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Abstract

Whilst Generative Adversarial Networks (GANs) have

gained a reputation as powerful generative models, they

are notoriously difficult to train and suffer from instabil-

ity in optimisation. Recent methods for tackling this draw-

back have typically approached it by inducing better be-

haviour on the discriminator component of the GAN; these

include loss function modification, gradient regularisation

and weight normalisation to create a discriminator that is

well-behaved from a Lipschitz perspective. In this paper, we

propose a novel and orthogonal contribution which mod-

ifies the architecture of a GAN. Our method embeds the

powerful discriminating capabilities inherent in decision

forests within the discriminator of a GAN. Empirically, we

test the effectiveness of our approach on the CIFAR-10, Ox-

ford Flowers and CUB Birds datasets. We show that our

technique is easy to incorporate into existing GAN base-

lines and offers improvements on Fréchet-Inception Dis-

tance (FID) scores by as high as 56.1% over several GAN

baselines.

1. Introduction

Since their introduction, Generative Adversarial Net-

works (GANs) have achieved considerable success in the

realm of generative models, finding applications towards a

range of tasks including image synthesis [8, 30]. The ob-

jective of a GAN is to produce a model distribution which

recovers a target distribution. Theoretically, this involves

training a generator network with the goal of minimising

a distance measure between the model distribution and the

target distribution, where the said measure is estimated by

a discriminator network. In this type of optimisation setup,

the discriminator could be considered the cornerstone of a

GAN; whilst the generator is ultimately responsible for gen-

erating the model distribution which should closely resem-

ble the target distribution, it relies heavily on the discrimi-
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nator to continuously estimate the distance between the two

distributions.

This described optimisation process is fragile and suf-

fers from several numerical instabilities. A root cause for

this is vanishing gradients. This problem occurs when the

model and target distributions are disjoint [1]. Loss func-

tions containing singular points [2] and a non-continuous

discriminator [37] are also major causes for instability in

the optimisation process. Several earlier works in the lit-

erature have attempted to mitigate this issue through regu-

larisation to the model [21, 31, 32]. Recently, the discrim-

inator in the GAN setup has been the focus of significant

contributions [1,9,23,24] towards gaining an understanding

of GAN mechanics and alleviating the problems associated

with training of GANs. From a numerical stand point, the

Hessian matrix of a loss function plays an important role in

the optimisation process. A work by [23] investigates im-

proving the conditioning of the Hessian matrix in the con-

text of the gradient regularisation. In this work, we induce

better conditioning of the Hessian through an architectural

modification to the discriminator and significantly improve

its performance.

Specifically, our approach focuses on the last layer of the

discriminator network which is typically a fully-connected

(FC) linear layer. Intuitively, FC layers serve as an inter-

preter of the representative features collected by preceding

convolution layers. We demonstrate that an FC layer’s in-

ability to interpret data which is highly non-linear as well as

separate out highly-complex correlated data leads to harm-

ing the discriminator’s capability to model the typically

non-linear, joint distributions associated with image data.

Incidentally, these are properties that are inherent in deci-

sion trees [5]. Through increasingly complex empirical val-

idation, we show that replacing the FC layer with a deci-

sion forest improves performance in the discriminator in a

GAN setup. Furthermore, we show that our novel architec-

ture provides significant performance gains when integrated

into state-of-the-art GAN baselines.

The rest of this paper is organised as follows: first,

we give a brief background of the related work. This
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is followed by introducing the necessary preliminaries

which motivates inspecting the conditioning of our pro-

posed model. Next, the advantage of using a decision forest

over a FC layer is highlighted from a numerical stand point,

followed by a toy GAN example. Finally, we show experi-

mental results on a larger scale and offer conclusions.

2. Background

2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [8] minimise

the Jenson-Shannon divergence between a target data dis-

tribution and the model distribution given by the generator.

GANs implicitly estimate a data distribution using the fol-

lowing minimax objective loss function:

min
G

max
D

V (D,G) = Ex∼Pr
[logD(x)]

+Ez∼Pz
[log (1−D ◦G(z))]

(1)

where Pr and Pg are the respective target and model distri-

butions, with Pg implicitly defined by G(z), z ∼ p(z) (p is

a noise distribution such as Gaussian or uniform).

Initially, GANs were not heavily utilised since the frame-

work suffered from various instability issues during the op-

timisation process, such as mode collapse and falling short

of estimating areas of the target distribution [32]. DCGAN

provided initial guidelines for constructing a deep convolu-

tional neural network which attempted to address some of

the instability in training and improve modal diversity [30].

Although the framework provided a strong baseline, GANs

were considered far from solved. Many follow up works

over the years have tackled various problems in the GAN

domain and their accumulated contributions have addressed

different GAN problems in either an isolated manner or in

a collective manner.

The work by [26] extended upon the original GAN

framework objective (which used the Jensen-Shannon di-

vergence as a loss), allowing it to use the entire f -

divergence family. This proved useful for cases where us-

ing a different divergence was necessary, but did not address

inherent problems in f -divergence losses such as vanishing

gradients. Following this, [2] introduced the Wasserstein

GAN (WGAN) as a method to address the vanishing gra-

dient problem. WGANs treated the task of matching dis-

tributions as a mass transportation problem, demonstrating

the benefits of using the Wasserstein distance as a loss func-

tion. WGAN used the Kantorovich-Rubinstein duality [33]

to obtain its objective function:

min
G

max
D∈FLip

V (D,G) = Ex∼Pr
[D(x)]

+Ez∼Pz
[D ◦G(z)]

(2)

where FLip is the set of 1-Lipschitz functions. In the

original WGAN formulation, Lipschitz continuity was en-

forced through weight clipping in the discriminator; this

was shortly addressed by [9] which imposed a gradient

penalty (WGAN-GP) to ensure the discriminator was Lip-

schitz bounded. However, whilst WGAN and WGAN-GP

provided great results in practice [3,35,36], it was theoreti-

cally shown by [22] that using the Wasserstein distance will

not lead to convergence.

Recent work has realised the importance of a Lipchitz-

bounded discriminator. In [37], the loss function was al-

tered to induce a Lipchitz behaviour on the discrimina-

tor. Spectral Normalisation GAN (SNGAN) [24] imposes

a Lipchitz constraint via direct weight normalisation. We

note that all the above methods use the original DCGAN

network architecture, with slight modifications due to con-

straints imposed by their specific methods (e.g. WGAN and

SNGAN do not use Batch Normalisation layers in their dis-

criminators).

2.2. Decision Trees & Forests

Decision forests are well-known for their strong discrim-

inating power [29], although initially they suffered from

variance and stability issues and were prone to overfit-

ting [12]. These issues were alleviated via various reg-

ularisation methods such as randomisation of the feature

subspace and bootstrapping [4, 7], and boosting meth-

ods [6, 16, 40]. Most modern works now utilise decision

forests within a deep learning context, either by using de-

cision tree methods to influence the training approach [14],

or explicitly incorporating decision trees as part of the core

architecture [18, 39].

A decision tree consists of a set of internal decision

nodes and a set of terminating leaf nodes. The internal

nodes, D = {d0, · · · , dN−1}, each hold a decision function

d(x; θ), where θ are the parameters of the decision node.

Each decision node performs a hard routing of an input to

its corresponding left or right child decision node according

to d(x; θ) : X → [0, 1]. Collectively, the decision nodes

map an input sample, x, from the root node to one of the

terminating leaf nodes: ℓ = D(x,Θ), where Θ are the col-

lected parameters of the decision nodes of the tree. Leaf

nodes hold a set of real values, q, which are formed from

the training data:

q(ℓ) =

∑

i δ(D(xi))vi
nℓ

(3)

where nℓ is the number of samples routed into leaf node ℓ,
δ provides the routing function for the sample through the

tree to leaf ℓ and vi is the observed real value for instance

i. A decision forest is an ensemble composed of T number

of decision trees which produces an averaged output of its

trees:

P (x,Θ,Q) =
1

T

T∑

t=1

Qt(Dt(x,Θt)) (4)
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where Qt, Dt and Θt are the respective values, decisions

and parameters of tree t, while Θ and Q are the collected

parameters of all trees’ decisions and leaf values.

3. Preliminaries

We consider a neural network of depth N to be defined as

a series of linear operations: W (θi) ∈ Rn×n, parameterised

by θi and non-linear point wise operations: F : R → R,

constructed to operate on an input X ∈ Rn as follows:

Ŷ (X,θ) = W (θN )(F (W (θN−1)) . . . F (W (θ1)X)) (5)

Without losing generality, the linear operator W (i) is inter-

changeable with the convolution operator [20]. Given a set

D of M data measurements {Xi, Yi}
M
i=1 The following loss

function is defined for optimising the parameters θi of the

neural network defined in Eq. 5:

L(θ) =
1

2|B|

∑

i∈B

∥
∥
∥Y − Ŷ (Xi,θ)

∥
∥
∥

2

(6)

where B ∈ D is a batch of measurement pairs {Xi, Yi} ∈ B
randomly sampled from the set D. The Hessian, denoted as

H, is a matrix of the second derivatives of the loss L with

respect to the parameters θ:

Hm,n =
1

|B|

∑

i∈B

∂Ŷ

∂θm

∂Ŷ

∂θn
︸ ︷︷ ︸

Gm,n

−
1

|B|

∑

i∈B

(Y − Ŷ )
∂2Ŷ

∂θm∂θn

(7)

The matrix G ∈ RNn2×Nn2

in the under-brace of Eq. 7

is an approximation of the Hessian and also known as the

Gauss-Newton matrix. Note that for the loss function de-

fined in Eq. 6, the Gauss-Newton matrix is equal to the

Fisher information matrix [10]. The spectral density of the

Gauss-Newton matrix defines the degree of local curvature

for the loss surface defined in Eq. 6 and provides a good es-

timate of the efficiency expected in first-order optimisation

methods. We define the empirical spectral density of the

Gauss-Newton matrix G similar to [27]:

ρG(λ) =
1

Nn2

Nn2

∑

i=1

δ(λ− λi(G)) (8)

with λi(G) being the eigenvalues of G, and δ the Dirac delta

function. The moments of the spectral density provide the

statistics of the spectral density and are defined as:

mk =

∫

ρG(z)z
kdz (9)

The conditioning of the Hessian plays a large role in first-

order optimisation methods. In [27], a three-way relation-

ship was explored between the Hessian conditioning, the

Pre-activations

Decision Nodes

Leaf Nodes

Sigmoid ActivationReshape+

Global Average Pooling

Convolution pre-activations

Discriminator Conv Layers

Figure 1: An overview of our proposed changes to the dis-

criminator network in a GAN setup

delta of the loss step size, −∆L, and various non-linearity

activation functions which resulted in different neural net-

work setups. The conclusion was clear; more non-linearity

in a neural network architecture correlates with a lower con-

dition number, which also correlates with more efficient op-

timisation step size (i.e. larger ∆L).

Classically, the condition number of a matrix is mea-

sured by the ratio of the largest to the smallest eigenval-

ues, λmax/λmin. In this work, we adopt the measure of

conditioning as done in [27], by looking at the ratio of the

second and first moment of the spectral density function:

κ(G) = m2/m
2
1. This form of measuring the condition-

ing is scale-invariant and robust to spectral density func-

tions which have degenerate components. The lower this

conditioning measure is (with 1 ≤ κ(G)), the tighter the

spectrum is concentrated around its mean, resulting in less

pathological curvature occurrences in the loss surface.

4. A Discriminator with a Forest

Our method modifies the architecture of the discrimi-

nator network by replacing the final fully-connected (FC)

layer of the network with a decision forest: first, we take

the set of pre-activations from the last convolutional layer in

the discriminator network and apply a global average pool-

ing operation, which reduces the 4D (N × H × W × C)

tensor into a 2D (N × C) tensor. N corresponds to the

batch size, H,W are the respective height and width of the

pre-activation tensor and C is the number of output chan-

nels. Following this, the N × C tensor is reshaped into the

decision nodes of the forest (see Fig. 1).

More explicitly, for a single sample in a batch, a pre-

activation feature vector with C channels is generated. This

vector can be reshaped into C decision nodes of our deci-

sion forest. We can adjust the number of trees Nt and their
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depths (Nd) such that the total number of nodes equals C
(e.g. for a decision forest of 16 trees each of 5 depth, we re-

quire a total of 16× (25 − 1) = 496 decision nodes, where

the preceding convolution layer outputs 496 channel feature

vectors).

For the leaf nodes of the decision forest, a 2D tensor of

Nt ×Nl is created, corresponding to the number of trees in

the forest and number of leaf nodes in each tree respectively.

Then, each leaf node value is generated a probability route

from a corresponding set of decision nodes. This dictates its

contribution to the ensemble’s output, as shown in Fig. 2.

4.1. Soft Decision Trees

Our approach is similar to the approaches of [15, 38],

where a decision forest is constructed with decision nodes

that create soft decision boundaries, in contrast to the com-

mon hard decision boundaries. Here, we adapt the method

to work within an end-to-end deep learning framework.

Each tree in the ensemble outputs a single prediction value

which is the result of blending the values in all leaves in the

tree according to their generated proportion values. Each

decision forest is composed of Nd decision nodes and Nl

leaf nodes.

Each decision node di is composed of a sigmoid gating

function σ(·) and a bias value bi, where i indexes the deci-

sion nodes in a decision tree. Given a pre-activation xi and

bias bi, di outputs a left and right subtree probability, where

the probability assigned to its left subtree pi is given by:

pi = σ(xi − bi) (10)

Subsequently, di assigns to its right subtree a probability of

p̄i = 1− pi. The probability route from the root node d0 of

each decision tree to the jth leaf node ℓj is then defined as:

µℓj (x; b) =

Nd∏

i=1

p
1ℓjւdi

i p̄i
1ℓjցdi (11)

j indexes the leaf nodes in the decision tree, Nd is the num-

ber of decision nodes in the tree and 1C is an indicator func-

tion which equals 1 when its condition C is met and 0 oth-

erwise. Here, ℓj ւ di observes whether the jth leaf node

ℓj belongs in the left subtree of the ith decision node di and

ℓj ց di observes if ℓj belongs to the right subtree of di.
The output of the kth decision tree is then given by com-

bining each of its leaf nodes ℓ according to its respective

probability route µ (see Fig. 2):

∐k(x; b, ℓ) =

Nl∑

j=1

µℓj ℓj (12)

Thus, a soft decision tree achieves its non-linearity

through the direct multiplication of activations assigned to

output

Figure 2: An example of our soft decision trees blending its

leaf node values based on probability routes generated by

its internal decision nodes

its decision nodes. This introduces a larger non-linearity

when compared to stacked FC layers, which are point-wise

linear operations with non-linearity in between. Through

enforcing our decision trees to create soft decision bound-

aries, our model becomes fully differentiable and can be

seamlessly inserted into the discriminator and updated via

backpropagation. The output of the discriminator is given

by the output of an ensemble of decision trees which is the

sum of each decision tree’s individual output (as computed

by Eq. 12):

D(x; b,∐) =

Nt∑

k=1

∐k (13)

where k indexes the tree, and Nt denotes the total number

of trees in the ensemble.

5. Improving the Discriminator

In the Preliminaries, we showed that the Gauss-Newton

matrix G is developed for the case of a squared loss func-

tion. In neural network optimisation and specifically GAN

optimisation, the loss function is not necessarily the squared

loss. Without loss of generality, here we reformulate the

problem as a general loss function so that analysing the

Gauss-Newton matrix (and as a result, the network’s con-

ditioning) can be made possible. We can minimise the loss

function w.r.t the parameters in the network by treating it

as an iterative least squares problem, where the loss can be

written as a sum of squares as follows:

L(θ) =
∑

i∈B

L(Xi,θ) =
∑

i∈B

(
√

L(Xi,θ)

)2

=⇒ Gm,n =
∑

i∈B

∂
√

L(Xi,θ)

∂θm

∂
√

L(Xi,θ)

∂θn

(14)

The Gauss-Newton matrix can be computed as: G = JTJ
where J denotes the Jacobian of the square root of the loss

L.
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(a) (b)

Figure 3: (a) A small MLP with FC linear layer (b) A small

MLP modified with a soft decision forest. Both networks

are given the task of solving a filtering problem with addi-

tive noise imposed at every Gaussian mode. Improved con-

ditioning of the Hessian matrix allows the soft decision for-

est to induce a drastically different behaviour on the MLP

over its FC linear layer counterpart, where it is able to find

much tighter separation boundaries around each Gaussian

mode.

5.1. Measuring the Conditioning of the Discrimina­
tor

First, we construct an example that will allow us to com-

pute the conditioning of a small MLP when we replace the

last FC linear layer with the soft decision forest described in

the previous section. The computation of the Gauss-Newton

matrix is made possible due to the small number of parame-

ters in both examined networks. Similar to Eq. 5, we define

the small MLP as a network composed of 2 hidden layers

as follows:

ŶFC(X,θ) = W (θ3)F (W (θ2)F (W (θ1)X)) (15)

where X ∈ R2 and is distributed as a ring of Gaussians

with 8 modes each of radial distance of 1 and std = 0.02
around each mode. The matrices are parameterised as:

W θ1 ∈ R32×2, W θ2 ∈ R8×32, W θ3 ∈ R1×8. The point-

wise non-linearity function F is a ReLU function. We de-

note ŶFC as the output of the network which uses W θ3 as

its last layer. Our forest variation replaces W θ3 with D(·),
the forest function (Eq. 13), and is defined as:

ŶForest(X,θ) = D(W (θ2)F (W (θ1)X), θ3,∐) (16)

The models defined in Eq. 15 and 16 both optimise the stan-

dard GAN loss as defined in Eq. 1. Here, we reduce the min-

imax problem optimised by GANs by fixing the generator’s

output to be X ′ = X + ǫ, with ǫ ∼ N (0, I2). In doing so,

we can first isolate and compare the performance of the soft

decision forest against the FC linear layer, inspecting the

difference in operation between the two models [28]. Thus,

Eq. 1 is reduced to solving a filtering problem, where we

would expect a goood discriminator to assign a high confi-

dence in a tight boundary around each Gaussian in the ring.

Visually inspecting the probability contours for each re-

spective model in Figs. 3a and 3b, where the values of

ŶFC and ŶForest are plotted respectively given inputs of

−2 ≤ X1 ≤ 2,−2 ≤ X2 ≤ 2, we note that compared

to the model with the FC linear layer, the soft decision for-

est model assigns a much higher confidence in a tight ring

around each Gaussian in the ring. Additionally, we com-

pute the conditioning of G in the form of m2/m
2
1, using the

formulation in Eq. 14, where the empirical spectral density

is computed as in Eq. 8 and both m1,m2 moments are ex-

plicitly computed using Eq. 9. This results in a condition

number of κ(GFC) = 295 and κ(GForest) = 288 for the

FC linear layer model and soft decision forest model respec-

tively. This margin is significant and although computing

the conditioning becomes infeasible for deeper networks,

this result provides a motivation to test whether larger scale

networks perform better given this initial insight.

5.2. Visualising MNIST

Following this, we show the improvements that a soft de-

cision forest can offer over its fully-connected linear coun-

terpart on an example involving real images in an adver-

sarial setting. Here, we show that the inherent instability

in DCGAN can be addressed by an architectural solution

which correctly resolves ill-conditioned gradients. We con-

struct two GAN models for image synthesis on the MNIST

dataset [13]: the first model is a DCGAN [30] and the sec-

ond model is a modified version DCGAN where we replace

the last fully-connected layer with a soft decision forest,

similar to Eq.16 (denoted as DCGAN-Forest). Both mod-

els are trained using the hyperparameters settings described

by [30] on the training data of the MNIST dataset for 500k

iterations. For the soft decision forest, we use a configura-

tion of 16 trees, each of which is 4 levels deep. This is to

ensure that the number of parameters between both mod-

els is relatively similar at approximately 0.8M parameters.

During training, we observe and visualise the distribution of

probabilities each model’s discriminator assigns to 3 sets of

10k images: samples generated by its own generator (blue),

samples generated by the generator of the competing GAN

(green) and real image samples from the test data of the

MNIST dataset (red) which were not seen during training.

In Fig. 4a, we show the kernel density estimates of prob-

abilities assigned by the discriminator of DCGAN to each

set of images at 10k, 200k and 500k iterations during train-

ing, along with qualitative samples from the generators of

each GAN model. In the early stages of training (10k iter-

ations), the DCGAN discriminator assigns a diverse spread

of probabilities to samples from each set, with the real im-

ages from the MNIST test set being assigned the highest

probabilities on average. In the middle stages of training

(200k iterations), the DCGAN discriminator is beginning to

separate out samples from its own generator with samples
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(a) DCGAN discriminator Kernel Density Estimates

(b) DCGAN-Forest discriminator Kernel Density Estimates

Figure 4: Kernel density estimates (along with corresponding generator samples) of probabilities assigned by the (a) DCGAN

discriminator and (b) DCGAN-Forest discriminator to 10k samples each from 3 sets of images: test data from MNIST (red),

samples generated by its own generator (blue) and samples generated by the competing GAN (green) at 10k, 200k and 500k

training iterations. Estimates for DCGAN-Forest are well distributed which points to more stable gradients, in contrast to

DCGAN, which exhibits an erratic distribution. Note that this behaviour is not easily observed in the loss curve of the

discriminator.

from the real distribution assigning low and high probabil-

ities respectively. Samples from the DCGAN-Forest gen-

erator are largely concentrated at the low and high ends of

the distribution, where the DCGAN discriminator finds it

difficult to discern between whether these generated sam-

ples were drawn from the real distribution. Observing the

samples generated by the DCGAN (blue) and competing

DCGAN-Forest (green), it is evident that the DCGAN gen-

erator has begun to collapse on modes. By the late stages

of training (500k iterations), the DCGAN discriminator has

completely separated out samples from its own generator

and real samples and this corresponds to complete collapse

in its generator. We note that although the DCGAN dis-

criminator is able to easily distinguish between its gen-

erator’s samples and the real samples, it performs poorly

when shown samples from the set of images generated by

the DCGAN-Forest’s generator which has been assigned a

probability distribution strikingly similar to that of the un-

seen test images from the MNIST dataset.

Conversely, in Fig 4b, we observe the kernel density

estimates of probabilities assigned by the discriminator of

the DCGAN-Forest at 10k, 200k and 500k iterations dur-

ing training, along with qualitative samples from the gen-

erators of each GAN model. In the early stages of train-

ing (10k iterations), the DCGAN-Forest discriminator as-

signs half probabilities to nearly all the samples irrespec-

tive of the distribution they were drawn from. In the middle

stages of training (200k iterations), the DCGAN-Forest dis-

criminator is beginning to separate out generated samples

and real samples. Note that the assigned probabilities to

samples from its own generator follow closely the assigned

probabilities of samples from the real test images, whilst

there is a significant difference to the samples generated

by the competing DCGAN generator. By the late stages of

training (500k iterations), the probabilities assigned by the

DCGAN-Forest discriminator to its own samples and real

images has shifted significantly to the higher end of prob-

abilities, whilst the distribution of probabilities assigned to

the competing DCGAN’s generated samples has remained

around the half probability zone. From this, we can ob-

serve that the DCGAN-Forest discriminator performs much

better when shown samples generated by the DCGAN gen-

erator, as indicated by the large mass of lower probabilities

it assigns to those samples when compared to its own and

real images. We again note that the probabilities assigned to

the set of real images and DCGAN-Forest’s own generated

samples looks strikingly similar.

6. Experiments

We compared our soft decision forest model to three

well-established GAN baselines, DCGAN [30], WGAN-

GP [9] and SNGAN [24], across three datasets: CIFAR-
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(a) DCGAN (b) DCGAN-Forest (c) WGAN-GP (d) WGAN-GP-Forest (e) SNGAN (f) SNGAN-Forest

Figure 5: Qualitative results on CUB Birds (top) and Oxford Flowers (bottom) datasets. We show considerable image quality

improvements over all GAN baselines. Note the increased level of detail in our generated samples, resulting in sharper

looking images, which is consistent across all GAN baselines.

Method Inception Score FID

DCGAN 6.16±0.07 37.7

DCGAN-Forest (Ours) 6.66±0.06 35.2

WGAN-GP 6.58±0.06 37.7

WGAN-GP-Forest (Ours) 6.83±0.04 33.2

SNGAN 7.42±0.08 29.3

SNGAN-Forest (Ours) 7.52±0.05 22.2

Table 1: Inception Scores and FIDs for DCGAN, WGAN-

GP, SNGAN along with corresponding modified Forest

counterparts on CIFAR-10

10 [19], CUB Birds [34] and Oxford Flowers [25]. We train

the baseline DCGAN, WGAN-GP and SNGAN according

to the hyperparameters specified in their respective papers.

For DCGAN and SNGAN, we use the loss function defined

in Eq. 1 and for WGAN-GP, we use the loss function de-

fined in Eq. 2 with the additional gradient penalty term de-

fined in [9]. For each baseline GAN, we replace the final

fully-connected (FC) layer in their discriminator/critic net-

works with our forest layer. This creates three variants of

our modified GAN with forest model and for all our ex-

periments, we refer to our three forest variants of DCGAN,

WGAN-GP and SNGAN as DCGAN-Forest, WGAN-GP-

Forest and SNGAN-Forest respectively. For the SNGAN

baseline, we employ the two-time update rule (TTUR) train-

ing schedule as specified in [11], employing a 3:1 ratio in

learning rate between the discriminator (0.0003) and gen-

erator (0.0001). We found this configuration of SNGAN to

give the best performance on all datasets. Similarly, we em-

ploy the same TTUR training schedule for our forest variant

(SNGAN-Forest).

For all experiments involving our forest variant models,

we use a configuration of 16 trees and vary the tree depth

to control the number of parameters in the model to match

the number of parameters in its corresponding GAN base-

line. We use the exact same hyperparameter settings as their

corresponding GAN baselines. We use the ADAM opti-

miser [17] with a batch size of 64, training for 100k iter-

ations on the CIFAR-10 dataset and 30k iterations on the

Oxford Flowers and CUB Birds datasets.

6.1. CIFAR­10

Experiment Settings For the CIFAR-10 dataset, we use

decision trees of depth 5. For each GAN baseline, we

use the standard CNN configuration listed in their respec-

tive papers which consists of approximately 2.6M param-

eters. Our forest variant model also consists of approxi-

mately 2.6M parameters.

Quantitative Results In Table 1, we report our results on

the CIFAR-10 dataset, comparing each GAN baseline to

its forest variant counterpart. We can see that across all 3

GAN baselines, our forest variant offers a significant im-

provement in both Inception Score and Fréchet-Inception

Distance. Additionally, we also plot Inception Score [32]

and FID [11] curves in Figs. 6a and 6b respectively. Ob-

serving the evolution of Inception Scores and FID over the

course of training, we can see that each modified forest vari-

ant offers significantly better training convergence than its

corresponding GAN baseline.

6.2. Oxford Flowers and CUB Birds

Experiment Settings For the CIFAR-10 dataset, we use

decision trees of depth 6. For each baseline GAN, we use
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(a) IS (b) FID

Figure 6: (a) Inception Scores and (b) FID curves over 100k

training iterations of DCGAN, WGAN-GP and SNGAN

along with their corresponding modified forest variants on

the CIFAR-10 dataset.

the standard CNN configuration listed in their respective

papers which consists of approximately 9.7M parameters.

Our forest variant model consists of approximately 9.6M
parameters.

FID

Method Oxford Flowers CUB Birds

DCGAN 82.0 59.0

DCGAN-Forest (Ours) 67.2 53.4

WGAN-GP 80.4 60.3

WGAN-GP-Forest (Ours) 35.3 49.6

SNGAN 53.2 57.1

SNGAN-Forest (Ours) 32.6 44.6

Table 2: FIDs for DCGAN, WGAN-GP and SNGAN along

with corresponding modified Forest counterparts on Oxford

Flowers and CUB Birds

Qualitative Results In Fig. 5, we show qualitative sam-

ples of our models where a significant improvement in sam-

ple quality can be observed in the samples generated by

our forest models when compared with their corresponding

GAN baselines.

Quantitative Results In Table 2, we report our results

on the Oxford Flowers and CUB Birds datasets, comparing

each GAN baseline to its forest variant counterpart. Once

again, our forest variants offer a drastic improvement in

Fréchet-Inception Distance over all GAN baselines.

6.3. Comparing the Soft Forest with FC Layers

Finally, we study the difference between our soft de-

cision forest when compared with stacked FC linear lay-

ers. Here, we observe the difference in FID performance

between our soft decision forest compared to just naively

stacking FC linear layers in the discriminator. We take our

strongest performing GAN baseline (SN-GAN) and mod-

ify it by extending the number of FC linear layers from 1

to 3 FC linear layers. We also experiment with different

non-linearity activation functions including Leaky ReLU

and Sigmoid functions. For the stacked FC layer setup, we

halve the output channels with each FC layer added from its

starting number (e.g. for 3 FC layers, the output channels

changes from 512 to 256 to 128 to 1). As observed, our soft

forest significantly outperforms the stacked FC layer setup

which offers further evidence that improved conditioning

offered by our soft decision forest aids in the image synthe-

sis process.

FID

Method

(SN-GAN baseline)
CIFAR-10 Oxford Flowers CUB Birds

1FC (Sigmoid) 30.5 55.5 58.2

1FC (Leaky ReLU) 29.3 53.2 57.1

2FC (Sigmoid) 29.2 57.6 60.1

2FC (Leaky ReLU) 29.1 55.0 56.9

3FC (Sigmoid) 29.9 58.2 59.3

3FC (Leaky ReLU) 28.8 54.9 57.6

Forest (Ours) 22.2 32.6 44.6

Table 3: Ablation study comparing our soft decision forest

with stack FC layers with different non-linear activations.

7. Conclusion

This paper presents a new approach for unsupervised

training of a GAN, modifying the discriminator with a de-

cision forest. The architecture of our model reflects a key

insight that incorporating a decision forest into a neural net-

work increases non-linearity which results in a better con-

ditioned Hessian matrix and improved stability in training.

We show specific improvements within an adversarial setup

where our soft decision forest layer observes a near per-

fect Nash equilibrium state on a toy image generation task

when replacing its fully-connected linear layer counterpart

in a discriminator. Finally, we show our architecture can be

seamlessly integrated within state-of-the-art GAN methods

and provide significant performance gains over these GAN

baselines.
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