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Figure A: Training and testing phase pipelines as explained in Section 3.4 for the proposed framework that uses representation
from inference network, along with synthesized features for training recognition module.

In this supplementary section, we discuss the following
details, which could not be included in the main paper ow-
ing to space constraints:

• Implementation details of our experiments (in contin-
uation to Sec 4)

• Results on the standard ZSL setting for CUB, AWA2,
SUN and FLO datasets (in continuation to results in
Sec 4)

• Details describing the Alignment loss (in continuation
to Sec 3.2)

• Related work on Generative Models (in continuation
to Sec 2)

• Results on the GZSL setting for SUN dataset

• Show results of our proposed approach using a
weighted classifier instead of concatenation of all fea-
tures

We have also added a complete figure, Figure A, with both
training and testing phases of the recognition module for
clarity of understanding.

A. Implementation Details

In this section, we describe the implementation details
for our methodology. The generator (G), inference network
(I) and discriminators (D1, D2, D3) are all implemented
using fully connected neural networks. In order to ensure
fair comparison, we follow the architecture used in [A14]
for all our components. Formally, the generator and infer-
ence network both consist of 2 dense layers of size 4096
with leaky ReLU activation except at the output layer which
has ReLU activation. These layers in the inference network
form the latent features f1, f2 in our recognition module as
shown in Figure A. The dimension of output layer is 2048 in
case of the generator and dh in case of the inference network
where dh denotes the dimension of semantic attributes. The
three discriminators consist of 2 fully connected hidden lay-
ers of size 4096 with leaky ReLU activation. The noise
vector z is sampled from a unit Gaussian (zero mean, unit
variance). We find that taking the dimension of noise vec-
tor same as that of semantic embeddings works well as in
[A14]. The generator is updated every 5 discriminator it-
erations as suggested in [A8]. We use an Adam optimizer.
We use a single-layered softmax classifier in our recognition
module for fair comparison (most earlier work use this) and



simplicity. Table A presents the details of hyperparameters
for generalized zero-shot learning for each of the considered
benchmark datasets.

Dataset β λ γ α1 α2

CUB 0.01 10 3 1 2
FLO 0.01 10 0.01 1 1

AWA1 0.01 10 0.001 10 2
AWA2 0.01 10 0.01 5 4

Table A: Hyperparameters used for different datasets

Dataset CUB AWA2 SUN FLO
Methods PS PS PS PS

CONSE(ICLR 2014) 34.3 44.5 38.8 -
SSE(ICCV 2015) 43.9 61.0 51.5 -

LATEM(CVPR 2016) 49.3 55.8 55.3 40.4
ALE(TPAMI 2016) 54.9 62.5 58.1 48.5

DEVISE(NIPS 2013) 52.0 59.7 56.5 45.9
SJE(CVPR 2015) 53.9 61.9 53.7 53.4

ESZSL(ICML 2015) 53.9. 58.6 54.5 51.0
SYNC(CVPR 2016) 55.6 46.6 56.3 -
SAE(CVPR 2017) 33.3 54.1 40.3 -

GFZSL(ECML 2017) 49.2 67.0 62.6 -
CVAE-ZSL(CVPRW 2018) 52.1 65.8 61.7 -

SE-ZSL(CVPR 2018) 59.6 69.2 63.4 -
DCN(NIPS 2018) 56.2 - 61.8 -

JGM-ZSL(ECCV 2018) 54.9 69.5 59.0 -
RAS+cGAN(NC 2019) 52.6 - 61.7 -

DEM(CVPR 2017) 51.7 67.1 61.9 -
SP-AEN(CVPR 2018) 55.4 58.5 59.2 -

f-clsWGAN(CVPR 2018) 57.3 68.2 60.8 67.2
CADA-VAE(CVPR 2019) 60.4 64 61.8 -
f-VAEGAN(CVPR 2019) 61.0 71.1 64.7 67.7
GZLOCD(CVPR 2020) 60.3 71.3 63.5 -

TACO-ZSL (312) 63.0 71.3 63.0 68.5
TACO-ZSL 68.8 71.3 63.0 68.5

TACO-ZSL (312) (using Φ2) 66.4 72.4 65.4 -
TACO-ZSL(using Φ2) 72.3 72.4 65.4 -

Table B: ZSL performance comparison with several base-
line and state-of-the-art methods. We measure Top-1 accu-
racy for conventional zero-shot setting on proposed splits
(PS), following the protocol in [28]. Best results are high-
lighted in bold. TACO-ZSL (312) indicates result on CUB
dataset with only 312 dimensional attributes (included for
fair comparison with other work that use this setting)

B. Performance on ZSL
This work is focused on addressing the more practi-

cal and challenging generalized zero-shot learning prob-
lem, similar to [11][16]. However, to further demonstrate
the effectiveness of our proposed method, we also evalu-
ate our proposed methodology on the standard ZSL set-
ting. For fair comparison, we follow the standard train-
ing/validation/testing splits and evaluation protocols for
ZSL setting, as in [28].

For an exhaustive performance comparison, we compare
with all state-of-the art ZSL methods, including recent ones,

(a) Variation in ZSL performance with number of synthesised features for
unseen classes

(b) TACO-ZSL error trajectory over epochs for proposed method

Figure B: Analysis of performance of TACO on standard
ZSL

as mentioned in the very recent work [12]. In addition, we
also compare with some other important ZSL approaches
like f-VAEGAN [30], CADA-VAE [21], f-clsWGAN [29],
SP-AEN [A2], DEM [32]. Table B shows the results for
our method on the ZSL setting. For fair comparison, all re-
sults reported are without fine-tuning the backbone ResNet-
101 network. It can be clearly seen that even on the stan-
dard ZSL setting, our method outperforms other methods
(including ones specifically designed explicitly for this set-
ting) on CUB, AWA2, FLO datasets and achieves compet-
itive performance on SUN dataset. Also, our method pro-
vides state-of the art performance on SUN dataset as well
as all other datasets when using Φ2 as the feature extractor
backbone.

To further study the ZSL performance of TACO, we an-
alyzed the results with varying number of synthesized fea-
tures for unseen classes and also the error trajectory over
epochs for standard ZSL setting. Figure B shows these re-
sults. It can be clearly seen that the trend for ZSL accuracy
is fairly stable with variation in number of synthesized fea-
tures for both CUB and SUN datasets, supporting the ro-
bustness of our algorithm to such hyperparameter choices.
Also, the ZSL error smoothly decreases over epochs with
a stable trend, and reaches convergence quite early in the
trend, after which the performance stays nearly constant.

C. Alignment Loss
In this section, we provide more details on the

Lwasserstein term in Eqn 11 of the main paper. We use the
sinkhorn distance-based lightspeed computation proposed
by Cuturi in [A4] for computing our alignment loss. The
sinkhorn distance metric has also been used for approximat-



ing the Wasserstein distance in [A13] for a very different
projection-based (non-generative) ZSL method for align-
ment in visual space. We instead use the metric to pro-
vide distributional alignment in the semantic space which
helps us to preserve high-level semantics better and reduce
semantic loss. To the best of our knowledge, this has not
been done before in ZSL literature. We use the Wasserstein
distance to model the joint probability of visual-semantic
features better by combining it with adversarial loss in a
generative GZSL setting. Formally, the sinkhorn distance
can be written as:

LWasserstein = min
X

∑
i,j

disijxij − εH(X) (1)

where H(X) is an entropy-based regularization term and
disij(·) is as defined in [A13]. We compute disij(·) however
on an assignment matrixX with entries given by xij , which
defines the matching relationship between the class centers
of output semantic attributes, ĥ, and ground truth semantic
centers h. Here, i ∈ A and j ∈ B where A and B are sets
of class centres of output semantic attributes and ground
truth semantic attributes respectively. This helps compute
the term P (h|ĥ) in our methodology.

D. Related Work: Generative Models
Since ours is a generative approach to GZSL, we briefly

present the earlier work in generative models underlying
our methodology, for completeness of our discussion on re-
lated work. Generative modeling aims to learn the proba-
bility distribution of data points such that we can randomly
sample data from it. The idea behind Generative Adver-
sarial Networks (GANs) is to learn a generative model to
capture an arbitrary data distribution via a min-max train-
ing procedure which consists of a generator that synthe-
sizes fake data and a discriminator that distinguishes fake
and real data. These models have been used in many in-
teresting computer vision applications especially for image
generation [A7, A12, A3] and have achieved compelling re-
sults. However, GANs are also known for their instability
in training and are known to suffer from the mode collapse
problem. In order to mitigate these problems and improve
the quality of synthetic samples, methods like WGAN [A1]
and WGAN-GP [A8] have been proposed, which we lever-
age in this work. GANs have also been used for tasks like
multi-view generation and learning cross-modal representa-
tions for downstream tasks like retrieval or semi-supervised
classification [A12] [A6]. Such generative models can be
trained explicitly to model conditional/joint distributions of
random variables, which we leverage in this work. For ex-
ample, [A10] shows how such generative models can be
used to generate data for a specific class by conditioning
them on the label. [A6, A11, A9, A5] show how adversarial
training can be used to model joint and utilize the trained

model for semi-supervised learning.

E. GZSL Performance on SUN Dataset
In Table C, we show the results of TACO in the GZSL

setting on the SUN dataset, which could not be included
in the main paper due to space constraints. Note that our
method outperforms recent methods even on this dataset.

Dataset SUN
Methods U S H

DEM(CVPR’17)[32] 20.5 34.3 25.6
ZSKL(CVPR’18)[10] 21.0 31.0 25.1
DCN(NIPS’18)[14] 25.5 37.0 30.2
ALE(TPAMI’13)[1] 21.8 33.1 26.3

DEVISE(NIPS’13)[9] 16.9 27.4 20.9
ESZSL(ICML’15)[20] 11.0 27.9 15.8
SYNC(CVPR’16)[5] 7.9 43.3 13.4

LATEM(CVPR’16)[27] 14.7 28.8 19.5
SJE(CVPR’15)[2] 14.7 30.5 19.8

CLSWGAN(CVPR’18)[29] 42.6 36.6 39.4
CADA-VAE(CVPR’19)[21] 47.2 35.7 40.6

VSE(CVPR’19)[19] - - -
DASCN(NIPS’19)[16] 42.4 38.5 40.3
SGAL(NIPS’19)[31] 40.9 30.5 34.9

SE-GZSL(CVPR’18) [23] 40.9 30.5 34.9
CycWGAN(ECCV’18)[8] 47.2 33.8 39.4
f-VAEGAN(CVPR’19)[30] 45.1 38.0 41.3

ZSML(AAAI’20)[24] - - -
TACO-GZSL 44 39 41.3

TACO-GZSL(weighted classifier) 46.5 39.1 42.4
TACO-GZSL(using Φ2)(weighted classifier) 51.7 36.8 43

Table C: GZSL performance comparison with several base-
line methods on SUN dataset. For fair comparison, all
results reported here are without fine-tuning the backbone
ResNet101 feature extractor. We measure Top-1 accu-
racy on Unseen(U), Seen(S) classes and their Harmonic
mean(H).

F. Weighted Classifier
As discussed in Sec-3.4 and Figure A, we train the soft-

max classifier of our recognition module on concatenated
features < x,h, f >. In order to study this choice further,
we studied the performance of our method using a weighted
softmax classifier instead. We use the weighted classifica-
tion results from < x,h > and < f1, f2 > i.e. rvs, rlatent
respectively to get the final predictions of our method. The
final classification results (rcls) are given by:

rcls = rvs + w ∗ rlatent (2)

These results are shown in Table D.
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