
Supplementary Material: Generative Patch Priors for Practical Compressive
Image Recovery

Rushil Anirudh
Lawrence Livermore National Laboratory

Livermore, CA
anirudh1@llnl.gov

Suhas Lohit
Misubishi Electric Research Laboratories

Cambridge, MA
slohit@merl.com

Pavan Turaga
Arizona State University

Tempe, AZ
pturaga@asu.edu

Figure 1: GPP degrades gracefully as the number of available observations are reduced. Results shown here are for an image
of size 1024× 768, recovered using patches of size 32× 32. We do not use BM3D here to illustrate the patch artifacts under
very few observations (1%). The PSNR (dB) is also shown along with the reconstruction, compared to the ground truth which
is shown in the top left.

1. Additional results
In figure 2, we show sample reconstructions for the phase retrieval task at a measurement rate of 10%.



Figure 2: Compressive phase retrieval sensing at a measurement rate of 10%.

1.1. Self calibration under unknown sensor shift

In figure 3 we illustrate how reconstruction methods can easily fail to recover the solution when there is even a small shift
in the operator. We simulate this using b = −0.25 and compare the proposed self calibration approach against no calibration
and the untrained network prior (DIP) [2]. We observe that the self calibration is able to successfully correct for the unknown
shift, compared to the models that do not account for it.

2. Self-Calibrated Compressive Image Recovery
We evaluate the robustness of GPP using the proposed self-calibration (SC) step. In this experiment, we perturb the

measurement operator using the perturbation model described in section 4 of the main paper, Φ̃ = a ∗ Φ + b using different
values for a and b. The measurements are then obtained by y = Φ̃x, but all the reconstruction algorithms, including ours, are
given access to only Φ. We study the average PSNR for the seven test images used earlier, for different values of a, and b. In
figure 4a, we vary the gain coefficient a, while keeping b fixed at 0.0. We observe that GPP +SC remains robust to a wide
variation of a, while the un-calibrated setup completely fails. We repeat these experiments for the sensor shift b coefficient in
figure 4b where a = 1.0, and we vary b. We observe similarly that GPP +SC is significantly more robust than GPP , or DIP
alone. Finally, in figure 4c, we study the convergence of the calibration algorithm for a mixed case with a = 0.85, b = 0.5.
We see that the self-calibration step converges quickly to a value very close to the true values, and correspondingly improving
the PSNR of the reconstruction.

3. Derivation for a∗ and b∗

Consider a vectorized square block of an image x ∈ X ⊂ Rn which we want to sense, and denote by y ∈ Rm the
compressive measurements obtained by the sensor. Given a measurement matrix Φ ∈ Rm×n, with m < n and Φi,j ∼ N (0, 1),
the compressive recovery problem is to estimate x accurately from y. In the ideal setting, i.e., compressive sensing with
known calibration the sensing model is given by y = Φx. Instead we consider a simple calibration model— y = (aΦ + b1)x,
where a, b ∈ R1 are unknown calibration parameters and have to be estimated, and 1 ∈ Rm×n is a matrix of the same size as
Φ with 1s.

In order to derive a and b, we assume we have a current estimate of the solution x from a pre-trained generator G(z) for a
latent vector z. This is be randomly initialized at the beginning. Under this calibration model, let us define mean squared error



Figure 3: Compressive sensing at a measurement rate of 10% under unknown sensor shift (b). We see that methods that do not
account for this shift can easily break. Note the iterations in DIP are scaled since we run it for 10000 iterations compared to
1000 iterations on GPP and GPP + SC.

1.0 0.5 0.0 0.5 1.0
Sensor Gain (a)

5

10

15

20

25

Av
g.

 P
SN

R 
(d

B)

GPP
GPP+SC
DIP

(a) unknown sensor gain (a)

0.6 0.2 0.2 0.6
Sensor Shift (b)

5

10

15

20

25

Av
g.

 P
SN

R 
(d

B)

(b) unknown sensor shift (b) (c) Convergence of the calibration algorithm

Figure 4: Calibration experiments

loss function as follows:

L = (y − (aΦ + b1)x)ᵀ(y − (aΦ + b1)x)

=⇒ L = yᵀy − yᵀ(aΦ + b1)x− xᵀ(aΦ + b1)ᵀy + xᵀ(aΦ + b1)ᵀ(aΦ + b1)x (1)

As a result, the derivatives with respect to each unknown a, b are:



∂L
∂a

= −yᵀΦx− xT Φᵀy + xᵀ [2aΦᵀΦ + bΦᵀ1 + b1ᵀΦ]x

Similarly,
∂L
∂b

= −yᵀ1x− xᵀ1ᵀy + xᵀ [aΦᵀ1 + 1ᵀΦ + 2b1ᵀ1]x

(2)

By setting these derivatives to zero, we get:

∂L
∂a

= 0 =⇒ −yᵀΦx− xᵀΦᵀy + 2axᵀΦᵀΦx + bxᵀΦᵀ1x + bxᵀ1ᵀΦx = 0. (3)

=⇒ −2yᵀΦx + 2axᵀΦᵀΦx + 2bxᵀΦᵀ1x = 0. (4)

=⇒ b =
yᵀΦx− axᵀΦᵀΦx

xᵀΦᵀ1x
(5)

Note, in (4) all the terms are scalars and therefore yᵀΦx = xᵀΦᵀy etc. Next, we take the partial derivative with respect to b.

∂L
∂b

= 0 =⇒ yᵀ1x− xᵀ1ᵀy + axᵀΦᵀ1x + axᵀ1ᵀΦx + 2bxᵀ1ᵀ1x = 0. (6)

=⇒ −2yᵀ1x + 2axᵀΦᵀ1x + 2bxᵀ1ᵀ1x = 0. (7)

=⇒ b =
yT1x− axᵀΦᵀ1x

xᵀ1ᵀ1x
(8)

Combining equations (8) and (5), we get the following:

(yᵀΦx− axᵀΦᵀΦx)xᵀ1ᵀ1x =
(
yT1x− axᵀΦᵀ1x

)
xᵀΦᵀ1x (9)

As in the paper, let us define scalar quantities for notational convenience: cΦ = yT Φx, c1 = yT1x, θΦ = (Φx)T (Φx), θ1 =
(1x)T (1x), λ = (Φx)T (1x). This implies, (9) is now reformulated as:

(cΦ − aθΦ)θ1 = (c1 − aλ)λ (10)

=⇒ a =
c1λ− cΦθ1
λ2 − θΦθ1

(11)

and b =
c1 − a∗λ

θ1
(12)

In each step of the alternating minimization, we use the estimates from (11), and (12) and update the latent vector z, which is
repeated until convergence in a, b, z. Since our generative model is defined at a patch level, we estimate a, b for each individual
patch i separately and assign the mean values of all the patch-estimates as the single a, b for the entire image: a = 1

N

∑N
i=1 ai;

and b = 1
N

∑N
i=1 bi. We continue with this alternating minimization until the loss converges. In practice, we find that the

algorithm converges within 1500 iterations, and finding recovery and convergence properties of this algorithm remain part of
our future work. We empirically study convergence properties of this self-calibrating mechanism under different settings in the
supplement.

Note that the latent space optimization is itself a nonconvex optimization problem which is solved only approximately using
a gradient-descent type of optimization, yielding a local minimum at each iteration. Therefore the overall optimization problem
is nonconvex even though the calibration parameters can be estimated exactly at each step. Using the result in Theorem 3.1
and Lemma 3.2 in the paper by beck [1], we can see that the alternating procedure converges to a stationary point. A stronger
result is deferred for future work.

3.1. GPP for image inpainting

GPP is a generic prior to constrain solutions to the natural image manifold. We show an example here of how it can be used
in other challenging inverse problems. In figure 5, we illustrate the efficiency of GPP for a for inpainting, where only a small
number random pixels are shown, and the task is to recover the original image. Unlike most existing methods, we see that
GPP’s solution degrades more gracefully than DIP, even recovering some signal when 99.5% of the pixels are missing.



Figure 5: GPP for image inpainting: GPP is more efficient than DIP, being able to recover parts of original image even when
99.5 % of the pixels are missing. The original image is of size 800× 640.
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