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In this document, we present a more detailed descrip-
tion for the implementation of stochastic softmax sampling.
We also provide experiments with decoupled sampling and
pooling temperatures and additional visualizations of dis-
tributions obtained during training with softmax sampling
and REINFORCE. Finally we discuss complementary ex-
periments and results.

S.1. Stochastic Softmax — Implementation

Clip Sampling. The sampler S, extracts a clip of F' con-
tiguous frames at temporal position ¢ from a video x of arbi-
trary length L. The sampling mechanism can be formulated
as:

S - RL><3><H><W — RF><3><H><W’ with F < L, HxW
is the spatial resolution of the data and we consider three
colour channels. At every epoch of training, we construct
batches of training clips. One clip is sampled from each
training video. There are N = L — F' 4 1 possible clips
to extract from a given dataset example. Videos are padded
to contain at least F' frames. With weighted training, the
temporal sampling probability distribution of each video is
computed from its classification scores. In the context of
a deep-learning classifier, we consider that inference class
scores represent a good measure of a clip’s informativeness
and relevance to the task [73, 75]. Specifically, for a given
training clip, we use the score corresponding to the target
label. In this sense, our method is similar to using the Or-
acle Sampler conceptualized in [68] at training time. This
strategy minimizes the training loss by selecting the best
scoring clips. The aim is to also improve the validation
accuracy and reduce training time by learning from infor-
mative clips, without irrelevant and noisy frames. Let w,
be the temporal sequence of N classification scores esti-
mates corresponding to the temporal responses of the classi-
fier convolved over . Then, w, ; is the classification score
for the training clip x;. This score will be the base of our
clip weighting.

Temporal softmax sampling follows the formula:
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Distribution updates. At every epoch, a single clip is se-
lected from each video in the training dataset. We apply in-
ference on the sampled clip without data-augmentation (as
this would introduce noise in the score distribution), and
separately use a copy with data-augmentation to train the
model. The importance of evaluating scores from “clean”
clips is further discussed in Section S.3.

We employ a propagation mechanism to update several
clip probabilities from a single clip evaluation. After train-
ing with clip x;, obtaining classification score f(x;), we
update the estimate of score wy, ¢4 for all ¢ in [— F'; F'] with
linear interpolation:
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Training phases. Efficient training-clip sampling is
highly dependant on the accuracy of the temporal distri-
butions. Since the estimate w is built iteratively and the
model is trained simultaneously, it could take a long time
for clip sampling to become interesting. Waiting for all
clips to be evaluated before starting to sample them effi-
ciently would require an unreasonable number of epochs.
Also, we do not want to update distributions with classi-
fication scores obtained from an untrained model. There-
fore, we implemented several mechanisms to bootstrap the
distributions, to make them representative of the informa-
tiveness of clips as early as possible during training, with-
out introducing heavy computational overhead. We decom-
pose the training process into three simple steps relative to
the sampling mechanism: first, warm-up with uniform sam-
pling and no distribution updates, then, exploration with de-
terministic sampling and initialization of distributions, and



finally exploitation with softmax sampling and distribution
updates as described above. The number of epochs asso-
ciated to each of these phases can be adapted to the task,
based on the total duration of training, the average video
length and the clip size.

During the first 3 epochs, uniform sampling is used with-
out updating the distributions. This warm-up time allows
the model to jump from 14% to 25% validation accuracy on
AFEW, which is about half of the final accuracy. After the
3rd epoch, the classification scores are far more reliable to
update sampling distributions.

Before starting to exploit the sampling mechanism, we
need to build entire temporal distributions of the videos in
order to have information on the relative importance of each
clip. One solution is to compute classification scores on the
entire training videos with an inference step. This would be
very expensive as a single training video can have hundreds
of frames, and the number of possible F'-frame overlapping
clips to evaluate is L— F'+1. Also, the model’s temporal re-
ceptive field and the duration of training clips are not equal,
so using score vectors computed convolutionally from long
videos might not be reliable and wouldn’t be coherent with
the scores obtained from short clips in the exploitation step.
Instead, we propose a lighter exploration step that integrates
smoothly into our framework. For 5 epochs, we sample
training clips deterministically from uniformly spaced tem-
poral locations. The selected clips are used for training and
provide classification scores to initialize the corresponding
% of the distributions. In our implementation, the score is
obtained before the back-propagation. Evaluating the clip
right after training on it would bias the distributions toward
rewarding most fitted clips, while we aim at evaluating their
informativeness. Overall, this exploration step enforces a
diversity of clips in the early stages, which is important for
building representative distributions.

Then, for the main part of the training, training clips
are sampled stochastically, based on the softmax probabili-
ties computed from w. We keep updating the distributions
throughout training. As clips share a lot of frames with their
neighbours, we update the distribution around the sampled
temporal location. We consider this particularly important
in our experiments because the number of clips in videos is
generally greater than the number of training epochs. We
use linear interpolation centered on the selected clip and
propagate to 16 frames on each side, with decreasing up-
date weight further from the center. The settings for the
number of steps in each step and the method for smooth-
ing distributions can be optimized and adapted to the task at
hand, and require more attention in future work.

S.2. Discussion on sampling temperatures

To evaluate the benefits of temporal softmax weighting,
we study the impact of the joint sampling and pooling tem-

perature parameter on the classification performance and
training time. Results on AFEW are reported in Table S.1.
The baseline is the uniform training, with average pool-
ing during inference. This is equivalent to the temperature
~ = 0 in the softmax framework. However, our method
comprises warm-up and exploration as described in the im-
plementation discussion, so we report both the results with
uniform sampling and with v = 0. We can see that deter-
ministic exploration seems to be beneficial as it provides
more variations in training data, but consequently delays
convergence by acting as a regularizer. Weighted sampling
is effective after the 8t" epoch (3 epochs of warm-up and 5
epochs of exploration). With large v temperature parame-
ters, the best clips are exploited more often, leading to lower
training data variation and more informative clips. We ob-
serve a shortening in the duration (epochs) of the training
process. The best classification performance (47.35%) is
obtained with softmax temperature v = 1, which provides a
compromise between uniform and maximum temperatures,
effectively focusing on relevant clips while maintaining di-
versity in selection. Results with softmax temperatures dur-
ing training and average pooling during testing demonstrate
the effect of sampling temperature on the learning phase.
Interestingly, we observe that having different temperature
during training (clip sampling) and during testing (temporal
pooling) can lead to even better performance. When consid-
ering this possibility, the best accuracy (47.55%) is obtained
with 5 = 1 for training-clip sampling, and ~, = 10° for
softmax pooling. The Sampling only experiment on UNBC-
McMaster reported in Table S.4 also supports this hypoth-
esis. It shows that weighted sampling improves training
quality on its own (more details below). Although here,
average pooling at test time seems more efficient than max
pooling, probably due to differences between the categori-
cal emotion recognition task and the binary pain detection
setup (the benefits of temporal softmax being limited for
No Pain videos). As we designed this method as a unify-
ing framework, we do not extensively study the effect of
decoupling the two softmax temperatures.

S.3. Additional Results and Discussions

Clean sample scoring. In order to update the sampling
distributions, it is straightforward to use the scores obtained
during training. However, these scores are subject to data-
augmentation and dropout. This introduces noise in the
estimation of temporal distributions. Table S.2 shows this
phenomenon. Using “clean” copies of the clips to evalu-
ate their score makes temporal sampling more efficient. In
our experiments, using softmax temperature v = 10, accu-
racy was 46.65% with data-augmented samples and 46.91%
with clean samples (with a uniform sampling baseline of
45.87%). The computational overhead is very limited as it
consists in adding only an inference step on small clips with



Training v, || Accuracy (%) | Epochs Test v, = 0 | Testy, = 10°
uniform 45.66 £0.21 24.55 £2.75 45.66 46.91
vs =0 46.07 £0.20 25.66 £3.14 46.07 46.86
¥s = 0.5 46.07 £0.27 23.56 £3.09 45.61 47.00
vs =1 47.35 £0.27 20.33 +1.72 46.59 47.55
vs = 10 46.65 +0.40 17.22 £2.20 45.84 46.76

Table S.1. Results obtained by decoupling training (sampling 7s) and testing (pooling y,) softmax temperatures on the AFEW dataset.
Models are trained with the clip-sampling strategy indicated in the left column, and results are provided for tests with average (v, = 0)
and max (v, = 10°) video-level temporal pooling. The uniform entry and s = 0 differ because of the deterministic exploration at the

beginning of training.

Training method Acc. (%)
Uniform training v = 0 45.87
Clean scoring, v = 10 46.91
Data-augmented scoring, v = 10 46.65

Table S.2. Influence of scoring from clean samples compared to
directly using the data-augmented training samples, on AFEW.

Clip duration (frames)
~ Temp. 8 16 32
0 45.17 | 45.78 | 47.09
1 46.39 | 47.00 | 47.43
10 46.04 | 45.85 | 47.17

Table S.3. Influence of training-clip duration for classification ac-
curacy (%) with 3D-CNN stochastic softmax on AFEW.

no back-propagation. We can note that even when taking
the readily available scores to update the distributions, our
sampling method performs better than uniform sampling.

Clip duration. We study the effect of training-clip dura-
tion on classification accuracy, for different temperatures of
sampling. We perform very limited hyper-parameter search
for this study, so performances could probably be improved
for large clip duration. Results presented in Table S.3 show
that accuracy improves with clip size, but the impact of
stochastic softmax is greater for smaller clips. Uniform
sampling (y = 0) particularly benefits from larger clips,
as they will reduce noise in gradients and training inputs
will be closer to those in inference mode (long videos).
Weighted sampling on the contrary has more impact with
small clips, as they allow for more precise focus and avoid-
ing of irrelevant clips. Note that all clips become similar
when their size is large, with more overlapping frames.

Sampling with frame-level labels. As the UNBC-
McMaster dataset provides expert-annotated PSPI scores,
measuring pain intensity at each frame, it can constitute
an alternative to our estimated sampling distributions. Ta-
ble S.4 reports the performance of a model trained with

EER
Method Ace. (%) Epoch
Our baseline 3D VGG (unif.) 86.58 43.0
Stochastic Softmax (y = 2) 87.21 374
Sampling only (s = 2) 87.63 35.2
PSPI sampling (ys = 0.8) 87.84 25.8

Table S.4. Additional results of a 3D CNN on UNBC-McMaster,
we compare the baseline (uniform training and average pool-
ing) with temporal stochastic softmax as proposed in the paper
(vs = 7 = 2), adecoupled version of temporal stochastic
softmax (s = 2 and v, = 0) and an experiment involving expert
frame-level labels to guide sampling.

short-clips sampled with the PSPI distributions. As the
PSPI range is 0-16, much higher than the classification
scores produced by the model, we use a temperature v, =
0.8. With an accuracy of 87.84%, this model performs bet-
ter than the weakly-supervised model. The improvement is
quite limited, confirming that stochastic softmax is able to
estimate meaningful distributions from sequence-level la-
bels only.

Figure S.1 provides more details to compare PSPI and
weakly-supervised sampling. The distributions estimated
from sequence-level classification scores have clear similar-
ities with the PSPI curves. We see that a data-oriented sam-
pling strategy can replace the need for more labels. Theoret-
ically the proposed method could also learn distributions for
No Pain, while PSPI scores are generally zero for this class,
but this doesnt seem to be relevant in our experiments.

Also, Werner et al. [74] discussed limitations of the
Prkaching and Solomon Pain Intensity (PSPI) scores, how
they do not always correspond to pain expressions, and how
their high temporal resolution might be misleading. This
suggests that using expert annotations are not necessarily
the best approach, even when they are available. However,
a clear advantage of the PSPI-based sampling is the possi-
bility to train with high intensity sampling directly, without
exploration. In our experiments, this translates into a reduc-
tion of training time from 35.2 to 25.8 epochs in average.
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Figure S.1. Visualizations of stochastic softmax training for three
Pain samples of the UNBC-McMaster dataset. For each sam-
ple, the figures describe, from top to bottom, the sampling maps
(temporal location for each epoch) and corresponding tempo-
ral sampling distributions, for stochastic softmax training from
sequence-level labels (OPI) versus frame-level annotations (PSPI).
The sequence-level label of each video is OPI 3 for hs107t2aaaff
and tv095t1afaff, OP1 5 for dr052t1aiaff.
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Figure S.2. Distribution updates obtained with REINFORCE are
small and localized. The distributions take too much time to fit for
the needs of training.

S.4. Additional visualizations of training

Figure S.2 displays an example of training distribution
obtain with the noisy updates of REINFORCE.

Figures S.3 to S.10 provides illustrative examples, for
AFEW and BioVid datasets, of the temporal stochastic soft-
max training process. They report sampling distributions
and the temporal positions of the sampled clips at each
epoch of training for a specific training video. They show
that the model is able to estimate meaningful distributions
that correspond to the observable emotion or pain level.
These distributions are built from evaluating short training
clips online, iteratively through the training process.

We can note the general difference in the prediction score
(logits) intensities between the datasets. This is probably
due to the weight initialization of the model, which involves
pretraining on 2D emotion recognition. The temperature
parameter can be adapted to task-specific distributions of
logits to obtain the desired sampling strategy.

On BioVid, Figure S.9 shows that the model is able to
learn different expressions of pain. We also visualize dis-
tributions obtained for No Pain samples of BioVid (BL1) in
Figure S.10. It is clear that the logits are too small to pro-
vide any real advantage over uniform sampling and average
pooling for these neutral states.
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Figure S.3. Visualization of sampling distributions for uniform Figure S.6. Visualization of training for sample 012904560 of the

training (above) and softmax temperature 1 (bellow), for sample Happy category, avoiding Neutral and Surprise expressions to fo-
012136400 of the Angry category. cus on the Happy frames at the end of the video.
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Figure S.4. Visualization of training for sample 010730723 of the Figure S.7. Visualization of training for sample 012019363 of the

Sad category, with a clear emotional progression from Neutral to Neutral category, with lightning variations rendering the end of the
Sad, and occlusion in the final frames. video uninformative.
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Figure S.5. Visualization of training for sample 001934160 of the Figure S.8. Visualization of training for sample 000102534 of the
Disgust category, focusing on the least ambiguous expressions. Surprise category, with clear apex, and head-pose variations.
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Reference Architecture Accuracy

Lietal., 2019 [69] ResNet-18 + BLSTM 43.34
2nd place AV EMOTIW 2019 | DenseNet-121 + BLSTM 49.35
Luetal. 2018 [71] 3D VGG-16 39.36
3rd place AV EMOTIW 2018 | VGG BLSTM 53.91
Liu et al. 2018 [70] 4CNNs + LSTM 56.13
Ist place AV EMOTIW 2018 | 3D landmarks + SVM 39.95
Fan et al. 2018 [66] VGG-Face 45.16
2nd place AV EMOTIW 2018 | FG-Net 47.00
Vielzeuf et al., 2018 [72] ResNet-18 av. pool. 49.7

3rd place AV EMOTIW 2018 | weighted av. pool 50.2

Vielzeuf et al., 2017 [73] LSTM C3D 43.2

4th place AV EMOTIW 2017 | Weighted C3D 42.1

Fan et al. 2016 [67] | C3D | 39.69
Bargal et al., 2016 [65] | VGG-13 | 57.07

Table S.5. Results reported on the AFEW dataset from the literature. Differences in methodology, testing sets, use of extra-data and other
factors make any comparison of these results hazardous. We provide this table as an overview of approaches and performances reported in
the literature.
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