Supplementary Material

In this supplementary material, we first present ex-
tensive details on the datasets used in our experiments.
Then, we show additional ablation studies and results
that support the satisfactory performance of the pro-
posed method.

1. Extended details on the employed
datasets

PASCAL-5". PASCAL-5' [26] is the most popular
few-shot segmentation benchmark, which inherits from
the well-known PASCAL dataset [7]. The images in
PASCAL-5* are split into 4 folds, each having 5 classes,
with 3 folds used for training and 1 for evaluation.
Following the standard procedure in [26, 21], we em-
ploy 1000 support-query pairs randomly sampled in the
test split for each class at test time. More details on
PASCAL-5" are provided in [26].

FSS-1000. A limitation of PASCAL-5' is that it con-
tains relatively few distinct tasks, i.e., 20 excluding
background and unknown categories. F'SS-1000 dataset
[16] alleviates this issue by introducing a more realistic
dataset for few-shot semantic segmentation, which em-
phasizes the number of object classes rather than the
number of images. Indeed, FSS-1000 contains a total of
1000 classes, where only 10 images and their correspond-
ing ground truth for each category are provided. Out
of the 1000 classes, 240 are dedicated to the test task
and the remaining for training. The FSS-1000 dataset
[16] only provides pixel-level annotations. Thus, to in-
vestigate the effect of using weak annotations in this
dataset we generated bounding box annotations. Each
bounding box is obtained from one randomly chosen
instance mask in each support image. The generated
bounding box annotations are provided with the code
employed in the experiments.

COCO is a challenging large-scale dataset, which
contains 80 object categories. Following [26], we choose
40 classes for training, 20 classes for validation and 20
classes for test.

2. Importance of the pyramidal setting

The integration of DoG in our model is strongly in-
spired by the seminal work in [20]. Thus, we followed
the recommended setting, which suggests that 5 scale
levels gives optimal results. To understand why employ-
ing a single DoG with a larger difference of o between
the gaussian kernels will not perform at the same level

than a pyramid of progressive DoG we need to con-
sider how we recognize images at different distances.
When we try to recognize objects that are far away,
we might be able to just identify rough details, while
fine-grained object details become more clear as the
image gets closer. Thus, the level of the scale-space is
a key factor when trying to recognize discriminative
features in an image. The problem, however, is that
the optimal scale-space level to discriminate important
features for each object is unknown. By blurring the
image with different o values each image represents
a different scale-space level, each of them specializing
on features at a given ’distance’. In contrast, if we
assume a single DoG with a larger difference between
the Gaussian kernel variance, intermediate scale-scape
levels will be missed. To demonstrate this empirically,
we investigated the setting where a single DoG with o
and o4 is integrated into the CNN. Results reported in
Table 1 shows that a single DoG obtains a mloU value
of 77.67 on the FSS-1000 dataset, underperforming by
3% the pyramidal setting.

Table 1. Effect of employing a single DoG with ¢ and o4
vs. a pyramidal DoG with progressive o values. Results for
1-shot on the FSS-1000 class dataset.

mloU
Single DoG 7.7
Pyramidal DoG 80.8

3. Ablation study on multi-scale fusion
features.

Similarly to [40], we investigated the effect of employ-
ing different levels of features, or a combination of those.
Particularly, we investigated the three last blocks of
VGG-16. In our case, block5 gives the best performance
when a single block is used. If multiple blocks are used
instead, we observed that combining the three blocks
provides the best performance, even though the contri-
bution of the blockj is marginal compared to the fused
features from block3 and block5 (+0.26%). The low
performance of shallower layers alone can be explained
by the fact that they exploit lower-level cues, which are
insufficient to properly find object regions. By integrat-
ing these with higher-level features, which correspond
to object categories, our model can efficiently identify
class-agnostic regions on new images. Furthermore,
fusion of features at several levels of abstraction can
help to handle larger scale object variations. Thus, the
final multi-scale model employed in our experiments
corresponds to the architecture combining the three last
feature blocks.



Table 2. Effect of combining different level feature maps in
the encoder network. Best result is highlighted in bold.

Block 3 Block 4 Block 5 mloU
v 76.3
v 78.3
v 79.5
v v 78.1
v v 80.6
v v 79.5

v v v 80.8

4. Model complexity.

The functionality of the proposed method in the de-
mand of computational resources is also investigated
in this work. Table 3 shows the model complexity of
several methods, as well as their segmentation results on
Pascal5’ for 1-shot. In this table, we include the models
that either report their number of parameters or pro-
vide reproducible code. We observe that the proposed
method is ranked among the lightest methods, while
typically achieving the best segmentation performance.
Compared to similar methods, in terms of complexity
(e.g., co-FCN [22], RPMM][18] or SG-One [42]), our
model brings between 2 and 17% gain on improvement.

Table 3. Parameter complexity in different approaches
and their performance (mlIoU) on 1-shot segmentation on
PASCAL-5". Methods are ordered based on number of
learnable parameters.

Method |1-sh0t mIoU| #params(M)
OSLSM [26]¢ 40.8 276.7
Meta-Seg [3]e 48.6 268.5
AMP [27]¢ 434 34.7
co-FCN [22]¢ 41.1 34.2
Proposed® 58.0 22.7
RPMM [36]" 56.3 19.6
SG-One [42]¢ 46.3 19.0
CANet [40]} 55.4 19.0
PGNet [39]} 56.0 17.2
Proposed? 58.7 16.3
PANet [34]¢ 48.1 14.7
PFNet [30]1 60.1 10.8

*Employed architectures: ¢, VGG, T ResNet50, § ResNet101

5. Results on COCO

Table 4 reports the results for 1- and 5-shot segmen-
tation on COCO dataset. As the backbone architecture
plays an important role on the performance of the whole
model, we split the results on methods relying on VGG-
16 (top) and on ResNet (fop). From these results we

can see that the proposed method achieves the best
performance for 1-shot setting on the VGG-16 group,
also outperforming a recent approach with ResNet, i.e.,
[21]. Regarding the results on 5-shot, our model obtains
similar results, but slightly worst, to those obtained by
several approaches with ResNet as backbone. This, to-
gether with results on FSS-1000 and Pascal5’, supports
our hypothesis that removing the texture bias can be
more efficient in scenarios with very limited supervision
(e.g., 1-shot), where our method consistently achieves
the best results across three different datasets (under
the exact same conditions, i.e., same architecture as
backbone).

6. Additional visual results

We include additional qualitative results to assess
the performance of our method. First, in Fig. 1, visual
results on the FSS-1000 class dataset are shown. Sim-
ilarly to the qualitative examples shown in the main
paper, we can observe how our method satisfactorily
handles target objects presenting high variability on
shape or perspective. This is evident, for example, in
the bat images, where our method is able to capture
the whole context of a bat flying, while the support
image just contained an image of three bats standing
in a branch. Then, we also depict failure cases (Fig. 2),
where our method does not achieve satisfactory segmen-
tations, or not as good as expected. Typically, these
failures come in the form of incomplete segmentations,
with small regions of the object not properly identified.
The next figure (Fig. 3) depicts the results when a
bounding box is employed as supervisory signal in the
support sample (depicted in purple). Despite the fact
that the support mask is noisy, the results achieved
by our method are close to the ground truth masks.
This, in addition to the quantitative results reported in
Table 4 (main paper), shows that the proposed method,
once trained on a base dataset, is robust to noise on
the support masks. Last, in Figure 4, we depict few
samples from the FSS-1000 class dataset, with their cor-
responding ground truth and the generated bounding
box annotation.



Table 4. Results of 1-way 1-shot and 5-shot segmentation on COCO-20° data set employing the mean Intersection Over
Union (mIoU) metric. Methods are divided according to the backbone used.

1-shot 5-shot
Method fold! fold? fold?3 fold* Mean fold! fold? fold® fold* Mean

Backbone (VGG-16)

PANet[34] ICCV'19 - - - - 209 - - - - 297
Proposed - 20.2 17.8 21.6 26.8 21.6 22.6 22.0 24.2 31.7 25.1
Backbone (ResNet)

FWB|21] § ICCV’'19 184 16.7 19.6 25.4 20.0 20.9 19.2 21.9 284 22.6
OANet [43] 1 Arxiv’20  29.6 22.9 20.3 17.5 22.6 36.6 27.1 25.9 21.9 279
DAN [33] & ECCV’20 - - - - 244 - - - - 296
RPMM (Baseline) [36] 1 ECCV’20 25.1 30.3 24.5 24.7 26.1 26.0 32.4 26.1 27.0 27.9
RPMM ([36] t ECCV’20 29.5 36.8 29.0 27.0 30.6 33.8 42.0 33.0 33.3 35.5
PPNet* [18] T ECCV’20 34.5 25.4 24.3 18.6 25.7 48.3 30.9 35.7 30.2 36.2
PFNet [30] £ TPAMI'20 36.8 41.8 38.7 36.7 38.5 40.4 46.8 43.2 40.5 42.7

Employed architectures: { ResNet50,  ResNet101
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Figure 1. Visual results on FSS-1000 class dataset in 1-way 1-shot setting using the proposed method. The support set, as
well as predictions on several query images with corresponding ground truths are shown.
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Figure 2. Visual examples of bad segmentation results on the FSS-1000 class dataset in 1-way 1-shot setting using the
proposed method. The support set, as well as predictions on several query images with corresponding ground truths are
shown.
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Figure 3. Visual examples of segmentation results on the FSS-1000 class dataset in 1-way 1-shot setting using the proposed

method with bounding box annotations. The support set (i.e., image and its corresponding bounding box annotation), as well
as predictions on several query images with corresponding ground truths are shown.
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Figure 4. Examples of bounding box annotations generated on the FSS-1000 class dataset.



