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A. PointSegDA dataset
We built PointSegDA dataset based on a dataset of tri-

angular meshes of human models proposed by [7]. This
dataset is made of the following four datasets, which serve
as different domains: ADOBE, FAUST, MIT, and SCAPE.
The datasets differ in body pose, shape, and point distri-
bution. We generated a point cloud from each mesh in each
domain by extracting all the vertices (edges were neglected)
and sampling 2048 points according to farthest point sam-
pling. We aligned the shapes with the positive Z-axis and
scaled them to the unit cube as in [8]. Point labels were ob-
tained from the polygon labels. In case of a conflict (i.e.,
the same point appears in two polygons having different la-
bels) we randomly picked one label. As a result, a total
of eight point-labels were obtained: foot, leg, thigh, torso,
upper arm, forearm, hand, and head. Table 5 shows the
train/val/test splits, and Fig. 6 depict three shapes from each
domain.

Dataset Train Validation Test Total

FAUST 70 10 20 100
MIT 118 17 34 169

ADOBE 29 4 8 42
SCAPE 50 7 14 71

Table 5: Number of samples in each sets.

B. Implementation details
B.1. PointDA-10 dataset

Data processing. Following several studies [6,8,14] we
assume that the upwards direction of all point clouds in all
datasets is known and aligned. Since point clouds in Model-
Net are aligned with the positiveZ axis, we aligned samples
from ShapeNet and ScanNet in the same direction by rotat-
ing them about the x-axis. We sampled 1024 points from
shapes in ModelNet and ScanNet (which have 2048 points)
using farthest point sampling as in [8]. We split the training

Figure 6: A comparison of typical shapes from the datasets:
FAUST, MIT, ADOBE, and SCAPE.

set to 80% for training and 20% for validation and scaled the
shapes to the unit-cube. During training, we applied jitter-
ing as in [8] with standard deviation and clip parameters of
0.01 and 0.02 respectively, and random rotations to shapes
about the Z axis only.

Network architecture. In all methods we used DGCNN
[14] for the feature extractor with the following configura-
tions: Four point cloud convolution layers of sizes [64, 64,
128, 256] respectively and a 1D convolution layer with ker-
nel size 1 (feature-wise fully connected) with a size of 1024
before extracting a global feature vector by max-pooling.
We implemented a spatial transformation network to align
the input point set to a canonical space using two point-
cloud convolution layers with sizes [64, 128] respectively,
a 1D convolution layer of size 1024 and three fully con-
nected layers of sizes [512, 256, 3] respectively. The classi-
fication head, hsup, was implemented using three fully con-
nected layers with sizes [512, 256, 10] respectively (where
10 is the number of classes). The same architecture was ap-
plied to both classification heads of PointDAN [9]. The SSL
head, hSSL, of DefRec, DAE-point and RS [11] was imple-
mented similarly using four 1D convolution layers of sizes



Method ModelNet to
ShapeNet

ModelNet to
ScanNet

ShapeNet to
ModelNet

ShapeNet to
ScanNet

ScanNet to
ModelNet

ScanNet to
ShapeNet

Avg.

Unsupervised 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2 ± 1.8

DANN [1] 75.3 ± 0.6 41.5 ± 0.2 62.5 ± 1.4 46.1 ± 2.8 53.3 ± 1.2 63.2 ± 1.2 57.0 ± 1.2
DANN + PCM 74.8 ± 2.8 42.1 ± 0.6 57.5 ± 0.4 50.9 ± 1.0 43.7 ± 2.9 71.6 ± 1.0 56.8 ± 1.5

PointDAN [9] 82.5 ± 0.8 47.7 ± 1.0 77.0 ± 0.3 48.5 ± 2.1 55.6 ± 0.6 67.2 ± 2.7 63.1 ± 1.2
PointDAN + PCM 83.9 ± 0.3 44.8 ± 1.4 63.3 ± 1.1 45.7 ± 0.7 43.6 ± 2.0 56.4 ± 1.5 56.3 ± 1.2

RS [11] 81.5 ± 1.2 35.2 ± 5.9 71.9 ± 1.4 39.8 ± 0.7 61.0 ± 3.3 63.6 ± 3.4 58.8 ± 2.7
RS + PCM 79.9 ± 0.8 46.7 ± 4.8 75.2 ± 2.0 51.4 ± 3.9 71.8 ± 2.3 71.2 ± 2.8 66.0 ± 1.6

DAE-Global [2] 83.5 ± 0.8 42.6 ± 1.4 74.8 ± 0.8 45.5 ± 1.6 64.9 ± 4.4 67.3 ± 0.6 63.1 ± 1.6
DAE-Global + PCM 83.1 ± 0.5 47.2 ± 0.8 70.0 ± 1.0 52.8 ± 0.6 67.7 ± 2.1 73.7 ± 0.6 65.7 ± 0.9

DAE-Point 82.5 ± 0.4 40.2 ± 1.6 76.4 ± 0.7 50.2 ± 0.5 66.3 ± 1.5 66.1 ± 0.5 63.6 ± 0.9
DAE-Point + PCM 85.0 ± 0.5 50.2 ± 1.3 74.3 ± 0.7 50.9 ± 0.8 65.1 ± 1.7 72.2 ± 0.9 66.3 ± 1.0

DefRec (ours) 83.3 ± 0.2 46.6 ± 2.0 79.8 ± 0.5 49.9 ± 1.8 70.7 ± 1.4 64.4 ± 1.2 65.8 ± 1.2
DefRec + PCM (Ours) 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4 68.6 ± 0.8

Table 6: Baselines methods with PCM. Test accuracy on PointDA-10 dataset, averaged over three runs (± SEM).

[256, 256, 128, 3]. The domain classifier head of DANN [1]
was set similar to hsup, namely three fully connected layers
with sizes [512, 256, 2]. The reconstruction head of DAE-
Global [2] was implemented using four 1D convolution lay-
ers of sizes [1024, 1024, 2048, 3072] respectively (where
3072: 1024 × 3 is the reconstruction size). In all heads the
nonlinearity was ReLU and a dropout of 0.5 was applied to
the first two hidden layers. Batch normalization [4] was ap-
plied after all convolution layers in Φ, hsup and the auxiliary
losses.

Training procedure. In all methods (baselines and
ours), during training, we alternate between a batch of
source samples and a batch of target samples. We used a
fixed batch size of 32 per domain, ADAM optimizer [5],
and a cosine annealing learning rate scheduler as imple-
mented by PyTorch. We balanced the domains by under-
sampling the larger domain, source, or target, in each
epoch. We applied grid search over the learning rates
{0.0001, 0.001} and weight decay {0.00005, 0.0005}. In
all methods besides PointDAN, we applied a grid search
over the auxiliary task weight λ ∈ {0.25, 1}. PointDAN
has three loss-terms: classification, discrepancy, and MMD.
Therefore, for this baseline we applied a grid search over
{(0.33, 0.33, 0.33), (0.5, 0.25, 0.25)} correspondingly. For
DAE-point and DAE-Global we used a Gaussian noise sam-
pled from N (0, 0.01) as suggested by [2]. We ran each
configuration with 3 different random seeds for 150 epochs
and used source-validation-based early stopping. The total
training time of DefRec varies between 6-9 hours on a 16g
Nvidia V100 GPU, depending on the datasets.

In the paper, we propose three types of deformations to
the input point cloud. We implemented these methods with
the following settings:

• Volume-based deformations. Deformations based on

proximity in the input space. We examined two vari-
ants of deformations from this type: (a) Split the input
space to k × k × k equally sized voxels and pick a
voxel at random. We tested this method for k ∈ {2, 3}
(b) The deformed region is a sphere with a fixed radius
r ∈ {0.1, 0.2, ..., 1.0, 2.0} that is centered around one
data point selected at random.

• Feature-based deformations. Deformations based on
proximity in the feature space. We examined defor-
mations based on features extracted from layers 1 − 4
of the shared feature encoder. The deformed region
was set by randomly selecting a point and deforming
its {100, 150, 200, 300, 500} nearest neighbors in the
feature space.

• Sample-based deformations. Deformations based on
the sampling direction. For the gradient and the Lam-
bertian methods, we followed the protocol suggested
by [3]. For the split method, we randomly selected a
cut off according to a beta distribution with parameters
a = 2.0, b = 5.0.

B.2. PointSegDA dataset

Similar to the classification case, during training we
applied jittering with standard deviation and clip parame-
ters of 0.01 and 0.02 respectively, and random rotations to
shapes about the Z axis only. The training procedure and
network architecture were similar to the ones described in
Section B.1 with the following exceptions:

• Network. We used the DGCNN feature extractor and
segmentation head for segmentation tasks. Unlike the
classification head, the segmentation head takes the
global feature vector concatenated to feature represen-
tations of the points. It was implemented using four 1D



Method ModelNet to
ShapeNet

ModelNet to
ScanNet

ShapeNet to
ModelNet

ShapeNet to
ScanNet

ScanNet to
ModelNet

ScanNet to
ShapeNet

Avg.

DefRec 84.7 ± 0.5 44.3 ± 2.3 79.3 ± 0.9 49.7 ± 1.0 66.3 ± 1.6 68.1 ± 0.9 65.4 ± 1.2

DefRec + PCM 84.0 ± 0.3 55.0 ± 1.2 74.7 ± 1.0 54.4 ± 0.1 69.7 ± 0.6 76.2 ± 0.3 69.0 ± 0.6

Table 7: Combining deformation strategies. Test accuracy on PointDA-10 dataset, averaged over three runs (± SEM).

convolution layers of sizes [256, 256, 128, 8], where 8
is the number of classes.

• Training procedure. The batch size was set to 16 per
domain, the number of epochs was set to 200, and
a grid search over the auxiliary task weight λ was
done in {0.05, 0.1, 0.2}. Multi-level Adapt-SegMap
[13] was implemented with two segmentation heads
and two discriminators, all having the architecture de-
scribed in the previous item. For Adapt-SegMap we
applied grid search over the adversarial tasks weights
in {(0.0002, 0.001), (0.0002, 0.01), (0.002, 0.001),
(0.002, 0.01)}

• DefRec hyperparameters. (i) Volume-based deforma-
tions: we searched over the hyperparameters k = 3
and r ∈ {0.2, 0.3, 0.4, 0.5}. (ii) Feature-based defor-
mations: we considered only the layers 2 − 3. The
deformed region was set by randomly selecting a point
and deforming its {400, 600} nearest neighbors in the
feature space.

C. Additional experiments
C.1. PCM on baselines

Table 6 compares DefRec + PCM to the baseline meth-
ods combined with the PCM module. From the table,
we notice that PCM boosts the performance of RS, DAE-
Global, and DAE-Point but less so for DANN and Point-
DAN. Nevertheless, our proposed approach of combining
PCM with DefRec is still superior. PointDAN uses a dis-
crepancy loss which entails having two classification heads.
Therefore, we speculate that adding PCM in this scenario
hurts the performance. Combining PCM with several clas-
sification heads is an interesting research direction which
we leave for future work.

C.2. Combining deformation strategies

DefRec procedure requires first to choose the deforma-
tion type and then hyperparameters specific for the type.
This process may be cumbersome. Therefore, here we sug-
gest an alternative protocol. Instead of choosing a specific
deformation type, we propose to apply all of them with
equal weight. For efficiency, this is achieved by choos-
ing each deformation with a probability of 1/3 in each
batch. The hyperparameters of each type of deformation

Method Standrad
Perplexity

Class-Balanced
Perplexity

ModelNet to ScanNet

PointDAN 25.3 ± 1.4 36.4 ± 1.1

DefRec + PCM 29.8 ± 1.9 33.1 ± 1.4

ModelNet to ShapeNet

PointDAN 6.8 ± 0.4 23.6 ± 3.5

DefRec + PCM 6.1 ± 0.3 20.4 ± 3.0

Table 8: Log perplexity (± SEM). Lower is better.

were set according to a sensitivity analysis based on the
source-validation accuracy. As expected, we found the cho-
sen hyperparameters to be highly correlated with the ones
presented in Fig. 5 (e.g., radius of 0.2 for the volume-
based). Table 7 shows the results of applying this protocol.
Comparing these results with the ones in Table 1 shows that
these two alternatives are comparable. On some adaptations
there is a significant improvement, for example, in Model-
Net to ShapeNet and ModelNet to ScanNet, when applying
PCM, the accuracy increase by 2% and 3% respectively.

D. Estimating target perplexity

A key property of a DA solution is the ability to find
an alignment between source and target distributions that is
also discriminative [10]. To test that we suggest measuring
the log perplexity of target test data representation under
a model fitted by source test data representation. Here we
consider the representation of samples as the activations of
the last hidden layer in the classification network. The log
perplexity measures the average number of bits required to
encode a test sample. A lower value indicates a better model
with less uncertainty in it.

Let (xt1, y
t
1), ..., (xt1, y

t
n) ∈ T be a set of target instances.

We note by nc the number of target instances from class c.
Using the chain rule, the likelihood of the joint distribution
p(xtj , y

t
j = c) can be estimated by finding P (xtj |ytj = c)

and P (ytj = c). To model P (xtj |ytj = c) we fit a Gaussian
distribution N(µc,Σc) based on source samples from class
c using maximum likelihood. To model p(ytj = c) we take
the proportion of source samples in class c.



(a) DefRec + PCM (b) PointDAN

Figure 7: The distribution of samples for the adaptation ModelNet to ScanNet.

(a) DefRec + PCM (b) PointDAN

Figure 8: The distribution of samples for the adaptation ModelNet to ShapeNet.

Modeling the class conditional distribution with a Gaus-
sian distribution relates to the notion proposed in [12]. [12]
suggested to represent each class with a prototype (the mean
embeddings of samples belonging to the class) and assign a
new instance to the class associated with the closest pro-
totype. The distance metric used is the squared Euclidean
distance. This method is equivalent to fitting a Gaussian
distribution for each class with a unit covariance matrix.

The log perplexity of the target is (noted as standard per-
plexity here after):

L(T ) =

10∑
c=1

nc∑
j=1

1

n
log
(
p(xtj |ytj = c)p(ytj = c)

)
(4)

Alternatively we can measure the mean of a class-
balanced log perplexity (noted as class-balanced perplexity
here after):

L(T ) =
1

10

10∑
c=1

nc∑
j=1

1

nc
log
(
p(xtj |ytj = c)p(ytj = c)

)
(5)

Table 8 shows the standard perplexity and class-balanced
perplexity of DefRec + PCM of our best model that was
chosen based on the source-validation set and PointDAN [9]
for the adaptations ModelNet to ScanNet and ModelNet to
ShapeNet. Estimating the perplexity on the original space
requires estimating a covariance matrix from a relatively
small number of samples which results in a degenerate ma-
trix. Therefore, we estimated the perplexity after applying
dimensionality reduction to a 2D space using t-SNE. We ran
t-SNE with the same configurations with ten different seeds
and reported the mean and standard error of the mean. In
Figures 7 and 8 we plot the t-SNE representations of one of
the seeds.

From the table and the figures, we see that our method
creates target and source representations that are more sim-
ilar. In both adaptations, the class-balanced perplexity of
our model is smaller. This is an indication that our model
is doing a better job at learning under-represented classes.
We note that PointDAN creates a denser representation of
some classes (especially well-represented classes such as
Chair and Table) however, they are not mixed better be-



tween source and target.

E. Shape reconstruction
Although we developed DefRec for the purpose of DA

we expect it to learn reasonable reconstructions from point
cloud deformations. Figures 9-11 show DefRec reconstruc-
tion of deformed shapes by the first variant of the volume-
based type. Namely, we split the input space to 3 × 3 × 3
voxels and pick one voxel uniformly at random.

Figure 9 demonstrate DefRec reconstruction of a shapes
from all classes in the data for the simulated domains (left
column) and the real domain (right column). Images of
the same object are presented in the following order from
left to right: the deformed shape (the input to the network),
the original shape (the ground truth) and the reconstructed
shape by the network. From the figure, it seems that the net-
work manages to learn two important things: (1) It learns to
recognize the deformed region and (2) it learns to recon-
struct the region in a way that preserves the original shape.
Note how in some cases, such as Monitor on the left column
and Lamp on the right column, the reconstruction is not en-
tirely consistent with the ground truth. The network recon-
structs the object in a different (but still plausible) manner.

Figures 10 and 11 show DefRec reconstruction of Chair
and Table objects respectively from deformations of differ-
ent voxels in the objects. It can be seen that the network
learns to reconstruct some regions nicely (such as the chair’s
top rail or table legs) while it fails to reconstruct well other
regions (such as the chair’s seat).



Figure 9: Illustration of target reconstruction of all classes. Each triplet shows a sample deformed using DefRec, the ground
truth original, and the resulting reconstruction. Left triplets: ShapeNet/ModelNet. Right triplets: ScanNet.



Figure 10: Reconstruction of a chair object from deformation of different regions in it by DefRec. The object in the first
row is the ground truth. Below it are the reconstructed shapes, each with a deformation of different region in the object.
Reconstructed region is marked by orange.



Figure 11: Reconstruction of a Table object from deformation of different regions in it by DefRec. The object in the first
row is the ground truth. Below it are the reconstructed shapes, each with a deformation of different region in the object.
Reconstructed region is marked by orange.
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