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Due to space limitation, we provide in this supplemen-
tary material detailed hyper-parameters used in the exper-
iments, results of the ablation study, visual results to the

similarity measure, and examples of predicted masks.

1. Supplementary material for the experiments

1.1. Training hyper-parameters

Tab/[T] shows the used hyper-parameters in all our exper-

iments.

Table 1: Training hyper-parameters.

Hyper-parameter

GlaS CUB

Model backbone ResNet-18 [3]
WILDCAT [2]:

«a 0.6

kmin 0.1

kmax 0.1

modalities 5

Optimizer SGD

Nesterov acceleration True

Momentum 0.9

Weight decay 0.0001

Learning rate (LR) 0.1 (WSL: 10~%) 0.1 (WSL: 1072)
LR decay 0.9 0.95 (WSL: 0.9)
LR frequency decay 100 epochs 10 epochs
Mini-batch size 20 8
Learning epochs 1000 30 (WSL: 90)
Horizontal random flip True

Vertical random flip True False
Crop size 416 x 416

k 40
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Figure 1: Ablation study over GlaS dataset (test set) over
the hyper-parameter % (x-axis). y-axis: AUC of Dice index
(%) of 25 queries for one trial. AUC average + standard
deviation: 81.49 £ 0.59. Best performance in red dot: k =
40, AUC = 82.41%.

1.2. Ablation study

We study the impact of k£ and A\ on our method. Re-
sults are presented in Fig[l] 2] for GlaS over k, \; and in
Fig[3] for CUB over A. Due to the expensive computation
time required to perform AL experiments, we limited the
experiments (k, A\, number of trials, and maxr). The ob-
tained results of this study show that our method is less sen-
sitive to k (standard deviation of 0.59 in Fig[I). In other
hand, the method shows sensitivity to A as expected from
penalty-based methods [1]. However, the method seems
more sensitive to A in the case of CUB than GlaS. CUb
dataset is more challenging leading to more potential er-
roneous pseudo-annotation. Using Large A will system-
atically push the model to learn on the wrong annotation
(Fig[3) which leads to poor results. In the other hand, GlaS
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Figure 2: Ablation study over GlaS dataset (test set) over
the hyper-parameter \ (x-axis). y-axis: AUC of Dice index
(%) of 15 queries for one trial. Best performance in red
dot: A = 0.1, AUC = 79.15%.
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Figure 3: Ablation study over CUB dataset (test set) over
the hyper-parameter \ (x-axis). y-axis: AUC of Dice index
(%) of 5 queries for one trial. Best performance in red dot:
A =0.001, AUC = 66.94%.

seems to allow obtaining good segmentation where using
large values of A did not hinder the performance quickly (2).
The obtained results recommend using small values that
lead to better and stable performance. Using high values,
combined with the pseudo-annotation errors, push the net-
work to learn erroneous annotation leading to overall poor
performance.

1.3. Similarity measure

In this section, we present some samples with their near-
est neighbors. Although, it is difficult to quantitatively eval-

uate the quality of such measure. Fig[] shows the case of
GlaS. Overall, the similarity shows good behavior of cap-
turing the general stain of the image which is what was in-
tended for since the structure of such histology images is
subject to high variation. Since the stain variation is one of
the challenging aspects in histology images [4], labeling a
sample with a common stain can help the model in segment-
ing other samples with similar stain. The case of CUB, pre-
sented in Fig[5] is more difficult to judge the quality since
the images contain always the same species within their nat-
ural habitat. Often, the similarity succeeds to capture the
overall color, background which can help segmenting the
object in the neighbors and also the background. In some
cases, the similarity captures samples with large zoom-in
where the bird color dominate the image.

1.4. Predicted mask visualization

Figl6|shows several test examples of predicted masks of
different methods over CUB test set at the first AL round
(r = 1) where only one sample per class has been labeled
by the oracle. This interesting functioning point shows that
by labeling only one sample per class, the performance of
the average Dice index can go from 39.08 £ 08 for WSL
method up to 62.58 = 2.15 for Label_prop and other AL
methods. The figure shows that WSL tend to spot small
part of the object in addition to the background leading high
false positive. Using few supervision in combination with
the proposed architecture, better segmentation is achieved
by spotting large part of the object with less confusion with
the background.



Figure 4: Examples of k-nn over GlaS dataset. The images represents the 10 nearest images to the first image in the extreme
left ordered from the nearest.



Figure 5: Examples of k-nn over CUB dataset. The images represents the 10 nearest images to the first image in the extreme
left ordered from the nearest.
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Figure 6: Qualitative results (on several CUB test images) of the predicted binary mask for each method after being trained
in the first round r» = 1 (i.e. after labeling 1 sample per class) using seed=0. The average Dice index over the test set of

each method is: 40.16% (WSL), 55.32% (Random), 55.41% (Entropy), 55.52% (MC_Dropout), 59.00% (Label_prop), and
75.29% (Full_sup). (Best visualized in color.)
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