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1. Training Details
Our implementation is based on Pytorch with Nvidia

Geforce GTX 2080 Ti GPU. The proposed networks are
trained with Adam optimizer [2], with the learning rate of
edge extractor E and reflection classifier C set to 10−5 and
5 × 10−6 respectively. The learning rate of our full model
is set to 10−3.

2. Computation Time and Memory Usage
In this section, we demonstrate the computation time and

memory usage under two real-world benchmark datasets, in
comparison with several baselines. Since some baselines
take up a lot of memory, we adjust the size of the input
image to 256× 256 in order to run the process on only one
GPU. As shown in Table 1 and Table 2, we can see that our
proposed method is 3.3 times faster than the state-of-the-art
IBCLN [3] with comparable memory usage.

3. More Qualitative Results
Here we provide more examples of our qualitative results

as well as the comparison with respect to other baselines in
Figure 1, 2, and 3.

4. Edge Estimator Results
Here we provide some results of the edge estimator in

Figure 4. The edge estimator can distinguish the edges of
transmission layer correctly, which helps our full model to
emphasize the contour of the transmission layer and gener-
ate more exquisite results.
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Method SIR2 [4] Zhang [8] AveragePostcard Solid Objects Wild Scenes
Zhang et al. [8] 55.313 54.867 118.263 248.564 70.616

BDN [7] 16.397 13.692 21.016 42.949 16.913
Wen et al. [6] 16.641 16.635 26.758 44.030 18.973
ERRNet [5] 312.252 303.473 351.476 476.289 320.037
IBCLN [3] 81.363 82.493 96.496 130.052 85.659

Ours 28.121 21.929 26.938 43.256 26.005

Table 1: Computation time with respect to two real-world benchmark datasets (Unit: ms per image).

SIR2 [4]
Postcard Solid Objects Wild Scenes Zhang [8]Method

CPU GPU CPU GPU CPU GPU CPU GPU
Zhang et al. [8] 7,073 10,873 7,111 10,873 7,071 10,873 7,065 10,873

BDN [7] 2,447 1,363 2,447 1,363 2,447 1,363 2,448 1,365
Wen et al. [6] 2,678 1,137 2,675 1,137 2,677 1,137 2,683 1,363
ERRNet [5] 2,606 9,323 2,604 9,485 2,609 9,359 2,608 9,485
IBCLN [3] 2,615 1,173 2,586 1,173 2,580 1,173 2,574 1,173

Ours 2,500 1,573 2,499 1,573 2,498 1,573 2,526 1,573

Table 2: Memory usage on CPU and GPU under two real-world benchmark datasets (Unit: MiB).

2



I T Zhang et al. [8] BDN [7] Wen et al. [6] ERRNet [5] IBCLN [3] ours

Figure 1: Qualitative examples on real-world images from SIR2 [4] (rows 1-7) and Zhang et al. [8] (row 8-10).
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Figure 2: Qualitative examples on real-world images from SIR2 [4] Wild Scene sub-dataset (rows 1-7) and our own real-
world images (row 8-9).
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Figure 3: Qualitative examples on real-world images from CEILNet [1].
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Figure 4: Edge estimator results on real-world images from SIR2 [4] (rows 1-3) and Zhang et al. [8] (rows 4-6).
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