploy popular

CNN architectures such as AlexNet [16], GoogLeNet [38],

ResNet [11], and perform food classification by using the

image features obtained from the networks. Aguilar et

al. [1] evaluated fusion of different networks/classifiers for

food recognition. Martinel et al. [19] proposed to use wide-

slice ResNet for food recognition by leveraging on the ver-

tical traits in some food.

Combinations of deep visual features and other useful

information have also been explored. Some recent works

have formulated food recognition as a multi-task classifi-

cation problem where the recognition of food is attempted
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along with other attribute recognition, such as GPS loca-

tion, ingredients, types of cuisine, cooking recipes [41, 25].

Jiang et al. [13] designed a Multi-Scale Multi-View Fea-

ture Aggregation (MSMVFA) for food recognition, which

combines features and semantics at different detail levels.

Incorporation of such contextual information is proven to

improve the food recognition accuracy. However, these ad-

ditional attributes require huge extra human labors to collect

and construct, and they may not always be available.

Different from existing works, we propose to generate

context sensitive semantic embeddings based on food class

labels, where the labels are easily accessed information dur-

ing training. In the proposed method, both image represen-

tations obtained from state-of-the-art deep networks and the

context sensitive semantic embeddings are used to train the

framework together.

2.2. Fewshot learning

Few-shot learning, the ability to recognize few-

shot/novel categories given only a few sample images, is

a hot deep learning research topic for its wide applications.

Few-shot learning can be the potential solution for many

visual recognition tasks such as food recognition, where

scarcity of data is usually a problem.

Few-shot learning is developed from the early-stage

of learning good model initialization, typical works like

Model-Agnostic Meta-Learning (MAML) [7] and Latent

Embedding Optimization (LEO) [33], so that the classifiers

for novel classes can be learned with a limited number of

labeled examples and a small number of gradient update

steps. Metric learning based few-shot frameworks become

more popular for its easier implementation and superior per-

formance. Typical works such as Prototypical Networks by

Snell et al. [36] and RelationNet by Sung et al. [37] utilize

the distance or similarity between trained images, so it can

classify an unseen input image with the labeled instances

based on distance metric learning. Few-shot learning with

additional semantics has also been explored. Schwartz et

al. [35] proposed a few-shot learning approach using mul-

tiple rich semantics, such as labels, attributes, and natu-

ral language descriptions. TAFE-NET proposed by Wang

et al. [42] addressed the image representation adaptation

to other tasks by learning task-aware feature embeddings.

However, most existing few-shot learning approaches fail

to capture inter-class correlations that are important for rec-

ognizing novel categories.

In our works, we utilize the labels of food categories to

generate context sensitive semantic embeddings, that does

not require any rich semantics like attributes and language

descriptions. We also manage to create a fusion system that

fuses both many-shot and few-shot learning under a single

framework, which leverages on both robust image represen-

tations and class label embeddings. We capture the inter-

class relations in term of the similarity of the image repre-

sentations and semantic embeddings between different food

categories, by constructing and training a GCN.

3. Proposed Methodology

3.1. Overview of framework

As shown in Figure 2, our proposed framework has three

major components: (i) generation of class label embedding:

given a set of image-label pairs that contains both many-

shot categories and few-shot categories, class label of each

food category is used to generate context sensitive semantic

embeddings (t) by Bidirectional Encoder Representations

from Transformers (BERT) [5]; (ii) fusion of many-shot and

few-shot learning: images of many-shot categories are used

to train a CNN, which can be divided into a feature extrac-

tor and a classifier. In addition to the normal classification

loss, a new semantic loss based on the generated class label

embeddings of many-shot categories is introduced during

training. The parameters of the classifier can be extracted

as classification weights (wm), which are used to classify

many-shot categories. After the training, the feature extrac-

tor will be used to generate the prototypical vector (v) for

each few-shot category based on image feature aggregation;

(iii) inter-class relation learning using GCN : after obtaining

the overall classification weights (w) and semantic embed-

dings, both representations will be used as input to construct

a GCN in order to capture the inter-class relations. New

class representation (c) can be obtained after training the

GCN. Finally, the classifier is finetuned with classification

loss and a new matching loss between w and c.

3.2. Generation of class label embedding

Semantic embedding usually refers to the text/word em-

bedding generated by various nerual networks. It is a pop-

ular strategy to solve Natural Language Processing (NLP)

tasks by learning good text embedding using Pre-Trained

Models (PTMs). Based on definitions in the survey [31],

the first generation of such PTMs which includes Skip-

Gram [23], word2vec [22] and GloVe [29], are usually shal-

low in network architecture. They are also not context sen-

sitive, which often fail to capture higher-level concepts and

correlations between words in context. The second gen-

eration PTMs has deeper architectures and better training

techniques, which improve their ability to learn contextual

word embeddings, such as CoVe [20], OpenAI GPT [32]

and BERT [5].

Although some recent works explored the possibility of

enhancing image classification and retrieval using word em-

beddings, they either are based on traditional many-shot

training using large-scale datasets [14] or simply applying

word embeddings from pre-trained model without consider-

ing the rich dependency between semantic embeddings with
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Figure 2. Overview of our proposed fusion learning framework. It consists of three branches, one for generation of context sensitive

semantic embeddings, one for many-shot & few-shot fusion learning and the last is inter-class relation learning using Graph Convolutional

Network (GCN).

image features [26].

Given a labeled dataset of K categories that contains

Km many-shot categories and Kf few-shot categories,

each image-label pair in the dataset can be denoted as

(xm, ym) for many-shot categories and (xf , yf ) for few-

shot categories, where x is the image and y is the corre-

sponding label with different word length u. In this work,

we aim to encode label information to semantic embed-

dings to better measure the semantic relations of different

food category. The obtained semantic embeddings are used

to train the fusion learning framework. We use the archi-

tecture of BERT, which is designed to pre-train deep bi-

directional representations from text by jointly conditioning

on both left and right context in all layers. BERT is trained

with two unsupervised text tasks: Masked Language Model

(MLM) and Next Sentence Prediction (NSP) on plain cor-

pus of BooksCorpus and English Wikipedia, where MLM is

used to enhance its efficiency at predicting masked tokens

and NSP is used to generate a sequence prediction rather

than a token prediction. As compared with other embed-

ding methods, BERT based embedding is context sensitive,

where the representations of the phrase or word are closely

related to the context.

Let t denote the resulting embedding of projecting the

label y to the embedding space (t ∈ R
1×d). We can ob-

tain a sequence of tokens {y1, y2, ..., ya} as input to the

Transformer encoder, where a denotes number of word in

y. Class label embedding is given by the sequence embed-

ding of y from pre-trained BERT model:

t =
1

a

a
∑

i

e(yi) (1)

where e denotes the token value in the second last hidden

layer in the pre-trained model.

3.3. Fusion of manyshot and fewshot learning

A standard CNN architecture can be split into two main

components: a feature extractor and a classifier. Given

an input image x that belongs to a dataset of K classes,

the feature extractor will generate a d-dimensional feature

z (z ∈ R
1×d) which then the classifier will compute the

raw classification scores before softmax {s1, s2, ..., sK} =
{zT

w1, z
T
w2, ..., z

T
wK}, where the parameters w =

{wi}
K
i=1 are the classification weights that are used for clas-

sifying different categories. Common approaches in many-

shot learning use dot-product based classifier and SGD

to update the weights in the layers progressively. How-

ever, few-shot learning cannot use conventional classifica-

tion weights due to lacking of data. Instead, we generate

the prototypical vectors using the trained feature extractor

for each few-shot category by utilizing the feature vectors

of the few training images. Similar classification score is

obtained by measuring the similarity between the query im-

age and the prototypical vector of each category.

Let vk denote the prototypical vector for k-th few-shot

category by averaging input image feature vectors, where

Nk is the number of images available for the few-shot cate-

gory:

vk =
1

Nk

Nk
∑

i=1

zi (2)

The magnitude of the prototypical vectors depend on the in-

put image feature vectors, and the raw classification scores

of many-shot and few-shot are different in magnitude. To

create a unified fusion framework of many-shot and few-

shot, we adopt cosine similarity based feature classifier
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which is inspired by [8]. The raw classification score for

k-th many-shot category sk is calculated as:

sk = ǫ · zi
T
wk (3)

where zi and wk are l2-normalized image feature vector

and classification weight for the k-th many-shot category,

respectively. ǫ is a learnable scalar value that is introduced

to adjust the range of cosine similarity to fit softmax func-

tion. The prototypical vector v can also take both posi-

tive and negative values by removing the ReLU layer. As

a result, the prototypical vectors of few-shot categories are

no longer affected by the magnitude of image features. To

summarize, the final classification weights wi for any cate-

gory in the dataset can be unified and represented as:

wk =

{

wk, if k ∈ Km

vk, if k ∈ Kf
(4)

In addition, it is necessary to well train a feature extractor

since the classification performance is based on the derived

classification weights and the obtained image features. We

propose to adopt classification training with softmax loss

and a new semantic loss on Km many-shot categories:

Ltrain = αLcls + βLsemantic (5)

The probability of k-th many shot category given image-

label pair (xm, ym) can be obtained from:

p(k|xm) =
exp(sk)

∑Km

i=1 exp(sk)
(6)

where sk is the raw classification score for k-th many-shot

category. The softmax cross-entropy loss is given by:

Lcls = −
1

N

N
∑

i=1

K
∑

k=1

O(k) log(p(k|xm)) (7)

where O(k) is true if k = ym and N is the total number

of many-shot training images. To fully utilize the semantic

information during the training, we design a new semantic

loss which measures the similarity between the image fea-

ture and its respective class label semantic embedding. The

motivation is that the distance of image features that be-

long to different categories should be close to the distance

of their corresponding class label semantic embeddings. No

semantic loss is calculated for images that belong to the

same class. For two image-label pairs (xi, yi) and (xj , yj),
we can obtain their image feature zi and zj after passing

the feature extractor. Their class label embeddings can be

calculated using Eq. 1 as ti and tj .

Lsemantic =
1

N2

N
∑

i=1

N
∑

j=1

(dist(zi, zj)−dist(ti, tj))
2 (8)

After training the network using Ltrain, the classification

weights for both many-shot and few-shot categories can be

calculated using Eq. 4.

3.4. Learning of interclass relations using GCN

Classification weights and class label embeddings con-

tain rich information that defines inter-class relationships

between food categories. However, such information can-

not be captured or leveraged using conventional approaches

of CNNs. The concept of Graph Neural Network (GNN)

was first introduced in [34], which is based on CNNs and

graph embeddings. GNNs are good at aggregating informa-

tion from locally connected structure. Each node in GNNs

is defined by its own features and features from its related

nodes. In the survey paper [47], GNNs are classified into

different types, such as by propagation step. Graph Con-

volutional Networks (GCNs) are one of the most popular

variants of GNNs. GCNs are designed with convolution

and readout function that can be trained to perform node

classification or graph classification with task-specific loss.

Let G = (V,E) represent a standard GCN with multi-

ple layers (L), where the nodes V = {w1,w2, ...,wK} is

the set of classification weights that each node corresponds

to the food class in the dataset (Eq. 4), and E is the edge

connectivity between neighboring classes. In this work, we

design the edges based on cosine similarity between each

node in terms of wi and ti and the edge connection of

each node is based on its pre-defined first-order neighbor-

ing nodes j ∈ N(i). For example, Eij is the edge between

class/node i and class/node j with edge strength qij ∈ [0, 1]
after applying softmax operation over the cosine similarity

of both w and t. Please note the edges are independent of

direction.

qij = Softmax(θ(wi,wj) + θ(ti, tj)) (9)

where θ denotes the cosine similarity function.

Neighborhood aggregation using Jumping Knowl-

edge. Denote h
(l)
i as the representation for node i at layer

l. It is updated as:

h
(l+1)
N(i) = ρ(Θl ·AGGREGATE({h

(l)
j , ∀j ∈ N(i)}))

(10)

h
(l+1)
i = COMBINE(h

(l)
i ,h

(l+1)
N(i) ) (11)

where ρ is a point-wise non-linearity which in our case is

LeakyReLU, and Θ is the trainable filter parameters at layer

l. AGGREGATE is defined as follows:

h
(l+1)
N(i) =

∑

j∈N(i)

qijF (h
(l)
i ,h

(l)
j ) (12)
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where F is a fully-connected network that is used to per-

form non-linear combination of node features from different

nodes. COMBINE is based on node feature concatenation.

For final representation for node i, we adopt the concatena-

tion solution in Jumping Knowledge Networks [43] to con-

nect all layers’ representations to the final output. In this

way, the model can learn to selectively exploit information

from all intermediate layers:

h
final
i = ϕ([h

(1)
i ,h

(2)
i , ...,h

(L)
i ]) (13)

where ϕ is a linear transformation to obtain the final GCN

output ci.

4. Experiments and Results

4.1. Datasets

To evaluate the performance of the proposed fu-

sion learning framework, we conduct comprehensive ex-

periments on two popular datasets: Food-101 [4] and

UECFood-256 [15]. In order to train the GCN, we apply

similar technique of training episodes used in [9].

Food-101. The dataset consists of 101,000 images with

101 categories and each category has 1,000 images, most

of which are Western cuisines. We partition each category

into 70% for training 10% for validation and 20% for test-

ing. For many-shot and few-shot partition, the 101 classes

are divided into 60 many-shot categories and 41 few-shot

categories.

UDCFood-256. The dataset consists of 31, 397 images

with 256 categories. These categories are collected from

different cuisines, such as Japanese, Chinese, Western, etc.

Although small in size, the large inter-class variation can

be used to test the robustness of the framework. We parti-

tion each category into 70% for training 10% for validation

and 20% for testing. For many-shot and few-shot partition,

the 256 classes are divided into 156 many-shot categories

and 100 few-shot categories. Images from both datasets are

resized to 256× 256.

4.2. Implementation details

Semantic embedding To obtain context sensitive class la-

bel embedding, we use a pretrained BERT model to gener-

ate the embeddings. The BERT model was trained using un-

cased English vocabulary with WordPiece masking, which

has 12 hidden layers and outputs d = 512 dimensional fea-

tures.

Architectures of feature extractor Feature extractor is

trained using many-shot categories, which later is used to

generate the prototypical vectors for few-shot categories

based on aggregation of image features. For the following

experiments, we use an EfficientNet-b0 [39] as the feature

extractor. The output feature dimension is d = 512. We

have also tried ResNet-10 [9] as the feature extractor for

comparison.

Architecture of GCN We choose a standard GCN with

skip connections as the base structure for our GCN archi-

tecture. We adopt the concatenation strategy that used in

JK-Net [43] as the aggregation function on the final layer.

The final output class representation c is used to train a new

classifier using classification loss and matching loss based

on episodic training.

For network training, we use SGD optimizer with mo-

mentum of 0.9 and weight decay of 1e − 5. We evaluate

our model by performing 5-way-1-shot and 5-way-5-shot

experiments on both datasets, 5-way-1-shot means we sam-

ple 5 random novel classes from the dataset, from each class

we sample 1 random sample. For fusion evaluation, equal

number of random classes and random images are selected

for both many-shot and few-shot categories.

4.3. Comparisons with related work

Due to the reason that most food recognition work can-

not handle few-shot recognition and there is no existing

food dataset based fusion results for comparison, we have

selected the few-shot performance from popular few-shot

frameworks as the comparison metrics. The results of these

few-shot frameworks are based on our implementations.

In Table 1 and Table 2, we compare the 5-way few-shot

performance of our proposed method against related prior

work on both Food-101 and UECFood-256. ”Conv-4-64”

stands for a simple network with 4 convolutional layers fol-

lowed by a fully-connected layer resulting in a 64 output

feature size. For Few-shot with DAE [9], we also change

the feature extractor to EfficientNet-b0 for better compar-

ison. We can observe our proposed fusion learning frame-

work achieves superior performance on both datasets. To be

more specific, our proposed method gives an improvement

of 8.27% regarding 5-way-1-shot performance against Few-

shot with DAE on Food-101, which is one of the state-of-

the-art prior work. Our proposed method also achieves con-

sistent improvement on UECFood-256 of 9.63% and 6.96%
in terms of 1-shot and 5-shot performance. The results show

that the few-shot recognition performance can be signifi-

cantly enhanced by incorporating necessary inter-class cor-

relations based on both image and semantic/text representa-

tions.

4.4. Ablation study of the proposed framework

In this section, we provide extra experiments with 4 dif-

ferent settings to validate the contributions of different com-

ponents of our proposed framework. The 4 different settings

are shown in Table 3.

Here, we examine different experimental configurations

based on two major aspects: Implementation of ”Fusion

learning with Semantic Loss” and ”GCN training”, which

are basically the first and second half of fusion learning in
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Table 1. Few-shot performance comparisons of average accuracy on Food-101 (%)

5-Way

1-shot 5-shot

Model Feature Extractor Top-1 Top-5 Top-1 Top-5

MAML [7] Conv-4-64 47.31 - 64.19 -

Prototypical Networks [36] Conv-4-64 48.03 - 64.40 -

RelationNet [37] Conv-4-64 50.11 - 65.78 -

Dynamic few-shot [8] ResNet-10 53.21 86.45 68.82 90.79

Few-shot with DAE [9] ResNet-10 53.70 86.67 70.29 91.13

Few-shot with DAE [9] EfficientNet-b0 58.60 88.99 75.06 92.14

Ours EfficientNet-b0 61.97 92.25 77.72 94.09

Table 2. Few-shot performance comparisons of average accuracy on UECFood-256 (%)

5-Way

1-shot 5-shot

Model Feature Extractor Top-1 Top-5 Top-1 Top-5

MAML [7] Conv-4-64 42.10 - 57.43

Prototypical Networks [36] Conv-4-64 42.63 - 58.25 -

RelationNet [37] Conv-4-64 43.03 - 59.43 -

Dynamic few-shot [8] ResNet-10 44.68 75.84 60.49 86.67

Few-shot with DAE [9] ResNet-10 45.22 76.19 62.12 87.80

Few-shot with DAE [9] EfficientNet-b0 48.82 80.36 65.00 90.25

Ours EfficientNet-b0 54.85 86.08 69.08 92.36

Table 3. Different settings in ablation study

Config Fusion learning with Lsemantic GCN

Baseline ✗ ✗

A ✓ ✗

B ✗ ✓

Ours (A+B) ✓ ✓

our framework. For simplification, we denote them as A

and B. Baseline refers to the case of using the classification

weights and prototypical vectors to perform the classifica-

tion, without implementations of semantics and GCN. Con-

fig A means the class label embedding is used during the fu-

sion training but without the second stage of training GCN,

Config B means GCN is used to capture inter-class rela-

tions between food categories based on both classification

weights and class label embeddings but without involving

semantic information during the first stage of fusion train-

ing. A+B is our complete proposed method.

Table 4. Top-1 few-shot/fusion accuracy on Food-101 (%)

Baseline A B Ours

1-shot
Few-shot 58.60 61.19 59.04 61.97

Fusion 66.93 68.08 66.75 68.76

5-shot
Few-shot 75.06 76.94 75.95 77.72

Fusion 78.66 79.96 79.38 80.11

From Table 4 and Table 5 show the performance com-

parison of few-shot and fusion results testing on Food-101

and UECFood-256 for 4 different experimental settings.

Table 5. Top-1 few-shot/fusion accuracy on UECFood-256 (%)

Baseline A B Ours

1-shot
Few-shot 48.82 53.83 50.19 54.85

Fusion 53.25 55.63 54.31 56.73

5-shot
Few-shot 65.00 68.49 66.22 69.08

Fusion 57.63 59.94 58.02 60.13

Few-shot result is the average accuracy of 5-way-1-shot or

5-way-5-shot training, and fusion accuracy is obtained by

randomly sampling equal number of testing images from

both few-shot and many-shot categories.

Impact of semantic loss. Use of semantic information in

this work consists of two parts, which are the semantic

loss introduced during fusion learning of many-shot and

few-shot that based on BERT class label embeddings, and

the same class label embeddings are used during inter-class

relations learning using GCN. Refer to Table 4 and Table 5,

we can observe that by incorporating the class label em-

bedding along during the fusion learning of many-shot and

few-shot (Config A), an improvement of 2.59% and 5.01%
is achieved for Top-1 1-shot recognition on Food-101

and UECFood-256 as compared to baseline, respectively.

Since the introduction of the semantic loss enhances the

feature extractor, hence improves the recognition accuracy

of many-shot categories, the Top-1 fusion results are also

improved by 1.15% and 2.38% on both datasets.
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Impact of GCN. We use GCN to find inter-class re-

lations based on both image representation (classification

weights) as well as class label embedding. We believe both

image and text based representations can be used to im-

prove the discriminative ability of the final classifier. From

Table 4 and Table 5, we can see consistent improvement of

performance by introducing GCN (Config B) for few-shot

accuracy on both datasets. For example, by using only

GCN, it achieves 0.44% and 1.37% of improvements for

1-shot few-shot accuracy on Food-101, UECFood-256. The

improvement is more significant on UECFood-256, which

has more classes with less images per class, indicating the

effectiveness of training GCN with both the classification

weights and context sensitive class label embeddings.

Finally, by combining both A and B, which is our com-

plete proposed method, the performance on both datasets

is improved significantly, which surpasses both standalone

A or B setting. Our proposed method achieve 3.37% and

6.03% of improvement for 1-shot few-shot accuracy on

Food-101 and UECFood-256, respectively. Consistent im-

provement can be also observed for the fusion performance.

Table 6. Top-1 few-shot/fusion accuracy on Food-101 using

ResNet-10 as feature extractor (%)

Baseline A B Ours

1-shot
Few-shot 53.70 56.44 54.12 56.89

Fusion 62.66 63.93 62.91 64.06

5-shot
Few-shot 70.29 72.60 71.06 73.51

Fusion 72.33 73.49 72.62 73.82

Table 7. Top-1 few-shot/fusion accuracy on UECFood-256 using

ResNet-10 as feature extractor (%)

Baseline A B Ours

1-shot
Few-shot 45.22 49.58 46.69 51.02

Fusion 52.57 53.78 52.84 54.29

5-shot
Few-shot 62.12 64.66 62.83 65.15

Fusion 56.02 57.29 56.30 57.46

4.5. Ablation study of the architecture of feature
extractor

To test the general robustness of our proposed method,

we also include the experimental results of our proposed

method with same settings as in Table 4 and Table 5 with the

exception of using ResNet-10 as the feature extractor. From

Table 6 and Table 7 show the performance comparison of

few-shot and fusion results on Food-101 and UECFood-

256.

Experimental results in the tables show consistent

improvement of recognition performance on both food

datasets using ResNet-10. Our proposed method using

ResNet-10 achieves 3.19% and 5.8% of improvement for 5-

way-1-shot few-shot accuracy on Food-101 and UECFood-

256, respectively. As compared to the baseline implementa-

tion, an improvement of 0.42% and 1.47% is obtained for 1-

shot accuracy on Food-101 and UECFood-256 using Config

B, which is the implementation of GCN only. An improve-

ment of 2.74% and 4.36% is obtained for the 1-shot accu-

racy on both datasets using Config A, which implements the

semantic loss during the first stage of fusion learning. Fur-

ther, the accuracy of fusion results are also enhanced con-

sistently, which shows the robust improvements contributed

by each component in our proposed fusion framework using

different feature extractors.

5. Conclusion

In this work, we proposed a two-stage fusion learning

framework for visual food recognition which unifies both

many-shot and few-shot learning, so it can classify images

from both many-shot categories and few-shot categories to-

gether. Our framework is based on extracted classification

weights as well as context sensitive embeddings of class la-

bel.

We have also introduced a second stage training using

GCN, which captures the inter-class relations between dif-

ferent food categories based on image and text representa-

tions. The final performance of the framework is evaluated

on two popular food datasets extensively. The results show

a consistent improvement for both few-shot and fusion ac-

curacy as compared with prior work. The experiments

demonstrate the effectiveness of our proposed method of

fusion learning with semantics and GCN on food recogni-

tion.

Acknowledgement

The research work was done at the Rapid-Rich Ob-

ject Search (ROSE) Lab, Nanyang Technological Univer-

sity. This research is supported in part by the NTU-

PKU Joint Research Institute, a collaboration between the

Nanyang Technological University and Peking University

that is sponsored by a donation from the Ng Teng Fong

Charitable Foundation.

1718



References

[1] Eduardo Aguilar, Marc Bolaños, and Petia Radeva. Food

recognition using fusion of classifiers based on cnns. In In-

ternational Conference on Image Analysis and Processing,

pages 213–224. Springer, 2017.

[2] Marios M Anthimopoulos, Lauro Gianola, Luca Scarnato,

Peter Diem, and Stavroula G Mougiakakou. A food recogni-

tion system for diabetic patients based on an optimized bag-

of-features model. IEEE journal of biomedical and health

informatics, 18(4):1261–1271, 2014.

[3] Oscar Beijbom, Neel Joshi, Dan Morris, Scott Saponas, and

Siddharth Khullar. Menu-match: Restaurant-specific food

logging from images. In 2015 IEEE Winter Conference

on Applications of Computer Vision, pages 844–851. IEEE,

2015.

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101–mining discriminative components with random

forests. In European conference on computer vision, pages

446–461. Springer, 2014.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[6] David Elsweiler, Christoph Trattner, and Morgan Harvey.

Exploiting food choice biases for healthier recipe recommen-

dation. In Proceedings of the 40th international acm sigir

conference on research and development in information re-

trieval, pages 575–584, 2017.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pages 1126–1135. JMLR. org,

2017.

[8] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot

visual learning without forgetting. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 4367–4375, 2018.

[9] Spyros Gidaris and Nikos Komodakis. Generating classifi-

cation weights with gnn denoising autoencoders for few-shot

learning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 21–30, 2019.

[10] Hamid Hassannejad, Guido Matrella, Paolo Ciampolini,

Ilaria De Munari, Monica Mordonini, and Stefano Cagnoni.

Food image recognition using very deep convolutional net-

works. In Proceedings of the 2nd International Workshop

on Multimedia Assisted Dietary Management, pages 41–49,

2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[12] Ye He, Chang Xu, Nitin Khanna, Carol J Boushey, and Ed-

ward J Delp. Analysis of food images: Features and classi-

fication. In 2014 IEEE International Conference on Image

Processing (ICIP), pages 2744–2748. IEEE, 2014.

[13] Shuqiang Jiang, Weiqing Min, Linhu Liu, and Zhengdong

Luo. Multi-scale multi-view deep feature aggregation for

food recognition. IEEE Transactions on Image Processing,

29:265–276, 2019.

[14] Da-Cheng Juan, Chun-Ta Lu, Zhen Li, Futang Peng, Alek-

sei Timofeev, Yi-Ting Chen, Yaxi Gao, Tom Duerig, An-

drew Tomkins, and Sujith Ravi. Graph-rise: Graph-

regularized image semantic embedding. arXiv preprint

arXiv:1902.10814, 2019.

[15] Yoshiyuki Kawano and Keiji Yanai. Foodcam-256: a large-

scale real-time mobile food recognition system employ-

ing high-dimensional features and compression of classifier

weights. In Proceedings of the 22nd ACM international con-

ference on Multimedia, pages 761–762, 2014.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[17] Aoxue Li, Tiange Luo, Zhiwu Lu, Tao Xiang, and Liwei

Wang. Large-scale few-shot learning: Knowledge transfer

with class hierarchy. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 7212–

7220, 2019.

[18] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei

Bursuc. Dense classification and implanting for few-shot

learning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 9258–9267,

2019.

[19] Niki Martinel, Gian Luca Foresti, and Christian Micheloni.

Wide-slice residual networks for food recognition. In 2018

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 567–576. IEEE, 2018.

[20] Bryan McCann, James Bradbury, Caiming Xiong, and

Richard Socher. Learned in translation: Contextualized word

vectors. In Advances in Neural Information Processing Sys-

tems, pages 6294–6305, 2017.

[21] Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korat-

tikara, Alex Gorban, Nathan Silberman, Sergio Guadarrama,

George Papandreou, Jonathan Huang, and Kevin P Murphy.

Im2calories: towards an automated mobile vision food di-

ary. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1233–1241, 2015.

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,

and Jeff Dean. Distributed representations of words and

phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013.

[24] Weiqing Min, Shuqiang Jiang, Linhu Liu, Yong Rui, and

Ramesh Jain. A survey on food computing. ACM Computing

Surveys (CSUR), 52(5):1–36, 2019.

[25] Weiqing Min, Shuqiang Jiang, Jitao Sang, Huayang Wang,

Xinda Liu, and Luis Herranz. Being a supercook: Joint

food attributes and multimodal content modeling for recipe

retrieval and exploration. IEEE Transactions on Multimedia,

19(5):1100–1113, 2016.

[26] Pradyumna Narayana, Aniket Pednekar, A. Krishnamoorthy,

Kazoo Sone, and Sugato Basu. Huse: Hierarchical universal

semantic embeddings. ArXiv, abs/1911.05978, 2019.

1719



[27] Duc Thanh Nguyen, Zhimin Zong, Philip O Ogunbona, Yas-

mine Probst, and Wanqing Li. Food image classification us-

ing local appearance and global structural information. Neu-

rocomputing, 140:242–251, 2014.

[28] Jon Noronha, Eric Hysen, Haoqi Zhang, and Krzysztof Z

Gajos. Platemate: crowdsourcing nutritional analysis from

food photographs. In Proceedings of the 24th annual ACM

symposium on User interface software and technology, pages

1–12, 2011.

[29] Jeffrey Pennington, Richard Socher, and Christopher D Man-

ning. Glove: Global vectors for word representation. In

Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543,

2014.

[30] Parisa Pouladzadeh and Shervin Shirmohammadi. Mobile

multi-food recognition using deep learning. ACM Transac-

tions on Multimedia Computing, Communications, and Ap-

plications (TOMM), 13(3s):1–21, 2017.

[31] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning

Dai, and Xuanjing Huang. Pre-trained models for nat-

ural language processing: A survey. arXiv preprint

arXiv:2003.08271, 2020.

[32] Alec Radford. Improving language understanding by gener-

ative pre-training. 2018.

[33] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol

Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-

sell. Meta-learning with latent embedding optimization.

In International Conference on Learning Representations,

2019.

[34] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-

genbuchner, and Gabriele Monfardini. The graph neural

network model. IEEE Transactions on Neural Networks,

20(1):61–80, 2008.

[35] Eli Schwartz, Leonid Karlinsky, Rogerio Feris, Raja Giryes,

and Alex M Bronstein. Baby steps towards few-shot learning

with multiple semantics. arXiv preprint arXiv:1906.01905,

2019.

[36] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-

cal networks for few-shot learning. In Advances in neural

information processing systems, pages 4077–4087, 2017.

[37] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS

Torr, and Timothy M Hospedales. Learning to compare: Re-

lation network for few-shot learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1199–1208, 2018.

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[39] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model

scaling for convolutional neural networks. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings

of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research,

pages 6105–6114, Long Beach, California, USA, 09–15 Jun

2019. PMLR.

[40] Ryosuke Tanno, Koichi Okamoto, and Keiji Yanai. Deep-

foodcam: A dcnn-based real-time mobile food recognition

system. In Proceedings of the 2nd International Workshop

on Multimedia Assisted Dietary Management, pages 89–89,

2016.

[41] Hao Wang, Doyen Sahoo, Chenghao Liu, Ee-peng Lim, and

Steven CH Hoi. Learning cross-modal embeddings with ad-

versarial networks for cooking recipes and food images. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 11572–11581, 2019.

[42] Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, and

Joseph E Gonzalez. Tafe-net: Task-aware feature embed-

dings for low shot learning. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1831–1840, 2019.

[43] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe,

Ken ichi Kawarabayashi, and Stefanie Jegelka. Representa-

tion learning on graphs with jumping knowledge networks.

In Proceedings of the 35th International Conference on Ma-

chine Learning, 2018.

[44] Ruihan Xu, Luis Herranz, Shuqiang Jiang, Shuang Wang,

Xinhang Song, and Ramesh Jain. Geolocalized modeling

for dish recognition. IEEE transactions on multimedia,

17(8):1187–1199, 2015.

[45] Hongguang Zhang, Jing Zhang, and Piotr Koniusz. Few-

shot learning via saliency-guided hallucination of samples.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2770–2779, 2019.

[46] Feng Zhou and Yuanqing Lin. Fine-grained image classifi-

cation by exploring bipartite-graph labels. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1124–1133, 2016.

[47] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong

Sun. Graph neural networks: A review of methods and ap-

plications. arXiv preprint arXiv:1812.08434, 2018.

1720


