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Abstract

Phrase grounding models localize an object in the im-

age given a referring expression. The annotated language

queries available during training are limited, which also

limits the variations of language combinations that a model

can see during training. In this paper, we study the case ap-

plying objects without labeled queries for training the semi-

supervised phrase grounding. We propose to use learned

location and subject embedding predictors (LSEP) to gen-

erate the corresponding language embeddings for objects

lacking annotated queries in the training set. With the assis-

tance of the detector, we also apply LSEP to train a ground-

ing model on images without any annotation. We evaluate

our method based on MAttNet on three public datasets: Re-

fCOCO, RefCOCO+, and RefCOCOg. We show that our

predictors allow the grounding system to learn from the

objects without labeled queries and improve accuracy by

34.9% relatively with the detection results.

1. Introduction

The task of phrase grounding is to localize entities re-

ferred to by the given natural language phrases. This re-

quires associating words and phrases from language modal-

ity to objects and relations in the visual modality. Ground-

ing plays an important role in the applications for language

and vision, such as visual question answering [2, 6, 9, 14,

38], image retrieval [31] and captioning [1, 30].

We extend grounder training to a semi-supervised set-

ting, where we assume objects are only sparsely annotated

with language. Typical phrase grounding datasets only use

a subset of the objects in the image with densely query an-

notations for training. Modern grounding systems, such as

MAttNet [35], are trained under fully supervised settings

where every object used for training has a corresponding

query. This limits the available data for training, where only

images with dense annotations can be used. Fig. 1 shows

two examples where some unlabeled objects cannot be used

for training. Furthermore, the available queries limit the

language variations that a model can see in the training set.

(a) (b)
Figure 1. Images in the training set where only some objects (those

shown in red boxes) are labeled. Red boxes in the two images are

annotated as ‘black car’ and ‘white dog lying on the grass on the

left’ respectively, while objects in green boxes only have bounding

boxes and category names, ‘car’ and ‘dog’, associated with them.

We propose a language embedding prediction module

for unlabeled objects using knowledge from other objects

in the training set, allowing us to use every image object

for training. Previous semi-supervised grounding systems

[24, 18] still require full query annotations for the objects.

To use the objects without labeled queries for training, sim-

ply using category names as the language queries is not ef-

fective; the queries in a grounding dataset are discriminative

within a category, whereas the category names alone do not

perform such discrimination. Our method can directly be

trained on images without queries annotations by generat-

ing the corresponding language embeddings.

The embedding prediction module predicts query em-

beddings from visual information when the objects do not

have associated phrases. In particular, we propose two em-

bedding predictors to encode the subject and location prop-

erties from the given images. The predicted features are

then combined with visual features to compute a grounding

score. The predicted embeddings may not be perfect, but

can still be useful in training. The predictors themselves are

trained in an end-to-end framework; we call the resulting

modules to be Location and Subject Embedding Predictors,

abbreviated as LSEP. We emphasize that LSEP modules are

used only in the grounder training phase; at inference time,

we always have the needed language query.

To investigate the proposed semi-supervised setting, we

use the following four-way characterization: (i) sparsely an-

notated across images, (ii) densely annotated fewer images,
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(iii) only objects belong to a subset of the categories anno-

tated, and (iv) only certain supercategories, the parent cate-

gories, of objects are annotated. To create these settings we

subsample three commonly used datasets: RefCOCO [36],

RefCOCO+ and RefCOCOg [20]. Using MAttNet as our

base architecture, we observe consistent improvement by

adding LSEP modules using the labeled bounding boxes, as

well as on images without any annotation with a detector.

In summary, our contributions are three-fold: (i) we in-

troduce a new semi-supervised setting for phrase grounding

training with limited labeled queries, (ii) we propose sub-

ject and location embedding predictors for generating re-

lated language features from the visual information to nar-

row the gap between supervised and semi-supervised tasks,

and (iii) we extend the training of a semi-supervised phrase

grounding model to unlabeled images with a detector.

2. Related Work

Phrase Grounding has mainly been studied under the

supervised setting, where query annotations are paired with

the bounding boxes in the image. On popular phrase

grounding datasets like RefCOCO [36, 20] and Flickr30k

Entities [22, 34], state-of-the-art methods [35, 4, 12, 35,

15, 28] use a two-step process: find all the objects us-

ing an object detector, such as Fast RCNN [8] or Mask

RCNN [10], and then jointly reason over the query and

the detected objects. QRC-Net [4] generates rewards for

different proposals to match between visual and language

modalities. MAttNet [35] introduces an automatic weight

evaluation method for different components of the query

to match with proposals. Some research [5, 15, 28, 29]

try to apply attention [19] and visual-language transformer

for cross-modality encoding between language queries and

visual appearance. LXMert [29] applies the self-attention

and cross-modality attention between the visual proposals

and queries features to find the corresponding. UNITER

[5] uses the pre-training system and greatly improve the

performance for different visual-language tasks. Recently,

single-stage grounding methods [33, 25], where both steps

are combined, have shown better performance on RefClef

[13]. These models are pretrained on a large paired image-

caption data like conceptual captions [26] or aggregated

vision+language datasets [29]. As a result, it is difficult

to evaluate them in the semi-supervised setting whose lan-

guage annotations are scarce. In our work, we build on Mat-

tNet [35] to enable semi-supervised learning.

Semi-Supervised Phrase Grounding focuses on the

grounding problem where language annotations are scarce,

which has not been explored extensively. However, there

are some closely related publications on this subject. Some

researchers [24, 25, 3, 18] apply visual language consis-

tency for finding the entities in an image when the bound-

ing boxes for the proposals are not available. GroundeR

[24] considers semi-supervised localization where both lan-

guage annotations and bounding boxes are present, while

the association is provided only for a subset. Zero-Shot

Grounding (ZSG) [25], in contrast, explores the ground-

ing of novel objects for which bounding boxes are never

seen. Some other methods, such as [32], use attention maps

for finding the corresponding information without bound-

ing boxes. These semi-supervised methods still require

language annotations for proposals during training. Our

proposed formulation assumes object bounding boxes are

known, which can be easily acquired through the detection

model, but language annotations for the detection boxes are

not given. Compared with other existing semi-supervised

grounding tasks, we can easily get the bounding boxes from

a pretrained detector, while the missing of queries cannot be

acquired without extra annotations.

3. Method

In this section, we introduce the phrase grounding task

and MAttNet [35] in Sec. 3.1, followed by the detailed de-

scriptions of LSEP and discussions in Sec. 3.2 and Sec. 3.3.

3.1. Background

A phrase grounding model takes a language query q and

the objects in the image I as input. We use the enclosed

bounding boxes to represent the objects. The bounding

boxes are generated by a detector or come from groundtruth

annotations, and the given query q is matched to a specific

bounding box in the image. The grounding model calculates

the score of every bounding box {oi}i=1,...,n and picks the

box oq that best fits the given query q. In the supervised

regime [35, 24, 3, 5], every bounding box used for training

is annotated with a specific query.

MAttNet splits a given query q into three separate parts,

subject qsubj , location qloc and relationship qrel, by sum-

ming the one-hot vectors of corresponding words. MAt-

tNet further predicts the relative weights, wsubj , wloc and

wrel, for every part in the query, and extracts subject fea-

tures vsubj,i, location features vloc,i and relationship fea-

tures vrel,i from the bounding boxes {oi}i=1,...,n of the im-

age I . The subject feature vsubj,i contains the visual ap-

pearance and category information of oi. The location fea-

ture vloc,i contains the absolute position of bounding box oi
and the relative position from its N nearest neighbors. The

relationship feature vrel,i includes both the relative position

and visual representation of N nearest proposals around oi.

Then it calculates the similarity S(oi|q
subj), S(oi|q

loc) and

S(oi|q
rel) for every object-query pair. MAttNet calculates

the final score following

S(oi|r) = wsubjS(oi|q
subj) +wlocS(oi|q

loc)

+wrelS(oi|q
rel) (1)
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Figure 2. (a) MAttNet architecture [35] used to generate query embeddings when descriptive phrases are available (b) Subject and Location

Embedding predictors (SEP and LEP) which are used when only object category annotation is available.

During training, the model selects one positive pair (oi, qi)
along with two negative pairs, (oi, qj) for negative query

and (ok, qi) for negative proposal, following [35] to opti-

mize L = Lrank + Lattr
subj , where Lrank is

Lrank =
∑

i[λ1max(0,∆+ S(oi, qj)− S(oi, qi))

+λ2max(0,∆+ S(ok, qi)− S(oi, qi))] (2)

and Lattr
subj is the cross-entropy loss for attribute prediction

for oi. We follow [17] to select the attributes. When a

bounding box is not labeled with a query, MAttNet treats

it as a negative visual pair ok. During inference, the optimal

bounding box ôi is given by finding the maximum score in

Eq. 1 among all the proposals to pair with the query q.

3.2. Model Framework

Using MAttNet [35] as our backbone network, we pro-

pose two embeddings prediction modules: a subject embed-

ding predictor and a location embedding predictor to gener-

ate language embeddings when corresponding queries are

missing. The complete LSEP framework is in Fig. 2.

Subject Embedding Predictor The Subject embedding

predictor consists of an encoder that maps visual input for

subject os to language dimension. We follow MAttNet

[35] to extract the category feature vcat and attribute fea-

ture vattr. Then we concatenate these two features for use

as the visual embedding for subject vsubj = (vattr; vcat).
We use this module to transfer an existing attribute or em-

beddings for descriptive words to the known categories. We

apply the following transformation

q̃subj = Wsubj(vattr; vcat) + bsubj

to generate the corresponding embedding q̃subj . Wsubj and

bsubj are the weight and bias for the subject predictor. We

use ”;” to represent the concatenation between two different

features. During training, the grounding model takes q̃subj

as language input when qsubj is missing. q̃subj lies in the

same embedding space as qsubj since we use qsubj for su-

pervision if it is available. The subject embedding predictor

transfers an embedding for attributes or descriptive words

to the object without the full query to complete its attribute.

Location Embedding Predictor To generate the cor-

responding language embedding, we extract the abso-

lute location of the bounding box as loca. Fol-

lowing [36, 37], we extract N relative location fea-

tures locr for the N -nearest bounding boxes around

it following [36, 37]. loca is 5-D vector loca in

the form of [xmin

w
, ymin

h
, xmax

w
, ymax

h
,
AreaBi

AreaI
], and locr

is the concatenation of N vectors in the form of

[∆xmin

w
, ∆ymin

h
, ∆xmax

w
, ∆ymax

h
,
AreaBi

AreaBj

], representing the

relative position between N nearest objects and oi. w and

h represents the size of the image I; x and y represents the

properties of the bounding boxes. Location embedding pre-

dictor transfers the concatenation as loca and locr following

q̃loc = Wloc(loca; locr) + bloc

to the language embedding ˜qloc. Wloc and bloc are the

weight and bias for the location module. By extracting vi-

sual embedding vloc following MAttNet [35], the grounding

model takes the q̃loc as language input instead of qloc when

it is not available in the semi-supervised setting.

3.3. Discussion

In this subsection, we discuss some differences between

LSEP and other existing methods, followed by the modi-

fied sampling policy, and why using the category names as

queries doesn’t help for semi-supervised phrase grounding.

Differences with existing methods Existing semi and

weakly supervised grounding methods [24, 32, 18] focus on

the circumstances where the bounding boxes are not avail-

able. They pair an image directly with a query and use atten-

tion maps to ground objects, thus cannot use objects with-

out descriptive queries during training. Since these methods

cannot generate more variation of queries, these methods

are still limited to the word combinations. In LSEP, we do

not require query annotations for every bounding box. The
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embedding predictors can generate the corresponding lan-

guage embeddings from the visual embeddings.

Sampling policy For supervised grounding, all objects

have descriptive queries associated with them. Thus, each

object and query qualify as a positive or negative candidate.

We apply a sampling strategy to accommodate the semi-

supervised setting. In this setting, part of bounding boxes

have descriptive phrases associated with them as the super-

vised setting, while others only have a category name asso-

ciated. For positive samples, both type of samples qualify,

but LSEP can use the predicted language embedding as pos-

itive examples. For negative queries, we sample two nega-

tive pairs (oi, qj) and (ok, qi) for every positive pair (oi, qi).
We sample the negative object ok and query qj from the

available bounding boxes and queries, where the negative

proposals and queries belong to the same object category

as oi are preferred. When only the category name is avail-

able for qi or qj , we avoid pairing it with the object from

the same category as negative pairs, e.g., the car enclosed

by the red box in Fig. 1 (a) cannot be used as a negative ex-

ample for the query ‘car’. In this case, proposals belong to

different categories in the same image are preferred.

Usage Analysis When the bounding box only has the

category name attached to it, an alternative to LSEP would

be paring the bounding box with the query embedded gen-

erated by the category name. However, we find that using

such an embedding is not helpful, and the use of LSEP gives

significant improvements (as in Sec. 4.3). This improve-

ment is due to additional discrimination provided by the

two prediction modules. The descriptive queries are more

effective at training a grounding system where the goal is to

distinguish objects belonging to the same category.

Consider an example where a bounding box containing

a dog whose color is brown and it is to the left of the image,

but the only annotation is its category name (‘dog’). If an

object is used as a positive example, the network must treat

it the same as what the query describes, regardless of its

location, color, or the similarities and differences of these

entities compared with a negative query. Take the dog en-

closed by the green bounding box in Fig. 1 (b) as an exam-

ple. If we only use the category name ‘dog’ as its positive

query and use ‘white dog lying on the grass on the left’

as the negative one, the grounding network cannot learn

from the negative query that which part of the description is

wrong, ‘white’, ‘lying on the grass’ or ‘on the left’. Predict-

ing the subject and location embeddings provides a more

accurate description for a more discriminative example. A

similar analysis applies when we use the dog bounding box

as a negative example; the network can better distinguish

from the paired positive sample if the annotation is more

specific. As each object box is selected as a positive sample

once per epoch but not necessarily as a negative sample, the

influence as a positive sample is much more critical.

4. Experiments

4.1. Datasets

We use three public datasets for evaluations: RefCOCO

[36], RefCOCO+ and RefCOCOg [20], which are derived

from MSCOCO [16] 2014 dataset. Queries in RefCOCO+

do not include absolute locations. MSCOCO [16] 2014 has

80 categories within 11 super categories. A supercategory is

the parent category of categories that share the same prop-

erties. For example, both ‘bus’ and ‘car’ belong to the su-

percategory ‘vehicle’. We follow MAttNet [35] to create

the training, validation and test sets. RefCOCO and Re-

fCOCO+ include two test set split, testA and testB, where

testA include the objects related with people, while testB in-

clude the objects that are irrelevant to people. RefCOCOg

includes only one validation set and one test set. We com-

pare our method with other methods on two tasks: super-

vised and semi-supervised phrase grounding. For the semi-

supervised task, we introduced four different data splits fol-

lowing i) annotation-based, ii) image-based, iii) category-

based, and iv) supercategory-based strategies.

Annotation-based selection is to randomly choose ob-

jects from all the annotations in the training set. For ob-

jects remaining, only bounding boxes equipped with cate-

gory names are available during training.

Image-based selection is to select some images from the

dataset and densely label the objects in these images with

queries. For the objects in the remaining images, we only

have corresponding bounding boxes and category names for

the objects. Labeled queries for the same image will be used

or discarded together.

Category-based selection is to select the phrases based

on their categories. Half of the categories in the training set

are annotated with their full queries, while only the category

names along with the bounding boxes are available for the

objects in the remaining categories.

Supercategory-based selection is to select the queries

based on their parent category. We either use the labeled

queries for the objects in the same supercategory, or replace

them with their category names during training.

For category-based and supercategory-based settings, at-

tributes other than the category names are not available dur-

ing training if only category names are used. We select 40

categories and 6 supercategories and label them with full

queries during training, and the attribute loss will not be cal-

culated for the entities without full queries. These 6 super-

categories include person, accessory, sports, kitchen, furni-

ture and electronic, and the selected 40 categories are those

whose category IDs are not divisible by 2. The inference is

conducted on the whole set for annotation and image-based

settings, while only on the remaining 40 categories and 5

supercategories which are not selected for the category and

supercategory-based selection.
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Grounding RefCOCO RefCOCO+ RefCOCOg

Accuracy type Val testA testB Val testA testB Val test

MAttNet annotation 79.18 80.05 78.71 55.73 61.07 49.27 71.74 70.77

LSEP annotation 82.31 83.07 81.76 61.11 65.33 53.21 72.80 73.97

MAttNet image 82.37 83.60 79.97 68.05 70.41 61.77 74.75 73.44

LSEP image 83.52 84.07 81.90 68.83 71.77 64.10 75.87 75.92

MAttNet category 71.71 69.68 73.97 50.51 44.00 49.68 59.82 60.34

LSEP category 71.64 72.90 75.18 51.73 47.33 52.91 63.90 63.41

MAttNet supercategory 70.59 58.89 73.18 48.54 39.23 50.27 56.88 54.31

LSEP supercategory 68.80 60.00 72.01 48.61 38.67 50.16 56.54 53.93

F1 RefCOCO RefCOCO+ RefCOCOg

score type Val testA testB Val testA testB Val test

MAttNet annotation 35.30 34.59 44.40 27.89 27.04 40.97 41.35 40.03

LSEP annotation 37.03 36.11 49.25 29.14 28.27 42.61 43.10 41.44

MAttNet image 38.21 37.50 43.16 29.17 28.16 44.40 43.23 42.75

LSEP image 39.87 38.65 56.51 30.02 29.07 45.83 45.11 43.51

MAttNet category 33.05 32.84 34.89 21.25 15.38 22.17 25.91 23.44

LSEP category 36.41 40.58 35.89 24.79 17.39 26.14 32.86 32.08

MAttNet supercategory 19.10 23.13 24.15 16.06 8.33 19.41 10.08 12.77

LSEP supercategory 22.83 31.25 25.32 17.64 11.67 20.51 25.21 26.37

Table 1. Accuracy and F1 score with groundtruth bounding boxes provided by the MSCOCO dataset. ‘Annotation’, ‘image’, ‘category’

and ‘supercategory’ represent annotation-based, image-based, category-based and supercategory-based selections respectively. The ratio

of fully-labeled query is set to be 50% for all four settings.

4.2. Experimental Setup

In this subsection, we start with the details for the

pipeline using for training and inference, followed by the

implementation details and evaluation metrics.

Training and inference During the training period,

our model face two different types of data: labeled ob-

jects, whose bounding boxes are labeled with groundtruth

phrases, and unlabeled objects, whose bounding boxes are

labeled with incomplete or no annotations. We train our

model for 50000 iterations in all. We train the first 20000

iterations on labeled objects. After 20000 iterations, we

initialize the two predictors for 5000 iterations with the

grounding model. In the remaining iterations, we i) train

the grounding model on labeled objects; ii) train our pre-

dictors with the assistance of the grounding model on la-

beled objects, and iii) use the predictors to generate the lan-

guage embeddings and apply them to train the grounding

model on unlabeled ones. We do these three steps recur-

rently. The learning rate is 1e-4 and decays to half after

every 8000 iterations. For the unlabeled objects, we set

wsubj = wloc = 0.5 and wrel = 0 when applying ˜qloc

and ˜qsubj as language embeddings. During the inference,

we evaluate the score for the grounding model following

Eq. 1 and use the bounding boxes with the highest confi-

dence as our final prediction for the given query. We follow

MAttNet [35] use the bounding boxes from the groundtruth

annotations of the MSCOCO dataset as candidate proposals

for both training and inference for all methods.

Implementation Details For visual feature extraction,

we follow [35] and apply a ResNet-101-based [11] Faster

RCNN [8] to extract vsubj and vrel for its appearing. We

first encode the original query word by word into one-hot

vectors for language features, then extract the feature with

a bi-LSTM. We extract the visual feature from the C3 and

C4 layers from the same ResNet to build the subject em-

bedding predictor. The subject feature is the concatenation

of C3 and C4 features after two 1x1 convolutional kernels

that do not share weights. The category feature is the C4

feature, followed by a 1x1 convolutional kernel. The visual

embeddings for subjects and locations are sent into the sub-

ject and location embedding predictors respectively, which

are both 2-layer MLPs with a 512-dim hidden layer. The

activation function is set as ReLU for the pipeline.

Metrics We apply two metrics for evaluation: Accuracy

for phrase grounding and F1 score for attribute prediction.

The accuracy for phrase grounding is calculated as the per-

centage of correct bounding box predictions compared with

the number of queries. The F1 score is the harmonic mean
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of the precision and recall for the attribute prediction. We

follow [13] to parse the queries into 7 parts: category name,

color, size, absolute location, relative location, relative ob-

ject, and generic attribute. We evaluate the F1 score on the

three types of attributes handled by the subject embedding

predictor: category name, color, and generic attributes.

4.3. Results and Analysis

In this subsection, we first show quantitative results for

four semi-supervised settings with different ratios of anno-

tations, followed by the results using a detector instead of

the groundtruth bounding boxes and some ablations about

how much every module in LSEP contributes.

Four-way characterization. We show results for four

different selection settings in Table 1. For every case, 50%

of the objects have language queries, while the remaining

50% only have category names. As shown in Table 1,

adding LSEP module to MAttNet improves accuracy for

each of the annotation-based, image-based, and category-

based selection settings. However, for the supercategory-

based setting, it remains the same. Comparing the results

between category-based and supercategory-based selection

settings, we show that the grounding model can apply fea-

tures from a nearby category, even labels for such categories

are not available, since the objects in the same supercate-

gory share similar visual features.

Interestingly, we find that F1 scores for all four settings

significantly benefit from LSEP, indicating that the final at-

tribute accuracy improves with our subject embeddings pre-

dictor. Better F1 results for all four selection settings show

that LSEP enables better transfers of attribute combinations

compared with MAttNet.

Different ratios of available queries. We analyze the

performance on different ratios of annotated queries in Ta-

ble 2. We use 25%, 50%, 75%, 100% of the queries for an-

notation and image-based selection settings, where 100%,

i.e., every bounding box used for training is paired with a

query, refers to the fully-supervised case. In this case, we

first train the two predictors with groundtruth annotations.

We then use these two language encoders to generate corre-

sponding embeddings from the encoded visual embeddings

and apply them for training the grounding model. We make

the following observations.

(i) Fully-supervised Results. LSEP gives mild improve-

ments over Mattnet when 100% of the query annota-

tions are available. Compared with the fully super-

vised method, LSEP can extract further information

besides information in the labeled queries.

(ii) Different amount of annotations. With fewer avail-

able queries in the training set, the performances for

both MAttNet and LSEP go down, while LSEP shows

consistent improvement compared with MAttNet on

both annotation-based selection and image-based se-

lection settings. LSEP can narrow the gap by around

40% between the results of MAttNet to their super-

vised performance.

(iii) Annotation density in the image. Results for the

image-based setting shows higher phrase grounding

accuracy than the annotation-based selection setting

with similar available queries, indicating that densely-

annotated images help a grounding model find the dif-

ferences between objects. Objects in the same im-

age create more challenging object-query pairs for the

phrase grounding model to distinguish the subtle dif-

ferences in the same surroundings and circumstances.

(iv) On use of category names. Comparing the results

of using the category names as the full queries during

training, we notice that both MAttNet and LSEP show

similar performance when not using them. When using

the category name as the full query, positive and nega-

tive examples can not be from the same category. Dis-

tinguishing two objects in the same category is a more

challenging task and helps the network find more use-

ful descriptive information than finding the differences

between two objects from different classes.

Results of Using Detection Outputs Instead of us-

ing MSCOCO groundtruth boxes, we compare the semi-

supervised phrase grounding results with the proposals gen-

erated by a pretrained detector. We use the image-based se-

lection as the experiment setting, and set the percentage of

images that have been annotated as 50% for all configura-

tions. We use a Faster R-CNN [23] trained on MSCOCO

2014 [16] detection task provided by MAttNet [35] as our

detector. During training, we use the proposal with the max-

imum IoU with the groundtruth bounding box for those ob-

jects with labeled queries. For the remaining 50% that are

unlabeled with any query, we use the detection results and

their category names provided by the detector. For infer-

ence, we select among the detected bounding boxes gener-

ated by the Faster R-CNN.

We show the grounding accuracy on all three datasets

in Table 3 with the fully supervised results for comparison,

where all queries are available. By comparing the gap be-

tween supervised results of MAttNet and the settings when

the number of labeled bounding boxes is limited, we find

that the grounding accuracy is relatively 34.9% better on av-

erage and LSEP shows consistent improvement for all three

datasets when applying it for predicting the query embed-

dings, indicating that we can apply LSEP for extracting in-

formation to learn from the images without any annotations

in addition to the labeled proposals.

Contribution of Location and Subject Modules We

conduct an ablation study on how much the two em-

bedding predictors contribute to the improvement of
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Type / RefCOCO RefCOCO+ RefCOCOg

Labeled % Val testA testB Val testA testB Val testA

Accu-Att [7] 100% 81.27 81.17 80.01 65.56 68.76 60.63 - -

PLAN [39] 100% 81.67 80.81 81.32 64.18 66.31 61.46 - -

Multi-hop [27] 100% 84.90 87.40 83.10 73.80 78.70 65.80 - -

NegBag [21] 100% 76.90 75.60 78.00 - - - - 68.40

S-L-R [37] 100% 79.56 78.95 80.22 62.26 64.60 59.62 71.65 71.92

MAttNet [35] 100% 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12

LSEP 100% 85.71 85.69 84.26 71.99 75.36 66.25 78.96 78.29

MAttNet w/o cat. annotation-75% 81.78 83.54 79.26 61.08 64.83 56.58 72.14 72.07

LSEP w/o cat. annotation-75% 83.02 84.70 79.60 67.53 70.07 61.51 75.53 74.82

MAttNet annotation-75% 81.89 83.52 79.48 61.72 64.87 56.53 72.30 72.02

LSEP annotation-75% 83.11 84.46 79.58 68.01 70.47 61.49 75.62 74.89

MAttNet w/o cat. annotation-50% 79.33 80.07 78.05 55.59 60.95 49.46 71.20 70.75

LSEP w/o cat. annotation-50% 82.11 83.60 80.96 60.28 65.19 53.18 73.71 72.93

MAttNet annotation-50% 79.18 80.05 78.71 55.73 61.07 49.27 71.74 70.77

LSEP annotation-50% 82.31 83.07 81.76 61.07 65.33 53.21 72.80 73.97

MAttNet w/o cat. annotation-25% 63.73 66.01 62.88 42.96 48.10 39.76 67.10 67.13

LSEP w/o cat. annotation-25% 67.43 70.55 66.01 46.94 52.81 41.42 69.08 69.52

MAttNet annotation-25% 63.02 65.59 62.93 42.99 48.12 39.75 67.21 67.09

LSEP annotation-25% 67.74 70.51 66.01 46.96 53.01 41.85 69.06 69.58

MAttNet w/o cat. image-75% 82.89 83.45 81.51 68.40 71.18 64.14 75.76 75.32

LSEP w/o cat. image-75% 83.70 84.38 82.85 70.12 73.05 64.59 75.94 76.15

MAttNet image-75% 82.87 84.01 81.39 68.47 71.09 64.18 75.99 75.26

LSEP image-75% 83.91 84.16 82.87 70.09 72.98 64.61 76.27 76.09

MAttNet w/o cat. image-50% 82.40 83.33 80.79 67.42 70.19 61.96 74.61 73.65

LSEP w/o cat. image-50% 83.34 83.54 82.16 68.85 71.08 63.31 75.94 75.35

MAttNet image-50% 82.37 83.60 79.97 68.05 70.41 61.77 74.75 73.44

LSEP image-50% 83.52 84.07 81.90 68.83 71.77 64.10 75.87 75.92

MAttNet w/o cat. image-25% 79.92 80.25 78.81 63.90 66.92 59.85 68.34 68.20

LSEP w/o cat. image-25% 82.32 82.77 80.48 67.22 69.80 62.38 73.14 72.42

MAttNet image-25% 79.81 80.59 78.76 63.95 66.92 59.81 68.40 68.07

LSEP image-25% 82.75 82.53 81.02 67.19 69.97 62.53 73.25 72.08

Table 2. Semi-supervised results for grounding for annotation-based and image-based selections. ‘Annotation’ and ‘image’ represent

annotation-based and image-based selections, and the number after dash represent the percentage of bounding boxes that has been labeled

with queries during training. Methods ending with “w/o cat.” do not use category names as labeled queries.

semi-supervised grounding accuracy. We use the Ref-

COCO dataset with 50% annotations available based on

annotation-based selection as our setting. We show the re-

sults in Table 4. We observe that both the subject and loca-

tion embedding predictors improve the grounding accuracy

compared with the model without any embedding predictor.

The combination of two predictors has the highest score.

Both subject and object predictors help with better ground-

ing results compared with original MAttNet.

4.4. Qualitative Results

We show some visualization results in Fig. 3. Results

in the four rows are for annotation-based, image-based,

category-based, and supercategory-based selection settings

respectively. We show the grounding results for MAttNet

of the same pair on the left and LSEP on the right. We cal-

culate the results for the category-based and supercategory-

based selection settings on the categories whose full queries

are not available during training. We find that MAttNet suc-

cessfully finds the object of the same category, such as the

‘bottle’ in the first example of the second row, but it fails to

find the one based on the given query, while LSEP success-

fully localizes the third bottle from the left in the image.

5. Conclusion

We study the task of using unlabeled object data to im-

prove the accuracy of a phrase grounding system by using

embedding predictor modules. This approach also allows

us to introduce new categories, with available detectors, in
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(a) The donut in the front (b) A white and blue bag on top of a black suitcase

(a) Third bottle from the left (b) Second stack of <UNK> from right

(c) The right half of the left sandwich (d) Chair her foot is on

(c) The giraffe whose head is not visible (d) Right side second banana up

Figure 3. Visualization results. The images on the left are the results for MAttNet and images on the right are the results for LSEP.

Dataset Split MAttNet (FS) MAttNet LSEP

RefCOCO val 75.78 73.17 74.25

testA 82.01 79.54 80.47

testB 70.03 67.83 68.59

RefCOCO+ val 65.88 63.95 64.67

testA 72.02 69.33 70.25

testB 57.03 53.60 55.01

RefCOCOg val 66.87 63.29 64.28

test 67.03 62.97 64.01

Table 3. Phrase grounding ccuracy with Fast RCNN detector on

image-based selection with 50% fully annotated queries. MAt-

tNet (FS) refers to the fully supervised result where 100% labeled

queries are available.

phrase grounding. We show the improvements in accuracy

by using subject and location embedding predictors applied

to MAttNet [35] for semi-supervised grounding tasks.

Method MAttNet SEP-Net LEP-Net LSEP

val 79.18 80.85 80.98 82.31

testA 80.05 82.09 81.81 83.07

testB 78.71 79.57 78.88 81.76

Table 4. Ablation study. LEP-Net only uses the location embed-

ding predictor and SEP-Net uses the subject embedding predictor.
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