
Supplementary Materials: A Learning-Based Approach to Parametric
Rotoscoping of Multi-Shape Systems

Intel Corporation

1. Training Data

Our data comes from a professionally rotoscoped stop-
motion animated film. We use a limited set of rotoscoped
data from the completed movie to train our supervised
learning models. The rotoscoped data is primarily for fa-
cial features, such as eyes, eyebrows, sideburns, and more.
As can be observed in Supplementary Table 1 not every shot
is equally useful. We only used frames in our dataset that
included all of the shapes with which we are concerned.
Sometimes shapes are not available when a character exits
a scene, turns around or is occluded by an object.

Shot Labeled Frames Total Frames Usable Fraction

Shot A 125 314 0.398
Shot B 327 348 0.940
Shot C 267 289 0.924
Shot D 398 440 0.905
Shot E 321 331 0.970
Total 1438 1722 0.835

Table 1. Ground truth dataset by the numbers.

The ground truth dataset is composed of image data
paired with rotoscoped Bézier shape data. From this shape
data, we will eventually mine the landmark points, but first
we automatically crop the images with a margin around the
rotoscoped shapes. This makes training and processing sig-
nificantly faster, while reducing the size of our database. We
chose to retain images of size 400x400 pixels, as opposed
to the raw 2348x1566 images, a reduction of just over 95%
of the initial data. This reduced image data (alongside the
transformed shape data) is used for training. In spite of the
relatively low-resolution training data, our models appear
to perform well even after the predictions are transformed
back to the full resolution images.

1.1. Data Augmentation

Deep learning methods usually require huge amounts of
training data to perform at their full potential, and often re-
quire expensive manual labeling. Using small amounts of
data for training results in overfitting of the model to the
inherently less variable dataset. To solve for this and en-

sure data efficiency and robustness, we perform a signifi-
cant amount of data augmentation (Figure 1). Along with
the usual augmentations like brightness, hue, blurring, scal-
ing, warping and flipping, we introduce a background and
occlusion augmentation that we describe here.

Figure 1. A-P are sample augmented images. Augmentations ap-
plied to the training data include: flipping, rotation, warping, ran-
dom motion, hue, color, and background replacement.

We first compute the convex hull of all the landmark
points and apply a small dilation to obtain a base matte.
We then add a random cloud around the base matte to form
the final matte (Figures 1A, D, J and L illustrate the random
cloud matte). We form a database of likely background im-
ages including both plain (e.g., blue and green screens) and
normal (e.g., objects, rigs, non-face features of other char-
acters from the shots) and we select random swatches while
augmenting. By randomizing the background, we force the
attention of the model towards facial features only. We ob-
served that models are better able to generalize on faces
with small occlusions such as hats when they are trained

with background augmentations that use a random cloud to
define the matte, as opposed to a standard geometric shape.

1.2. Synthetic Data Generation

Figure 2. (A) an example rendered labeled data, (B) the same im-
age placed on a random background, (C) and further augmented
with blurring.

To address the data variability issue inherent to small
training sets, several approaches have been proposed to
combine synthetic and real images, but synthetic rendering
pipelines are usually unable to reproduce the results of their
real-world counterparts. This is often referred to as the do-
main gap between synthetic and real data and the transfer
from one to another usually results in deteriorated perfor-
mance, as observed in [5].

Several approaches have tried to overcome this domain
gap. For instance, [1, 2, 4] use synthetic images in addition
to real ones to boost performance. While these approaches
result in good performance, there are other approaches that
rely on synthetic data alone [3].

Our synthetic data generation pipeline currently lever-
ages 8 facial expressions of our character. The studio uses
3D printing to create their stop-motion animation puppets.
We use these pre-existing 3D object files that portray our
character with different facial expressions to generate a
large set of 3D transformations uniformly covering the pose
space in which the character’s face is visible (Figure 2A
shows one example labeled pose). The character is rendered
in a random pose on a randomly selected background image
using a uniform distribution (Figure 2B). The selected back-
ground image comes from a set of real background images
used in the film. To increase the variability of the back-
ground image set, we randomly flip and rotate the images.
We also experimented with a set of backgrounds of uniform
color, however we discovered that using real background
images improved the model significantly (This result is dis-
cussed in the Experimental Results section). Additionally,
some 3D points from the synthetic data can suffer from self
occlusion, so we do not consider occluded points during
training.

We used Maya for rendering the synthetic dataset with
identical rendering parameters for each image. Since the
features of the synthetic data are much sharper and lie
within a different domain than the real images, we add ran-
dom blurring during training so that the model does not
overfit to the synthetic data’s domain (Figure 2C).

We use standard data augmentation techniques as well
as synthetically generated images[1, 2, 4] to boost perfor-
mance during training (see Supplementary Materials Sec-
tion 1). While we also tried freezing layers, similar to [3],
we found that this did not result in a significant performance
improvement after implementing data augmentation.

2. Training Details and Software Optimiza-
tions

Training was performed using Tensorflow 2.0 using the
built-in Keras API. We use the Adam optimizer. The learn-
ing schedule is as follows: The base learning rate is set as
1e3 for the first 10 epochs, and then follows a smooth curve
of intermediate learning rates between 1e − 3 and the final
learning rate 1e − 6 by linearly interpolating between the
log10 values of the stepped learning rate with the following
rate milestones–epoch 30: 1e− 4, epoch 50: 1e− 5, epoch
70: 1e − 6. The learning rate then remains set at 1e − 6
for the remainder of training. The training process is termi-
nated within 140 epochs.

With a goal of enabling fast and accessible computa-
tion, we performed training on two hardware configura-

tions: The first utilized an Intel Xeon(R) CPU E5-2699A
v4 @ 2.40GHz 44, as well as a TITAN RTX/PCIe/SSE2.
The second configuration solely utilized an Intel Xeon
CLX 8280. In order to optimize training on the Xeon
CLX 8280, we tuned the OpenMP environment variables
(OMP NUM THREADS=14, block time=0), we used hy-
perthreading (logical=1) and we tuned the TF runtime
knobs (intra op=28, inter op=2). OpenMP related knobs
were set via “export” in bash, and inter op and intra op
knobs were set by modifying the training script. Addition-
ally, we performed a Keras-related optimization. We set
the Keras learning phase (“keras learn phase”) to a constant
value of 1 instead of, by default, leaving it as a runtime vari-
able, which would cause dropout and batch normalization
steps to go into a different routine in each phase. With these
parameter adjustments, we achieve a 24% improvement in
software efficiency on the Intel hardware. These optimiza-
tions bring training time down to 77 seconds per epoch on
the Intel-only configuration as compared to 60 seconds per
epoch on the Intel/NVidia configuration. In future work, we
will enable cross-socket and cross-node distributed train-
ing on the Intel-only configuration, which will significantly
boost Xeon-based training performance.

3. Additional Shape model results

Figure 3. Examples of shape completion based on learned models.
(A, B, C) are eyes and (D, E, F) are eyebrows.

4. Additional Landmark Model Results

Figure 4. Experiment 1: Results of the model trained with raw,
unaugmented data, 1 shot of ground truth data with augmentations
but no synthetic data, synthetic data with augmentations but no
ground truth data, and 1 shot of ground truth data with augmenta-
tions and synthetic data.

Figure 5. Experiment 1: Numerical analysis of models trained with
raw, unaugmented data, 1 shot of ground truth data with augmenta-
tions but no synthetic data, synthetic data with augmentations but
no ground truth data, and 1 shot of ground truth data with augmen-
tations and synthetic data on four face poses: front, side, down and
up. Contributions to the MAE are broken out by shape category:
seams (crosshatched to the upper right), eyes (crosshatched to the
lower right), and eyebrows (no pattern).

Seams Eyes Brows Total MAE

Raw 1GT,
No Synth

209.75 200.10 192.39 602.22

No GT,
Synth

14.17 12.12 16.34 42.64

Aug 1GT,
No Synth

22.93 17.94 19.39 60.26

Aug 1GT,
Synth

6.45 5.56 5.30 17.31

Table 2. Experiment 1: Landmark prediction performance on test
dataset: the numbers in the table are MAE broken down by part
resulting from models trained with one shot of raw ground truth
data without synthetic data, no ground truth data and augmented
synthetic data, one shot of augmented ground truth data not sup-
plemented by synthetic data, and one shot of augmented ground
truth data supplemented by synthetic data.

Seams Eyes Brows Total MAE

No GT 14.17 12.12 16.34 42.64
1 GT 6.45 5.56 5.30 17.31
2 GT 5.08 3.91 4.27 13.26
3 GT 4.73 3.33 3.36 11.42
4 GT 3.34 2.95 3.36 9.65
5 GT 2.45 2.55 2.17 7.17

Table 3. Experiment 2: Landmark prediction performance on test
dataset: MAE broken down by part resulting from models trained
with 0, 1, 2, 3, 4, 5 augmented ground truth shots and supple-
mented with synthetic data.

Seams Eyes Brows TotalMAE

No Synth 3.92 3.25 4.04 11.21
No Back 4.08 3.05 4.50 11.63
No GT,
No Back

19.27 11.73 15.21 46.20

No Synth,
No Back

4.96 3.57 5.92 14.45

No Scale 2.95 2.56 2.67 8.18
Table 4. Experiment 3: Landmark prediction performance on test
dataset: MAE broken down by part resulting from models trained
with all shots and augmentations, (1) but without synthetic data,
(2) without background and occlusion augmentation, (3) without
ground truth data and without background and occlusion augmen-
tation, (4) without synthetic data and without background and oc-
clusion augmentation, and (5) without scaling adjustments to the
loss function.

Figure 6. Experiment 2: Results of the model trained with syn-
thetic data, background and occlusion augmentations and scaling,
but (A) without ground truth data, (B) with 1 shot of ground truth
data, (C) with 2 shots of ground truth data, (D) with 3 shots of
ground truth data, (E) with 4 shots of ground truth data, and (F)
with all 5 shots of ground truth data.

Figure 7. Experiment 2: Numerical analysis of models trained
with synthetic data, background and occlusion augmentations and
scaling, but (red) without ground truth data (orange) with 1 shot
of ground truth data, (yellow) with 2 shots of ground truth data,
(green) with 3 shots of ground truth data, (cyan) with 4 shots
of ground truth data, and (dark blue) with all 5 shots of ground
truth data on four face poses: Front, Side, Down and Up. Con-
tributions to the MAE are broken out by shape category: seams
(crosshatched to the upper right), eyes (crosshatched to the lower
right), and eyebrows (no pattern).

Figure 8. Experiment 3: Results of the model trained on (A)
ground truth and synthetic data with background augmentation,
(B) synthetic data with background augmentation, (C) ground
truth data with background augmentation, (D) ground truth and
synthetic data with no background or occlusion augmentation, (E)
synthetic data with no background or occlusion augmentation, F)
ground truth data with no background or occlusion augmentation.

Figure 9. Experiment 3: Numerical analysis of models trained
on ground truth and synthetic data with background augmenta-
tion (red), without synthetic data (orange), without background
and occlusion augmentation (yellow), without ground truth data
(green), without synthetic data and without background augmen-
tation (cyan), without ground truth and without background aug-
mentation (dark blue), and without scaling adjustments to the
loss function (purple) on four face poses: Front, Side, Down and
Up. Contributions to the MAE are broken out by shape category:
seams (no pattern), eyes (crosshatched to the lower right), and eye-
brows (crosshatched to the upper right).

Figure 10. Experiment 3: Results of the model trained (top) with
scale-aware parameters in the loss function, and (bottom) without
scale aware parameters in the loss function. Some improvement in
the seams, but no significant difference.

Figure 11. Tool Workflow: (A) A shot is imported into Nuke, a rough crop of the face is placed on the frames and a model is selected for
landmark inference. (B) The plug-in calls an external subprocess that runs inferencing on the shot. (C) Landmark points and initial shapes
are output across all frames. (D) The points in each shape can be displayed and tweaked, and a revised shape output. (E) The final splines
are overlayed on the face. (F) We can also visualize the final roto matte. These finished shapes can be exported to a JSON file and used to
further train the model.

5. Artist Workflow and Tool Interaction

Images of our Interactive Tool are reproduced here for
convenience (Figure 11).

We chose to allow the artist to feed the input crop to the
tool as that is an easy step to perform in Nuke. Rather than
focus on automating this step, instead we chose to make the
tool robust to rough crops as traditional keypoint models
expect a tight crop of the face or object to be fed into the
model. We designed this tool with the expectation that mul-
tiple artists will use it and we wanted to keep tool-specific
training to a minimum. In addition, providing the artist with
intermediate outputs that they can visualize and and modify
also ensures that the input into the next stage (shape gener-
ation) is guaranteed to perform well. Shape predictions rely
on good landmark predictions, so we expose this layer of
keypoints as tracker nodes. Since rough localization of key-
points is quick to repair manually, we did not automate that
step. We have received feedback from VFX post-processing
artists that good tracker nodes, can also be utilized for other
post-processing tasks in addition to the specific roto task
that we set out to solve.

In order for the artists to be able to interact with the
trained models, we needed to build an interface within a
paradigm that they work with. Nuke is a special effects
software platform developed by Foundry, which is used by
many special effects artists.

We use a “Read” node to read in a set of images from the
file system, these images usually pertain to continuous shots
within a scene. Once the frames are in the Nuke buffer,
the artist can use a traditional “Roto” node to put a bound-
ing box around the facial features area by creating a rough

shape (also known as a “Garbage Matte”). Next the artist
will select our custom “FeatureDetect” node, connect it to
the read node and then select the required parameters (Fig-
ure 11A).

The user can then select the model they want to apply
from a drop-down menu and set the frame range for infer-
encing. The user can choose to create a roto node, export
the node to a JSON file or whether to overwrite an existing
node. The user may also select their desired output direc-
tory.

At this stage, the user may choose to run the model (Fig-
ure 11B). The tool reads in the rotoscoped shape coordi-
nates, calculates a bounding box region that fits the input
feature size and runs the inferencing portion of the tool.
Once this subprocess has completed, a custom “Roto” node
is created. The roto node consists of a set of Bézier curves
that represent a series of shapes that the model was trained
to recognize (Figure 11C). In our example, these shapes in-
clude eyes, eyebrows and seams across the nose bridge and
from the corners of the eyes to the edge of the face.

The output Bézier curves behave as any other Nuke roto
shape where each key and handle can be adjusted to fit the
artistic needs of the scene (Figure 11). Figures 11E and F
show the finished splines and matte. This set of shapes can
also now be exported as a JSON file to be used for training
future models.

Our supplemental video shows an artist creating eye and
eyebrow holdout masks using our trained model and tool.
The artist was able to complete this task for 105 sequential
frames within 6.5 minutes. When the same artist creates a
holdout mask just for the left eye of the same character

Figure 12. Sample ground truth data with ground truth Bèziers overlayed (”Raw”, left) , with revectorized Bèziers overlayed (”Revector-
ized”, middle), and with point labels overlayed (”Points”, right).

Figure 13. Sample computer generated data with point labels over-
layed.

without our tool in Nuke, the task takes 31 minutes to create
the left eye mask across the same 105 frames. In this exam-
ple, the artist’s use of our tool allowed her to complete the
task roughly 5X faster than with Nuke alone. More detailed
experiments studying artist interaction with our tool on mul-
tiple characters and across multiple shots will be needed in
order to accurately compare our tool’s performance and us-
ability with other tools.

6. New Dataset: Professionally Rotoscoped
Multi-Shape Fine Feature Systems

We are unable to attach the entire dataset in the sup-
plementary materials for submission. Instead we include
a small sample of the new dataset, which we plan to publish
in conjunction with this paper.

Training Set: The training set includes 800x800
cropped images from 5 shots of an animated feature film,
unaltered ground truth rotoscoping data (Bèzier informa-
tion) for 9 shapes (left eye, right eye, left eyebrow, right
eyebrow, left seam, right seam, nose seam, left sideburn,
and right sideburn) in a JSON file, as well as our revector-
ized annotation data (Bèzier information) for 4 shapes (left
eye, right eye, left eyebrow, right eyebrow) and 27 landmark
points in an additional JSON file.

The dataset also includes 936 frames of computer Gener-
ated synthetic data across 8 facial expressions for the char-
acter, with an accompanying JSON file that includes all 27
landmarks points. In addition, there are visualization for
each frame with the annotation overlayed on the image. We
provide a sample of the film data, with both raw and revec-
torized annotations and visualization 12 and a sample of the
computer generated data, along with its annotation and vi-
sualization here.

Test Set: The test set is comprised of 240 full-resolution
images taken from an animated feature film, as well as a
JSON file that includes the Bèzier information for 7 shapes
(left eye, right eye, left eyebrow, right eyebrow, left seam,
right seam, nose seam).

7. Acknowledgements

We would like to thank LAIKA Studios for their coop-
eration and support, specifically: Jeff Stringer, James Pina,
Taku Wakisaka, Andrew Gardner, and Veronica Hernandez.

We would also like to thank Dipika Jain, Matthew Pinner,
Shanmugam Thangavel and David Rosales.

References
[1] D. Dwibedi, I. Misra, and M. Hebert. Cut, paste and learn:

Surprisingly easy synthesis for instance detection. In 2017
IEEE International Conference on Computer Vision (ICCV),
pages 1310–1319, Oct 2017.

[2] Georgios Georgakis, Arsalan Mousavian, Alexander C. Berg,
and Jana Kosecka. Synthesizing training data for object de-
tection in indoor scenes. 2017.

[3] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and
Kurt Konolige. On pre-trained image features and synthetic
images for deep learning. In Laura Leal-Taixé and Stefan
Roth, editors, Computer Vision – ECCV 2018 Workshops,
pages 682–697, Cham, 2019. Springer International Publish-
ing.

[4] M. Rad and V. Lepetit. Bb8: A scalable, accurate, robust to
partial occlusion method for predicting the 3d poses of chal-
lenging objects without using depth. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 3848–
3856, Oct 2017.

[5] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P.
Abbeel. Domain randomization for transferring deep neural
networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 23–30, Sep. 2017.

