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Abstract

In this paper, we focus on exploring the fusion of images

and point clouds for 3D object detection in view of the com-

plementary nature of the two modalities, i.e., images pos-

sess more semantic information while point clouds special-

ize in distance sensing. To this end, we present a novel two-

stage multi-modal fusion network for 3D object detection,

taking both binocular images and raw point clouds as input.

The whole architecture facilitates two-stage fusion. The first

stage aims at producing 3D proposals through sparse point-

wise feature fusion. Within the first stage, we further exploit

a joint anchor mechanism that enables the network to uti-

lize 2D-3D classification and regression simultaneously for

better proposal generation. The second stage works on the

2D and 3D proposal regions and fuses their dense features.

In addition, we propose to use pseudo LiDAR points from

stereo matching as a data augmentation method to densify

the LiDAR points, as we observe that objects missed by the

detection network mostly have too few points especially for

far-away objects. Our experiments on the KITTI dataset

show that the proposed multi-stage fusion helps the network

to learn better representations.

1. Introduction

Object detection on 2D images has made great progress

in recent years using deep neutral networks [7, 22]. In con-

trast, 3D object detection for 3D scene understanding, al-

beit being crucial and indispensable for many real-world

applications such as autonomous driving, still faces great

challenges. The most commonly used data in 3D object de-

tection algorithms is point clouds scanned by LiDAR sen-

sors. Although point clouds data could provide precise

depth information, on the other hand, they are unordered,

sparse, and unevenly distributed. Algorithms using im-

ages only for 3D object detection have also been proposed

[3, 2, 27, 28, 13], but generally show very poor performance
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compared with the algorithms using point clouds, despite

the rich color and semantic information in images. In view

of complementary nature of LiDAR and images, we pro-

pose a method to deeply fuse both types of data and present

an effective way to combine the best of both modalities.

1.1. Challenges

LiDAR points provide abundant geometry information

and images possess rich semantic information. [4, 10] pro-

pose to first transform point clouds to various views to ob-

tain compact representation, then apply 2D Convolutional

Neural Networks(CNN) for feature maps of 2D views and

finally fuse them with images feature maps. However, dur-

ing projection, it will inevitably suffer from information

loss. By fusing multi-sensor features of each region of in-

terest(RoI) with predefined anchor boxes, the fusing process

becomes very slow due to learning redundant information.

[19] proposes to adopt a 2D detector first and conduct 3D

object detection for points lying in the predicted frustum.

However, the fusion only occurs on the input side, and thus

the advantages of both modalities are not fully utilized. An-

other line of solutions chooses to fuse image and LIDAR

feature maps at different levels of resolutions [16, 15]. [16]

proposes a single-stage detector by fusing point-wise multi-

sensor features but is still subject to the sparsity of points es-

pecially for distant objects. [15] utilizes images to produce

dense depth as a compensation for sparse points while ig-

noring the strength of images on 2D object detection which

we believe should be coupled together with the 3D object

detection.

1.2. Our Contributions

In this paper, we propose a deeply fused multi-modal

two-stage 3D object detection framework, taking full ad-

vantage of images and point clouds. During the first stage,

instead of subdividing point clouds into regular 3D voxels

or organising data into different views, we utilize Point-

net++ [21] to directly learn 3D representations from point

clouds for classification and segmentation. For binocular

images, we apply modified Resnet-50 [8] and FPN [17] as
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our backbone network to learn discriminative feature maps

for future point-wise feature fusion. The good performance

of [19] has shown great power of images on the 3D detec-

tion task. Inspired by that, we also propose a new reprojec-

tion loss to tightly combine 2D detection and 3D detection

together, which benefits the 3D proposals by leveraging the

2D constraints.

To further utilize the ability of multi-modal fusion, we

gather point clouds and image areas in proposals generated

by the first stage, and then adopt a RoI-wise fusion to asso-

ciate interior feature maps. At last, a light-weight PointNet

is applied to refine final predictions.

By point-wise feature fusion, we can enrich each point

with abundant semantic information from binocular images.

From RoI-wise feature fusion, we can achieve a robust lo-

cal proposal representation. With the joint anchor mecha-

nism, we can restrain 3D regression in a well constrained

procedure. Besides, we propose to use pseudo LiDAR

point clouds to enhance the sparsity of Ground Truth (GT)

point clouds, as objects far away from the camera may only

possess very few points while images could provide ex-

tra geometry information by generating pseudo-lidar point

clouds. So we adaptively crop pseudo lidar points and add

it to GT point clouds as a data augmentation method which

also leads to a considerable improvement to our network.

We summarize the main contributions of this work as

follows:

• We propose a two-stage fusion framework to combine

the best of binocular image pairs and point clouds for

3D object detection.

• By projecting 3D bounding box to 2D image space,

we propose a 2D-3D coupling loss to take full use of

image information and constrain the 3D bounding box

proposal to conform to the 2D bounding box.

• We compensate the sparsity of point clouds by adding

pseudo-lidar points to the real 3D scene.

We evaluate our proposed network on the standard KITTI

2D/3D object detection dataset. By thorough ablation stud-

ies, we demonstrate the effectiveness of each novel building

block of our method.

2. Related Works

Over recent years, we have witnessed a growing trend

of algorithms [10, 4, 11, 14, 18, 23, 31, 1, 12, 26, 25, 24]

on the 3D object detection task. These algorithms can be

generally grouped in image-based, LiDAR-based and multi-

sensor based methods, which we review in detail as follows.

2.1. Image Based 3D Object Detection

There are existing algorithms taking only monocular im-

ages as input to generate final 3D bounding boxes. Several

works are inspired to explore the power of images on 3D ob-

ject detection task. [2, 3] formulate the 3D geometric infor-

mation of objects as an energy function to score the prede-

fined 3D boxes, but meanwhile suffer from the inavailability

of depth information. [5] proposes to estimate 3D boxes us-

ing the geometry relations between 2D box edges and 3D

box corners. [28] formulates an end-to-end multi-level fu-

sion method to predict 3D bounding boxes by concatenating

the RGB image and the monocular-generated depth map.

A few other works focus on leveraging binocular im-

ages for 3D object detection. [27] proposes to produce the

pseudo-LiDAR point cloud by depth predicted from differ-

ent monocular or binocular depth estimation algorithms and

then make use of point cloud-based frameworks to obtain

the final prediction. They argue it is not the quality of the

data but its representation that accounts for the majority of

the difference between 2D images and 3D point clouds. [13]

exploits the keypoint and binocular boxes constraints and

uses a dense region-based photometric alignment method

to ensure 3D localization accuracy.

2.2. Point Cloud Based 3D Object Detection

[30] proposes to represent the scene from the Bird’s Eye

View (BEV) and apply a single-stage detector that outputs

oriented 3D objects. [32] divides a point cloud into equally

spaced 3D voxels and transforms a group of points within

each voxel to learn descriptive representations. By pro-

cessing point clouds as voxel input or projecting to vari-

ous views and applying 2D convolution or 3D convolution

to make final prediction, these methods may ineluctably ig-

nore information of one dimension. [23] formulates a dif-

ferent method that takes the whole point cloud as input and

predicts final bounding boxes through a two-stage network.

Although the LiDAR sensors could offer precise depth in-

formation, distant objects still possess very sparse points

making it tough for detection while images could provide

additional information.

2.3. Multi­sensor Based 3D Object Detection

MV3D [4] projects LiDAR point cloud to BEV to gen-

erates proposals, and then fuses BEV features, images fea-

tures and front view features together to predict final 3D

bounding boxes. AVOD [10] proposes a feature fusion Re-

gion Proposal Network(RPN) that utilizes multiple modali-

ties to produce positive proposals. These methods still have

a limited power when detecting small objects due to the loss

of spatial information after projecting point cloud to differ-

ent views. F-PointNet [19] proposes to generate frustum

proposals from 2d object detection and then apply Point-

Net [20] based on interior points in each proposal. But the

2D detector and PointNet are two separate cascaded stages

and the final results heavily rely on the 2D detection results.

[16, 15] utilize continuous convolution to fuse multi-scale
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Figure 1. The architecture of our proposed network. It consists of two stages: region proposal stage and box refinement stage. The first

stage aims at generating accurate proposals by applying point-wise feature fusion and 2D-3D coupling anchors. The second stage conducts

RoI-wise feature fusion to learn more robust representations and predict final confidence and box refinement.

convolutional feature maps from each sensor but ignoring

the 2D-3D constraints between images and LiDAR points.

3. Proposed Method

With the development of cameras, the resolution and

quality of images have been greatly improved, which en-

ables images to play a more and more important role on the

3D object detection task. But fusing information between

LiDAR points and images is a tough process, because Li-

DAR points represent the world’s native geometry structure

while images represent a RGB projection of the world onto

the camera plane. Instead of projecting LiDAR points to

multi views which leads to information loss, we propose to

deeply fuse information between raw points and images in

two stages.

The proposed method, depicted in Fig. 1, utilizes binoc-

ular images and corresponding LiDAR point cloud as in-

put. In the first stage, the binocular images are passed to

a feature extractor to extract their feature maps for follow-

ing point-wise feature fusion. Given point clouds, we add

a classification branch to predict confidence for each point

and seed 3D anchors centered on foreground points. Those

3D anchors are then projected to images and adopted for

2D classification and regression. During the second stage,

we apply RoI-wise fusion for each pair of 2D and 3D pro-

posals generated by the first stage to learn more robust and

discriminative representation for final predictions.

3.1. Feature Extractor

Our proposed architecture for feature extraction is de-

picted in Fig. 2. For images, we use a modified ResNet-

50 [8] as the encoder which takes an image of size

(3, H,W ) as input and produces a feature map of size

(1024, H
32 ,

W
32 ). The output feature map contains high level

semantic information but has low resolution which is hard

to be leveraged for our point-wise feature fusion. Inspired

by FPN [17], a bottom-up decoder is applied to upsample

the feature map back to multi-scale. Details are depicted in

the upper part of Fig. 2. Feature maps upsampled from the

decoder and corresponding feature maps from encoder are

concatenated and then passed through a 3x3 convolutional

layer. We choose the bilinear interpolation for upsampling.

For point cloud, we use Pointnet++ [21] as our back-

bone network. Four set-abstraction modules with multi-

scale grouping are used to subsample points into groups

with sizes of 4096, 1024, 256, 64 and then feature propaga-

tion modules are employed to obtain the point-wise feature

vectors for segmentation and proposal generation.

3.2. Point­wise Feature Fusion

As shown in Fig. 2, the output multi-scale image

feature maps are of size (B,1024, H32 ,W32 ), (B,512, H16 ,W16 ),

(B,256,H8 ,W8 ), (B,64,H4 ,W4 ). Image feature maps of dif-

ferent scales contain different levels of semantic informa-

tion and receptive fields. Similarly, set abstraction mod-

ule is designed to build a hierarchical grouping of points
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Figure 2. The image and LiDAR backbone networks that we ap-

ply in our proposed architecture. The upper part is a modified

ResNet-50 and FPN feature extractor. The lower part is the four

set-abstraction module and feature propagation module of Point-

Net++.

and abstract larger and larger local regions along the hierar-

chy. Every time points are passed through the set abstrac-

tion layer, the number of points in the group reduces and

each point is enriched with stronger representation of larger

regions. So we propose to apply point-wise fusion at differ-

ent levels of feature maps to enable points to possess high

level semantic information from RGB images. Firstly, we

extract XYZ coordinates of points in the four sized groups

and project them to image feature maps of its correspond-

ing size. For an example, given coordinates of points in the

group with size 1024, we project it to image feature maps

with size of (1024, H32 , W
32 ). In the same way, groups with

sizes 4096, 256, 64 correspond to image feature maps of

size (B,1024, H32 ,W32 ),(B,256,H8 ,W8 ),(B,64,H4 ,W4 ).

3.3. Proposal Generation Network

3.3.1 Joint Anchor

Before generating proposals, we need to seed reasonably

anchors for the scene. Inspired by [23], we segment the raw

point cloud based on the point-wise fused features and gen-

erate 3D proposals from the segmented foreground points

simultaneously to constrain the search space for 3D pro-

posal generation. For each 3D anchor, its size is predefined

as (L=3.9,W=1.6,H=1.5) meters which is obtained form the

clustering of training dataset. These 3D anchors are located

at the center of each foreground point and then projected

to images for 2D anchors producing. Benefited from the

projection, there is no need to seed extra 2D anchors of dif-

ferent ratios for images because it’s scale-adapted benefited

from projection. With the anchor generation mechanism,

2D and 3D regions are tightly connected for following clas-

sification and regression.

Crop

Multi-scale Image Feature

Project

Classification 
Head

2D Regression 
Head

3D Regression 
Head

Point-wise feature

Project

Reprojection 
Loss

Figure 3. The process of reprojection with joint anchor mecha-

nism.

3.3.2 Joint Proposal

With 2D-3D anchor pairs mentioned above, we propose a

joint proposal generation scheme that generates both 2D

and 3D bounding box proposals simultaneously.

A 3D bounding box is represented as (xp, yp, zp, hp, wp,
lp, θ) in the LiDAR coordinate system, where (xp, yp, zp)
is the object center location, (hp, wp, lp) is the object size,

and θ is the object orientation from the bird’s eye view.

A 2D bounding box is represented as (xi, yi, hi, li), where

(xi, yi) is the 2D bounding box center and (hi, li) is the box

size. The projection from a point x in velodyne coordinate

system to image coordinates y follows:

y =





f
(i)
u 0 c

(i)
u −f

(i)
u b

(i)
x

0 f
(i)
v c

(i)
v 0

0 0 1 0





(

R
(0)
rect(R

cam
velox+ tvelocam)
1

)

,

(1)

where f
(i)
· , c

(i)
· and b

(i)
x are intrinsic parameters of camera

i, R
(0)
rect is rectifying rotation matrix of camera 0, Rcam

velo is

rotation matrix, and tvelocam is translation vector.

For the classification prediction branch, we force 2D-

3D anchor pairs to share the same confidence score. Given

the point-wise fused features, we append one segmentation

head for estimating foreground mask. Then 3D anchors are

seeded at the center of each foreground point and projected

to images to perform 2D classification prediction. For the

2D anchors, the one with IoU less than 0.3 are considered

background anchors, while the one with IoU greater than

0.5 are considered as foreground anchors during training.

We can further reduce the number of anchors while not low-

ering the quality of proposals by keeping only foreground

anchors verified by both 2D and 3D classification. We use

the binary cross entropy loss for 2D segmentation and the

focal loss for 3D segmentation as

Lcls 2D = −(
1

Npos

∑

log(ppos) +
α

Nneg

∑

log(1− p
neg)) ,

(2)
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Figure 4. RoI-wise feature fusion module for robust and dense rep-

resentation learning.

Lcls 3D = −β(1− P )γ log(P ) , (3)

where P means the possibility of foreground points.

Since the 2D and 3D anchor pairs are naturally produced

by our joint anchoring mechanism, we hope to dig deeper

to make full use of their inter-connection. As mentioned be-

fore, images represent a RGB projection of the world onto

the camera plane, and thus 2D anchors correspond to the

frustum area of the real world. By regressing 2D propos-

als, we are regressing a frustum area to its Ground Truth

regions. Although it cannot provide precise 3D locations

for 3D proposals, it’s still able to offer coarse directions for

3D regression. So we propose a reprojection loss to perform

better proposal generation.

Firstly, we identically deliver 2D and 3D anchors to re-

spective heads for their own regression. For 3D anchors,

we compute center offsets (∆x1,∆y1,∆z1), predefined

size offsets (∆l1,∆w1,∆h1) and the orientation θ. For

2D anchors, we compute 2D center offsets (∆x2,∆y2)
and predefined size offsets (∆x2,∆h2). Then we ob-

tain regressed 3D anchors (x
′

p, y
′

p, z
′

p, h
′

p, w
′

p, l
′

p, θ
′

) and 2D

anchors (x
′

i, y
′

i, h
′

i, l
′

i). Afterwards, we project regressed

3D anchors onto images to generate 2D anchors of size

(x
′′

p , y
′′

p , h
′′

p , l
′′

p ). So we can compute our reprojection loss

between (x
′

i, y
′

i, h
′

i, l
′

i) and (x
′′

p , y
′′

p , h
′′

p , l
′′

p ), which couples

the 2D/3D boxes tightly together. Our experimental results

(see Sec. 4.2) show the reprojection loss improves the qual-

ity and recall of the proposals. Our regression loss is com-

posed of three parts as

Lreg = L
2D
reg + L

3D
reg + αL

reprojection
reg . (4)

3.4. Box Refinement

3.4.1 Proposal-wise Feature Fusion

After obtaining high quality 3D bounding box proposals

by the first stage, we aim at further refining the box loca-

tions and orientations for final predictions during the second

stage.

Although we have conducted point-wise fusion to enrich

points with high level semantic information, it’s only point-

to-pixel level fusion, which may be still too sparse for learn-

ing specific local features of each proposal. So we propose

to apply RoI-wise feature fusion to learn denser representa-

tion for refinement, which is a region-to-region level as de-

picted in Fig. 4. For 3D proposals, following [23], we trans-

form the points belonging to each proposal to the canon-

ical coordinate system of the corresponding 3D proposal.

Meanwhile, we also include the distance of each point to the

sensor as a compensation for the loss of depth information.

Then the interior points of canonical coordinate system are

passed to several MLPs to encode local point features. For

2D proposals we firstly extract image feature maps from

the last layer of the multi-scale features. As downsampling

leads to low resolution of feature maps, the increase in re-

ceptive field caused by convolutions makes it hard for fusion

of objects with very sparse LiDAR points. After obtaining

feature maps of 2D regions, we deliver it through several

fully-connected layers to encode to the same dimension of

3D local point features. At last, we concatenate local point

features, local point coordinates, depth information and lo-

cal 2D region features together to form a strong representa-

tion.

3.4.2 Final Prediction

Given the high quality 3D proposals and corresponding rep-

resentative fused features, we adopt a light-wight Point-

Net [20] consisting of two MLP layers to encode the fea-

tures to a discriminative feature vector. Final confidence

classification and 3D box refinement are achieved by two

MLP layers.

3.5. Pseudo­LiDAR Fusion

Due to the sparseness of the point cloud, some objects

we need to detect may contain only a very small number

of points, so we hope to improve the detection performance

by compensating this sparseness via pseudo-LiDAR point

clouds. Through binocular images, we can predict pixel-

wise disparity through stereo matching, so that the corre-

sponding pseudo-LiDAR point of each pixel can be ob-

tained by inverse projection. For an instance, a highly oc-

cluded or distant object of size 10x10px in images only pos-

sess 10 points in 3D scene, but we can produce 100 pseudo

points by predicting pixel-wise depth.

Since we want to focus on the target that needs to be

detected, we need to remove other unnecessary points to

reduce the noise in the Pseudo-LiDAR points. During the

training stage, we only fuse the pseudo point clouds within

the GT 2D boxes. During the inference stage, we instead
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Table 1. Performance comparison of 3D object detection with previous methods on the KITTI test split by submitting the results to the

official test server. The evaluation metric is Average Precision(AP) with IoU threshold 0.7 for Cars.

Method Modality
3D AP(%) 2D AP(%)

Easy Moderate Hard Easy Moderate Hard

MV3D[4] RGB+LiDAR 71.09 62.35 55.12 - - -

AVOD[10] RGB+LiDAR 73.59 65.78 58.38 95.17 89.88 82.83

AVOD-FPN[10] RGB+LiDAR 81.94 71.88 66.38 94.70 88.92 84.13

F-PointNet[19] RGB+LiDAR 81.20 70.39 62.19 95.85 95.17 85.42

ContFuse[16] RGB+LiDAR 82.54 66.22 64.04 - - -

VoxelNet[32] LiDAR 77.49 65.11 57.73 - - -

Second[29] LiDAR 83.13 73.66 66.20 93.72 90.68 85.63

PointPillars[11] LiDAR 82.58 74.31 68.99 94.00 91.19 88.17

PointRCNN[23] LiDAR 86.96 75.64 70.70 95.92 91.90 87.11

Ours RGB+LiDAR 87.22 77.28 72.04 96.21 93.45 88.68

resort to fusing Pseudo-LiDAR points within the predicted

2D boxes. Due to the error of the depth estimation, the re-

sulting pseudo point cloud is inaccurate, including long tails

and local misalignment.The long tail effect is mainly due to

the inaccurate depth prediction at the edge of the object,

for which we design a point cloud statistical filter to filter

out all the outliers. The local misalignment effect is caused

by the error in the overall depth prediction. Although the

predicted point clouds are similar in shape to the original

objects, there will be a certain forward or backward devi-

ation in the overall depth, so we use the GT point clouds

to rectify the pseudo point clouds. For each predicted 2D

bounding box, we extract corresponding GT point cloud PG

and pseudo point cloud PP , and then calculate the average

distance Di from per pseudo point PPi
to the nearest K GT

points. Then we move the point cloud as a whole by a cer-

tain distance to minimize the sum of all distances
∑

Di to

achieve depth correction.

4. Experimental Results

We evaluate our proposed 3D object detector on the

public KITTI [6] benchmark and compare it with previous

state-of-the-art methods in both 3D object detection and 2D

object detection tasks. Extensive ablation study is also con-

ducted which evaluates how different components affect our

model.

4.1. Experiment Setup

4.1.1 Dataset and Metric

The KITTI object detection benchmark provides 7481 train-

ing frames and 7518 testing frames but only offers labels for

training frames in order to prevent overfitting. Since the ac-

cess to the ground truth for the test set is not available, we

follow the official setup to split the training samples into a

training set consisting of 3712 frames and a validation set

consisting of 3769 frames. The mean Average Precision

(mAP) is utilized as our evaluation metric following the of-

ficial evaluation protocol.

4.1.2 Implement Details

For our image backbone network, we resize binocular im-

ages to (600, 2000) and feed them to extract multi-scale fea-

tures simultaneously. For the LiDAR backbone network,

the point cloud is firstly cropped to the range of [0., 70.]x[-

40., 40.]x[-3., 1.] meters along (X, Y, Z) axes respectively,

following [32, 4]. During training, a proposal is consid-

ered as positive if its maximum 3D IoU with ground-truth

boxes is above 0.6 and negative below 0.45. We use 3D IoU

0.55 as the minimum threshold of proposals for the training

of box regression head. Nonmaximum suppression (NMS)

with IoU thread 0.85 is applied to remove the redundant

proposals. We keep top 9000 proposals for regression in

stage one and top 300 proposals in stage two during train-

ing.

4.1.3 Training Details

We train our models for 200 epochs with batch size 8 for

stage one and 70 epochs with batch size 1 for stage two on

one GTX 2080Ti GPU. We use the ADAM [9] optimizer

with an initial learning rate 0.002 for the first 150 epochs

and then decayed by 0.1 in every 10 epochs during the first

stage, while the second stage is trained for 70 epochs with

batch size 1 and learning rate 0.002. Considering the lim-

ited amount of training data, we also conduct point clouds

data augmentation of random flipping, random scaling with

a uniformly sampled scale from 0.95∼1.05 and random ro-

tation with a degree sampled from −45◦ ∼ 45◦ to allevi-
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Table 2. Ablation study on KITTI object detection benchmark training set with four-fold cross validation for Car class.

Model
3D AP(%) 2D AP(%)

Easy Moderate Hard Easy Moderate Hard

LiDAR only 83.25 76.65 73.91 94.22 86.39 83.15

+ Point-wise Fusion +1.91 +1.37 +0.22 +1.19 +0.53 +0.12

+ RoI-wise Fusion +2.82 +3.73 +2.75 +2.43 +2.57 +2.16

+ Reprojection Loss +4.07 +3.29 +3.26 +2.81 +3.15 +5.44

+ Binocular Images +0.02 +0.49 +0.55 +0.17 +0.75 +0.97

Full Model 91.08 83.19 77.12 98.43 93.85 90.39

Table 3. The number of mispredicted 2D object detection results

on validation set.

Class Before After

Easy 83 27

Moderate 3672 713

Hard 906 104

Table 4. Recall of proposals with different numbers of ROIs before

and after applying 2D-3D reprojection loss for the car class on the

val split at moderate difficulty.

RoI Before(IoU=0.7) After(IoU=0.7)

50 30.59 40.91

100 68.04 71.66

150 70.66 74.45

200 73.23 76.03

250 77.79 80.87

300 79.55 82.13

ate the overfitting problem. Since per-object augmentations

cannot be applied in the camera images, such augmenta-

tion strategies are used only for the LiDAR backbone pre-

training process.

4.1.4 Main Results

As shown in Table 1, we compare our model with state-

of-the-art approaches in 3D object detection and 2D object

detection on the KITTI test dataset. Through deep fusion of

images and point clouds, we have the best AP on the easy

subset for 2D object detection, and our model outperforms

all other methods measured by moderate and hard APs for

3D object detection. We show qualitative results in Fig-

ure 5.

4.2. Ablation Study

To further analyze the ability of our proposed deeply

fused multi-modal 3D object detection method, we conduct

extensive ablation studies on the KITTI train/val set to ex-

plore the effects of our components. We use the official

training and validation split and accumulate the evaluation

results over the whole training set. The ablation study re-

sults are shown in Table 2. Our baseline model only uses

LiDAR as input without any fusion with images.

4.2.1 Effects of Multi-modal Feature Fusion

Results in Table 2 confirm that feature fusion over two

stages helps improve the performance of our model in dif-

ferent degrees. By applying point-wise fusion, it brings

1.91%/1.37%/0.22% AP gain in 3D detection of easy,

moderate and hard class respectively. It’s a reward of pro-

viding every LiDAR points with different level 2D semantic

information as a compensation for XYZ coordinates. But

we can observe that there is less improvement for the hard

class where the objects usually have fewer LiDAR points.

It’s most likely because that the fusion is in a point-wise

level, so it’s naturally unfair for those objects owning fewer

LiDAR points to get more information from RGB images.

That is why we propose to apply RoI-wise fusion during

stage two. RoI-wise feature fusion improves 3D detection

by 2.82%/3.73%/2.75%AP in easy/moderate/hard class re-

spectively. Because the fusion is conducted in a region-to-

region level, we can achieve a stable improvement in all

three classes. This proves the dense image features are ben-

eficial for learning robust and discriminative representation

of local proposals.

4.2.2 Effects of Reprojection Loss

As is shown in Table 2, the 2D-3D reprojection loss plays

the most important role for both 2D object detection and 3D

object detection. We analyze that 2D regression and 3D re-

gression are closely coupled together and mutually reinforc-

ing. During 2D regression, 3D proposals could provide su-

pervision from a higher dimension. During 3D regression,

2D regression could offer a coarse region where the 3D re-

gression process must lie in. They complement each other

and lead to a win-win situation. We also conduct extensive
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Table 5. Results of 3D object detection in AP with IoU=0.7 for

Cars using different types of fusion with Pseudo LiDAR Points on

the validation split.

Data Source Easy Moderate Hard

Without Fusion 91.08 83.19 77.12

By 2D boxes 90.27 84.51 77.94

By 3D boxes 92.19 86.80 79.62

experiments to explore its performance as shown in Table 3.

We count the numbers of mispredicted objects which means

those predictions have no interaction area(IoU=0) with GT

2D bounding boxes. There is an obvious decline we can ob-

serve from the results. It proves that we can rectify the final

results by precise 2D information provided by images. We

also calculate the recall of 3D bounding boxes with various

numbers of proposals before and after applying the repro-

jection loss. We can achieve different gains as shown in Ta-

ble 4, which reveals the proposed loss is helpful to proposals

to regress to an ideal position. Our loss is complementary

to other methods which take LiDAR and images as input.

4.2.3 Effects of Binocular Images

By taking binocular images as input, our model obtains a

slight improvement of all classes. In most cases, monocular

images can provide enough information we desire for ob-

jects, but in some extreme occasions, it can offer extra cues

which are critical for detection. For an example, a highly

or completely occluded car pictured by the left camera may

get a clear view from the right camera. With the availability

of binocular images, we will suffer less from the occlusions.

4.2.4 Effects of Pseudo LiDAR Points

We conduct two-fold cross validation and the results in Ta-

ble 5 verify that fusion with Pseudo LiDAR Points could

bring improvements for the final results at different levels.

There are improvements we can observe for the moderate

and hard classes by fusing pseudo points cropped by 2D

predictions. We notice that there is an accuracy drop for the

easy class, which is possibly because objects of easy class

possess enough number of points for network and cannot

squeeze much juice from pseudo points. In order to ex-

plore the upper limit of the fusion, we fuse the point cloud

extracted through the GT 3D bounding boxes, which is the

purest noise-free point cloud. We use pseudo points lying in

GT 3D bounding boxes during training and validation. We

can obtain a great gain by the fusion especially for objects

of hard class which benefit most from denser input points.

The experimental results verify pseudo LiDAR points could

enhance the performance of network by this method of fu-

sion. With the improvement of photography technology, we

can obtain pictures which would be influenced less by the

light and possess higher resolution. By that time, we can

generate more preciser pseudo LiDAR points which could

play a vital role in future image-based 3D object detection

task.

4.3. Qualitative Results and Discussion

Figure 5. Visualization of final results.

We show qualitative 3D object detection results of the

proposed detector on the KITTI benchmark in Figure 5. We

can observe that the predicted 3D bounding boxes fit tightly

to each object, even for the distant and highly occluded cars.

5. Concluding Remarks

In this paper, we have proposed an effective deeply fused

multi-model framework for 3D object detection that aims

at exploring the association between LiDAR and images to

perform precise 3D localization. Our approach is realized

by feature fusing during two stages. The first stage focuses

on acquiring high quality 3D proposals for the next stage

by taking raw LiDAR points and images as input and ap-

plies point-wise fusion with 2D-3D reprojection constraints

in a sparse method. The second stage concentrates on learn-

ing representative and robust features of each proposals in a

dense way to predict final refined 3D bounding boxes. We

also propose to leverage pseudo LiDAR points as an aug-

mentation for the sparse point clouds. Our experimental re-

sults show our approach outperforms previous baselines and

is capable to combine both LiDAR’s and images’ strengths.
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