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Abstract

Street-to-aerial image geo-localization, which matches a

query street-view image to the GPS-tagged aerial images in

a reference set, has attracted increasing attention recently.

In this paper, we revisit this problem and point out the ig-

nored issue about image alignment information. We show

that the performance of a simple Siamese network is highly

dependent on the alignment setting and the comparison of

previous works can be unfair if they have different assump-

tions. Instead of focusing on the feature extraction under the

alignment assumption, we show that improvements in met-

ric learning techniques significantly boost the performance

regardless of the alignment. Without leveraging the align-

ment information, our pipeline outperforms previous works

on both panorama and cropped datasets. Furthermore, we

conduct visualization to help understand the learned model

and the effect of alignment information using Grad-CAM.

With our discovery on the approximate rotation-invariant

activation maps, we propose a novel method to estimate the

orientation/alignment between a pair of cross-view images

with unknown alignment information. It achieves state-of-

the-art results on the CVUSA dataset.

1. Introduction

Image based geo-localization aims at providing image-

level GPS location by matching a query street/ground im-

age with the GPS-tagged images in a reference dataset.

Instead of relying on street-view images [25] as the ref-

erence dataset, street-to-aerial geo-localization [12] lever-

ages GPS-tagged aerial-view images as the reference, given

their more complete coverage of the Earth than street-

view images. In the early work [12], street-to-aerial geo-

localization is proposed to coarsely localize isolated im-

ages where no nearby ground-level image is available. With

emerging deep learning techniques, recent works [8,21] are

able to achieve high geo-localization accuracy on city-scale

datasets such as CVUSA [26] and Vo [21]. In scenarios
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Figure 1: An example of alignment between street and

aerial views. Yellow line denotes the South direction (0◦).

where GPS signal is noisy [20], image geo-localization can

provide additional information to achieve fine-grained lo-

calization. Street-to-aerial geo-localization is also proved

effective on city-scale street navigation [10]. These practi-

cal applications make cross-view image geo-localization an

important and attractive research problem in the computer

vision community.

Recently, a number of works [3, 8, 13, 14, 21] are pro-

posed to address the street-to-aerial geo-localization prob-

lem and the performance seems to be improved signifi-

cantly. A key ingredient of the prior work is to learn a fea-

ture embedding, such that the distance of a matched pair of

images is small whereas the distance of the unmatched pair

is large in this feature space, which is also known as met-

ric learning. However, existing works have different set-

tings about the alignment between street and aerial views

(Fig. 1), which can lead to unfair comparison. CVM-

Net [8] is trained with randomly rotated aerial images with-

out leveraging alignment information in the training set,

thus is applicable for inference scenarios where alignment

is not available, e.g. images on social media. [3, 21] take

advantage of the alignment information as additional su-

pervision, but they do not assume the inference image pair

to be well aligned. [3, 8, 21] also apply their algorithms

to cropped street view image dataset, i.e. Vo dataset [21]
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(Fig. 2), where panorama street view is not available. On

the contrary, [14, 17, 18] aim at image or feature transfor-

mation from one view to the other, which is dependent on

the geometric relationship between two views. Although

these techniques can boost the retrieval performance, but

their presupposition does not hold when the alignment is

not available for inference or only cropped street view im-

ages are provided. It can be unfair to claim state-of-the-art

(SOTA) performance based on comparison with methods

which do not have alignment assumption like [8]. These

challenges motivate us to study three problems: 1) how the

alignment information would affect the retrieval model in

terms of performance (Table 1) and beyond (Fig. 4); 2)

without assuming the inference image pairs are aligned,

how to effectively improve the retrieval performance; 3) is

it possible to estimate the alignment information when no

explicit supervision is given?

Validation
Training

Aligned Rotate

Aligned 60.1% 43.7%

Rotate 13.5% 44.2%

Table 1: Top-1 recall accuracy of Siamese VGG with differ-

ent alignment settings (Aligned or Randomly Rotated (Rotate for

short)) for training and validation sets on CVUSA [26].

In this paper, we revisit the street-to-aerial view geo-

localization problem and answer those three questions. We

first shed light on the effect of alignment between two

views, which is usually ignored in the discussion of pre-

vious works, by conducting ablation studies with a sim-

ple Siamese [4] network under different alignment settings.

Without the alignment assumption in inference phase, im-

proving metric learning is a promising direction, which is

explored but not well-exploited in [3]. By identifying the

unique challenges of cross-view image matching in the con-

text of metric learning, we further show that two techniques

(global mining strategy and a new loss function) specifi-

cally tailored to the challenges can significantly improve

the retrieval performance regardless of the alignment set-

ting. Moreover, we leverage visual explanation [16] to in-

vestigate how the image matching model works for cross-

view. Our observation reveals that the activation map of the

matching model can provide geometric information which

is independent of the alignment of the training data. In-

spired by this observation, we propose a novel orientation

estimation method which significantly outperforms the ex-

isting approaches. The main contributions of this paper are

three-fold:

• We provide an in-depth analysis on image alignment,

which is ignored by previous works, for cross-view

matching. Ablation study and visual explanation lead to

a key observation – the alignment has a great impact on

the retrieval performance. It provides valuable informa-

tion for designing robust and general frameworks, and

manifesting fair comparisons with prior work.

• We show that improvements on metric learning tech-

niques can boost the retrieval performance regardless of

the alignment information. By identifying the unique

challenges pertaining to the cross-view problem, our

specifically designed pipeline achieves the state-of-the-

art results on two benchmarks when no assumption is

made on the alignment of the inference set.

• We discover that the orientation information between

cross-view images can be estimated when the alignment

is unknown. The proposed novel orientation estimation

method outperforms previous methods without explicit

supervision.

2. Related Work and Motivation

2.1. Geolocalization

Recent works for cross-view geo-localization [3,8,13,14,

21] are all based on Siamese networks [4], while they build

their pipelines on different baselines with different settings.

Vo et al. [21] first propose a Siamese network with ex-

hausted triplet loss [15] for city-scale geo-localization with

cropped street-view images and satellite images. Their re-

sults suggest that an auxiliary orientation regression task

can further improve the performance. Hu et al. [8] pro-

pose CVMNet which combines Siamese VGG [19] and

NetVLAD [2] along with a modified version of the triplet

loss. Liu et al. [13] leverage the alignment information be-

tween street and aerial views and improve the performance

by adding orientation information in the input. Krishna et

al. [14] utilize GANs to generate image from one view to

the other and adopt feature fusion to achieve higher accu-

racy. Shi et al. [18] aim to find the optimal feature trans-

formation between two views based on the geometric prior

knowledge. Cai et al. [3] put more weight on the hard sam-

ples in an online negative mining manner and use a stronger

backbone (ResNet [6] with attention) to achieve better re-

sult. Although progress has been made for cross-view geo-

localization, existing works with different settings on the

cross-view alignment (discussed in Section 2.2) can lead to

unfair comparison.

2.2. Alignment Setting

CVMNet [8] is trained on randomly rotated aerial im-

ages, in which case the alignment information is not avail-

able, thus resulting in a general framework for cross-view

image matching. [3,21] leverage the alignment information

in training set by adding a regression task for orientation
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prediction as additional supervision, while they are appli-

cable for unaligned inference image pairs. However, [13]

takes advantage of the alignment information by adding ori-

entation as an auxiliary input, so the orientation is also re-

quired as input for inference images. The image/feature

transformation in [14, 18] also relies on the accurate geo-

metric relationship between two views. These methods may

not work well when the alignment between street and aerial

views is not available or only cropped street view images are

provided, which is often the case in real-world applications.

It is clear that more supervision can result in better perfor-

mance, but existing works [13,14] fail to make the effect of

alignment information very clear in their comparisons.

Fig. 1 shows a graphical illustration of the alignment

information of cross-view images. To investigate its im-

pact on geo-localization performance, in Table 1 we re-

port the top-1 recall accuracy of Siamese-VGG with dif-

ferent alignment settings for training and validation sets on

the CVUSA dateset [26]. Training with randomly rotated

aerial images (the alignment information is therefore not

available) yields a performance drop on the aligned vali-

dation set (from 60.1% to 43.7%) compared with training

with aligned images. But this trained model is able to per-

form well on the randomly rotated validation set (43.7% vs

44.2%). On the other hand, the model trained with aligned

images has an extremely low top-1 accuracy (13.5%) on the

randomly rotated validation set. These results indicate that

the alignment information actually has a great impact on ac-

curacy. And training without alignment information makes

the model generalize better. More discussion on the effect

beyond the retrieval accuracy is presented in Section 4.1.

2.3. Metric Learning

Unlike feature transformation, metric learning tech-

niques are independent of the alignment assumption. Gen-

eral metric learning aims to learn an embedding space

where positive samples (matched pairs) are close to each

other, while negative samples (unmatched pairs) have a

large distance between each other. Recent works [13, 14]

usually adopt the loss from [8], i.e. a modified triplet

loss [15], along with the within batch negative mining [15]

or assigning more weights on hard negative samples in a

mini-batch [3]. Although the common techniques for met-

ric learning, e.g. triplet loss and hard negative mining, are

employed in recent geo-localization methods, the unique

challenges of cross-view geo-localization are not specifi-

cally addressed.

Challenges for cross-view geo-localization. For street-

to-aerial view matching, most of the time, there is only one

matched (positive) aerial-view image for the query street-

view image from the same location. On the contrary, all the

aerial images from other locations are considered as nega-

tive samples. As a result, there is a significant imbalance

between positive and negative pairs. Therefore, different

from the Facenet [15] dataset which contains about 20 dif-

ferent images for one face ID, the number of positive sam-

ples for an anchor street-view image is very limited in geo-

localization, i.e. only one. The boundary between positive

pairs at different locations is difficult to estimate by only

one sample in the embedding space. Since most existing

methods follow the form of triplet loss which gives the same

weight for positive and negative samples, the large imbal-

ance between positive and negative samples inspires us to

design a better loss function in Section 3.2 for this task.

As the training accuracy increases, most training sam-

ples are correctly handled and have little contribution to the

overall loss [15], therefore hard negative mining [15] is nec-

essary. Several geo-localization methods [3, 8, 13, 14] use a

small batch size to fit the high resolution images in mem-

ory. Although online negative mining within mini-batch is

employed, it does not work well when the training accuracy

is high since almost no hard pairs can be found in a mini-

batch. We solve this problem in Section 3.3 by introducing

a global mining strategy.

2.4. Orientation Estimation

Several cross-view orientation estimation methods have

been proposed along with geo-localization. Vo et al. [21]

predict the rotated angle of aerial image by adding an auxil-

iary supervised regression task, with the goal of improv-

ing localization accuracy. The auxiliary regression sub-

network is able to coarsely predict the orientation angle

between street and aerial view images. Zhai et al. [26]

first predict the semantic segmentation map of street-view

panorama from aerial image by learning a transformation

matrix between two views. Then the segmentation map is

matched with the one generated directly from street-view

crop in a sliding-window manner to find the best matching

angle. To learn the cross-view transformation matrix, their

model composing of three sub-networks has to be trained

on well-aligned street and aerial image pairs. A pre-trained

segmentation model is also required as additional supervi-

sion. In summary, these methods [21, 26] require explicit

supervision (i.e. image alignment) on the training data to

train their models for orientation estimation/prediction. We

propose an orientation estimation approach (Section 4.2)

that does not rely on the alignment information for train-

ing, yet is able to achieve superior performance.

3. Retrieval Framework

3.1. Baseline Architecture

We adopt a simple Siamese-VGG as our baseline archi-

tecture with the loss function of [8]. Given a set of training

pairs including street-view images xi and their correspond-

ing aerial images yi, our framework learns two mapping
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functions, f(X,Θx) and g(Y,Θy), which map each input

pair (xi, yi) into a K-dimensional space. The goal is to find

the best Θx and Θy so that g(yi,Θy) is the nearest neighbor

of f(xi,Θx) in the embedding space. As shown in Fig. 2,

we use the same backbone architecture (e.g. VGG) for both

views, i.e. f = g. Due to the significant visual differ-

ence between two views, the convolutional layers denoted

by two separate CNNs in Fig. 2 are trained without sharing

weights in order to extract different low-level features from

two views. On the other hand, fully connected layers of the

two streams share weights, since the high-level feature (e.g.

semantic information) is similar in both views. L2 normal-

ization is used for the output feature vectors of both views.

Panorama Street View

Aerial View

CNN

CNN

FC Layer+ 
L2 Norm

FC Layer+ 
L2 Norm

Matching 
Loss

Street View
Embedding

Aerial View
Embedding

Or

Aerial View

Cropped Street View

Figure 2: The overall framework of our method.

3.2. Binomial Loss

Triplet loss has been widely used in a variety of image

matching tasks, including face clustering [15], person re-

identification (Re-ID) [7, 11] and image retrieval [5, 24].

The idea is to teach the network to pull positive samples

close to the anchor, while at the same time, push negative

samples far away by a margin m. The triplet loss function

is written as:

L =
1

N

N∑

i

max(0, dpi − d
n
i +m). (1)

For N triplets in a mini-batch, dpi and dni denote the distance

between the i-th anchor and its corresponding positive and

negative samples. Squared and non-squared Euclidean dis-

tances are commonly used in triplet loss. Different from

the hard-margin function in Eq. (1), Vo et al. [21] propose

to use a soft-margin function σ(d) = log(1 + exp(d)) in

the triplet network for geo-localization, where d = dpi −dni .

The soft-margin loss has a Sigmoid gradient function which

is more smooth than hard margin. Moreover, Hu et al. [8]

add a parameter α to form a weighted soft-margin loss:

L =
1

N

N∑

i

σ(α(dpi − d
n
i )), α > 0. (2)

The parameter α should be tuned to find a suitable balance

for the gradients of easy and hard samples. However, dpi and

dni always have the same weight α in Eq. 2, resulting in the

same magnitude of gradient. That means positive and neg-

ative samples will be pulled and pushed in the same man-

ner. For our positive and negative imbalanced case, adjust-

ing different weights for positive and negative samples can

lead to a loss function which better alleviates this problem.

Yi et al. [23] have successfully utilized binomial deviance

loss for person Re-ID. It is formulated as:

L =
1

Np

Np∑

i

σ(−α(spi −m)) +
1

Nn

Nn∑

i

σ(α(sni −m)). (3)

Here spi and sni denote the cosine similarity between the i-
th anchor and its positive and negative samples. Np and

Nn represent the number of positive and negative pairs,

respectively. Although the original loss function uses the

same parameters α, m for positive and negative samples,

we make use of this formula while assigning different αp,

αn and mp, mn. We use the normalized σ formulated

as σ̂(α, d) = 1

α
σ(αd). Then the gradient is given by

∂σ̂(α, d)/∂d = 1/(1 + exp(−αd)), and our loss function

becomes:

L =

∑Np

i σ(−αp(s
p

i −mp))

αpNp

+

∑Nn

i
σ(αn(s

n
i −mn))

αnNn

. (4)

By setting a large αn, the gradients of negative pairs drop

fast as sn decreases from mn, which means only to push

negative samples away by a small distance. However, with

a small αp, the gradients of positive pairs drop slowly as

sp increases from mp, resulting in pulling positive samples

to the anchor until spi is much greater than mp. When pos-

itive samples are much fewer than negative samples, as in

cross-view geo-localization with only one positive match, it

would be easier to pulling the only matched sample close

to the anchor rather than pushing all negative samples

away. Therefore, we assign a much smaller value to αp

than αn to validate this idea. To avoid too many hyper-

parameters, we simply set mp and mn as the average values

of sn and sp.

3.3. Global Mining Strategy

As the training accuracy increases, most of the negative

samples contribute zero loss and the convergence becomes

slow. In [8], mining the hardest triplet in a batch helps when

there exists some hard negative samples, but it does not ap-

ply when a small batch size, e.g. 12 pairs (24 images),

is used due to the high resolution images, e.g. panoramic

street-view images. To find the global hard negative sam-

ples in a subset with Nm pairs, the embedding vectors of

samples in the subset have to be updated every p steps (p can

be adjusted to find the best trade-off between the computa-

tional cost and accuracy). To avoid large computational cost

of this offline update strategy, our online mining computes

the output vectors of each batch in the back-propagation

step and saves them into a mining pool in an FIFO (first

in first out) manner. Although the vectors in the mining
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Figure 3: Grad-CAM activation map (overlaid on images) of our baseline on positive (left) and negative (right) image pairs.
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Figure 4: Grad-CAM activation maps (overlaid on images) of our Siamese VGG baseline trained on (a) aligned and (b)

randomly rotated aerial images.

pool have the values of several steps before, the delay is al-

ways less than one epoch. This strategy generates approx-

imate hard negative samples in each step for every sample

in a batch with negligible additional computation. When

the training set is small, we save the vectors of the whole

training set such that the global hard negative samples can

be found. For each positive pair, we randomly select one of

the r hardest negative samples from the mining pool.

4. Alignment Analysis

4.1. Visual Explanation

It is evident that using the cross-view alignment informa-

tion can improve the performance, but how the alignment

information may affect the geo-localization model? In ad-

dition to the performance (Table 1), we take a closer look

at the trained model with or without alignment, through

the lens of Grad-CAM [16] – a widely used visualization

technique, in order to understand how the model actually

works. The class activation map generated by Grad-CAM

highlights the important regions which contribute the most

to the final similarity between two images. Specifically, the

class activation map is obtained by computing the gradient

till the last convolution layer from the inner product of two

views’ embedding features without L2 normalization [27].

As shown in Fig. 3, the activation map of the same query

image can be dramatically different when the retrieved im-

age is different. For the positive image pair in this example,

the model mainly focuses on the discriminative objects in

both views, i.e. houses. However, for the negative pair, the

model highlights the trees and roads areas in the query im-

age, as there is no house in the retrieved image. The visual

explanation further demonstrates that the similarity score

predicted by the metric learning model is mainly based on

similar patterns in different views, and the activated regions

of two views are highly relevant to each other. A reason-

able hypothesis is that the activated regions of two views

are likely to be the same objects. However, what if the image

pair is not aligned? In Fig. 4, we show the changes of ac-

tivation map corresponding to a rotation of 30◦ in the aerial

image, using two different models: (a) baseline trained with

aligned images, (b) baseline trained with unaligned images.

For model (a), the activation map changes dramatically on

both views when the aerial image is rotated (Fig. 4 (a)), be-

cause the model trained with aligned images relies on spe-

cific geometric relationship between two views. However,

model (b) which is trained with randomly rotated aerial im-

ages only leverages similar patterns for matching (Fig. 4

(b)), thus leading to approximate rotation-invariant activa-

tion map, which may provide geometric information for ori-

entation (or camera pose) estimation (Section 4.2).

4.2. Orientation Estimation Approach

Since the most activated regions are likely to be the same

objects, the angle distributions (Fig. 5) of activated pix-

els from two views would be similar if the image pair is

well aligned. A rotation of aerial image will cause the an-

gle distribution to shift by a certain degree. With the ob-

servation of the approximate rotation-invariant activation
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Figure 5: Framework of our orientation estimation ap-

proach. (Zoom in to view)

maps (Section 4.1), which are obtained from our match-

ing model trained with rotated aerial images, we propose

to estimate the orientation of an unaligned image pair by

matching the angle distributions of activated pixels in two

views. As shown in Fig. 5, we first compute the activa-

tion maps using Grad-CAM and select pixels with values

higher than a threshold. Then we calculate the angle dis-

tribution of the selected pixels in each view as pstreet(θ)
and paerial(θ). To find the angle φ so that paerial(θ + φ)
best matches pstreet(θ), circular convolution of pstreet(θ)
and paerial(360− θ) is computed efficiently using the Fast

Fourier Transform (FFT) algorithm as follows ( N© denotes

circular convolution):

p(θ) = pstreet(θ) N© paerial(360− θ)

=ifft(fft(pstreet(θ))fft(paerial(360− θ))),
(5)

where fft and ifft are the Discrete Fourier Transform

(DFT) operation and inverse DFT operation. Finally, the

highest peak is selected as the predicted angle. Since the

training image pairs are not required to be aligned, the pro-

posed method does not leverage explicit supervision of ori-

entation, which is a clear advantage as compared with pre-

vious supervised counterparts [21, 26].

5. Experiment

Dataset. We conduct experiments on two popular

benchmark datasets, i.e. CVUSA [26] (panorama street

view) and Vo [21] (cropped street view), see Fig. 2. These

two datasets are city-scale benchmarks for cross-view geo-

localization. The original CVUSA (Cross-View USA) [22]

dataset contains more than 1 million of ground-level and

aerial images from across the US. Furthermore, Zhai et

al. [26] make use of the camera’s extrinsic parameters to

generate aligned pairs by warping the panoramas, resulting

in 35,532 image pairs for training and 8,884 image pairs

for testing. We use the same selected CVUSA [26] in our

experiment.

Vo et al. [21] introduce a cross-view dataset which con-

sists of about one million image pairs from 11 cities in the

US. They randomly query street-view panorama images and

generate several crops from each panorama with overhead

images from Google Map. Small crops and overlapping im-

ages make this dataset more challenging. For a fair com-

parison, we follow the splitting in [21] using 8 cities for

training and Denver city as the test set.

Implementation Details. For the proposed baseline, we

adopt VGG-16 [19] as the backbone architecture for both

views with the loss function in Eq. 2 [8] (α = 20). Adam

[9] optimizer with learning rate decay is used for training

and the dimension of the embedding space is the same as

CVMNet [8]. Random aerial view rotation is adopted for

training without alignment. The proposed mining strat-

egy and simple backbone facilitate the training on a sin-

gle GPU (Nvidia 1080Ti) with a small batch size, i.e. 12

pairs for CVUSA and 32 pairs for Vo. All experiments are

implemented based on Tensorflow [1]. The mining pool is

the whole training set for CVUSA and we use a subset of

10, 000 pairs for Vo with r = 100. The mining pool is up-

dated every epoch and the binomial loss is adopted after the

distribution is stable (30 epochs). We set αp = 5, αn = 20
for both CVUSA and Vo. We simply set mp, mn as 0, 0.7
based on the average values of the distributions of sn and

sp as shown in Fig. 8.

5.1. Retrieval Performance

Evaluation Metrics. For geo-localization, we use the

top-n recall accuracy as the evaluation metric on both

datasets. For each query image, the retrieval is considered

successful if the ground-truth reference is ranked within the

top n retrieved images. Instead of only providing the top-

1% accuracy, we also report the top-1 accuracy to better

demonstrate the performance of our approach. The top-1%
accuracy is useful when the performance is poor, but it is

not discriminative anymore if the top-1% is already higher

than 95% as in this paper. Since a high top-1 accuracy is

the ultimate goal of geo-localization for practical applica-

tions, we highly recommend including the top-1 accuracy

in future research.

We compare our method with existing methods on two

datasets in Table 2. We use the published results of [3, 8,

13, 14, 21, 22] for top-1% accuracy comparison. Not all the

methods have the top-1 accuracy. For CVM-Net [8], we

reproduce their test result on CVUSA with their pre-trained

model for top-1 and top-1% accuracy1, while the result of

CVM-Net on Vo is from their paper since the pre-trained

model for this dataset is not provided.

CVUSA. As shown in Table 2, the overall proposed

pipeline significantly surpasses existing methods without

the alignment assumption on inference set. Note that we

do not adopt any recent strong network backbones as in [3]

1The top-1% accuracy we generated using their model and code is 2%

higher than their published result in [8].
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Method
CVUSA Vo

Top-1% Top-1 Top-1% Top-1

Scott [22](ICCV’15) 34.3% - 15.4% -

Zhai [26](CVPR’17) 43.2% - - -

Vo [21](ECCV’16) 63.7% - 59.9% -

CVMNet [8](CVPR’18) 93.6% 22.5% 67.9% -

Lending [13](CVPR’19) 93.19% 31.71% - -

Reweight [3](ICCV’19) 98.3% 46.0% 78.3% -

GAN [14](ICCV’19) 95.98% 48.75% - -

Ours 97.7% 54.5% 88.3% 11.8%

Table 2: Top-1 and top-1% recall accuracy comparison on

CVUSA and Vo.

(ResNet+attention), we believe our approach would gain

extra improvement from using stronger network backbones.

Our method also enjoys simple architecture and therefore is

easy to reproduce and requires less computation compared

with CVMNet. Moreover, our global mining strategy brings

superiority on convergence speed for the training process

(details in Section 5.3 and Fig. 7).

Vo. Vo [21] is a much more challenging dataset com-

pared with CVUSA, as it contains around 10 times of im-

ages for validation and the cropped street-view images pro-

vide less information than panorama. Furthermore, the im-

age/feature transformation based on geometric prior knowl-

edge is infeasible for this case. Therefore, as shown in Ta-

ble 2, every method yields a much lower accuracy on Vo

than that on CVUSA. Also, none of the existing methods

reports top-1 accuracy. Again, the proposed framework out-

performs all existing methods by a large margin (10% on

top-1% accuracy). Note that [3, 21] utilize the alignment

information of the training data by adding a rotation an-

gle classification task (an auxiliary task) to their matching

frameworks to boost the geo-localization performance, but

we do not use this technique in our method.

5.2. Orientation Estimation Performance

As described in Section 4.2, our trained matching model

is able to roughly predict the angle between paired aerial

and street view images without any alignment information

in the training set. We conduct experiments on CVUSA

with randomly rotated aerial images and evaluate the distri-

bution of angle prediction errors. For comparison, we train

our baseline with an auxiliary orientation regression task as

in [21]. We also compare our result with another supervised

method [26] which learns a cross-view transformation ma-

trix and predict the orientation in a sliding window manner.

Without explicit alignment information from the train-

ing set, our method achieves better result than regression

and [26] as shown in Fig. 6 (a). The percentage of sam-

ples with error in [−3.5◦, 3.5◦] is around 24% of the whole

test set. It is worth noticing that most failure predictions

of our method have an error around 180◦, because the ac-
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Figure 6: Error distribution of orientation estimation on

CVUSA in percentage (best viewed in color with zoom in).

tivation map usually focuses on the road which is symmet-

rical in aerial view. The same pattern is found in the result

of [26], while the result of regression has a very different

pattern. Fewer samples of regression have an error around

180◦, while accurate predictions (the central bar on 0◦) are

also much fewer than the other two methods.

We further provide the comparison between our baseline

and overall framework for orientation estimation in Fig. 6

(b). Our overall framework leverages superior metric learn-

ing techniques, thus achieving better performance than our

simple baseline. For example, the percentages of samples

with error in [−3.5◦, 3.5◦] are 24% and 21% for our over-

all and baseline models, respectively. The result shows that

better retrieval model does improve the orientation estima-

tion performance.

5.3. Ablation Study

Effect of global mining. To demonstrate the effective-

ness of the proposed global mining strategy, we conduct ex-

periments with three settings on our baseline, i.e. no min-

ing, within-batch mining, and our global mining scheme.

As discussed in Section 3.3, the within-batch mining [8]

or the loss in [3] is not able to select hard negative sam-

ples, because almost no hard negative samples exists within

a mini-batch when the top-1% accuracy is higher than 80%.

We report the result of our baseline with within-batch min-
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ing (“Batch mining” in Table 3) to show the superiority of

global mining. As shown in Table 3, the global mining sig-

nificantly improves the performance on both datasets, while

the within-batch mining makes little difference on perfor-

mance. In Fig. 7, we also present the convergence speeds

of our baseline and baseline with global mining on CVUSA.

The “Baseline + global mining” converges much faster than

the “Baseline”, especially in terms of the top-1 accuracy.

Since our mining strategy aims to find the hardest r sam-

ples, it brings relative larger gain on top-1 accuracy than

top-1% accuracy.

Mining Strategy
CVUSA Vo

Top-1% Top-1 Top-1% Top-1

No mining 96.9% 43.7% 84.3% 7.9%

Batch mining 96.7% 43.0% 84.6% 8.0%

Global mining 97.0% 52.1% 85.8% 11.1%

Table 3: Comparison between different mining strategies

with our baseline on CVUSA and Vo.
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Figure 7: Top-1 and top-1% recall accuracy vs. epochs of

our baseline w/o and w/ global mining on CVUSA.
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Figure 8: Cosine similarity distributions with loss in CVM-

Net [8] (Eq. 2) and binomial loss (Eq. 4) on CVUSA.

Effect of binomial loss. As shown in Fig. 8, the aver-

age values of sn and sp (similarity between negative pairs

and positive pairs) lie at around 0 and 0.7 for “Baseline +

global mining” with the loss in Eq. 2 [8]. An intuitive idea

to further improve the performance is breaking the restraint

of triplet-like loss which assigns the same weight for pos-

itive and negative pairs. As explained in Section 3.2, the

binomial loss (Eq. 4) puts a stronger constraint on posi-

tive samples (larger mean value and smaller variance in Fig.

8), while the distribution of negative pairs is more scattered

(larger variance). This characteristic is beneficial to the per-

formance on both datasets as shown in Table 4.

Loss Function
CVUSA Vo

Top-1% Top-1 Top-1% Top-1

CVMNet [8] 97.0% 52.1% 85.8% 11.1%

Binomial (Eq. 4) 97.7% 54.5% 88.3% 11.8%

Table 4: Comparison between different loss functions with

our baseline and global mining on CVUSA and Vo.

Effect of alignment. As discussed in Section 4.1, the

alignment setting has a large impact on the performance, we

report the ablation study results of CVUSA on both settings

(w/ or w/o alignment) in Table 5. The “Overall” denotes

our baseline with global mining and binomial loss in Eq. 4.

As expected, the improvements of the proposed techniques

are consistent under both settings. Apparently, training with

alignment can improve the retrieval performance, because it

assumes the inference images to be aligned, but this may be

infeasible for challenging real-world applications.

Method
w/ alignment w/o alignment

Top-1% Top-1 Top-1% Top-1

Baseline 98.8% 60.1% 96.9% 43.7%

Baseline+global mining 98.8% 67.0% 97.0% 52.1%

Overall 99.1% 70.4% 97.7% 54.5%

Table 5: Comparison between our methods w/ and w/o alignment

(random rotated aerial images) on CVUSA. “Overall” = Base-

line+global mining+binomial loss (Eq. 4).

6. Conclusion

In this paper, we revisit cross-view image geo-

localization and orientation estimation and highlight the

effect of image alignment information which is usually

ignored by previous works. Our analysis indicates the

alignment has a great impact on the retrieval performance.

Furthermore, we identify the unique challenges of geo-

localization and propose a global mining strategy along

with the binomial loss to tackle them. Extensive experi-

ments on two widely used benchmark datasets show the su-

periority of the proposed method on both alignment settings

(w or w/o). Moreover, our model trained without align-

ment is able to predict the orientation (angle) of a cross-

view image pair without any alignment information super-

vision during the training. The proposed orientation estima-

tion method achieves state-of-the-art result on CVUSA.
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