
Supplementary for ADA-AT/DT: An Adversarial Approach for Cross-Domain
and Cross-Task Knowledge Transfer

Ruchika Chavhan Ankit Jha Biplab Banerjee Subhasis Chaudhuri
{chavhanruchika2801, ankitjha16, getbiplab}@gmail.com, sc@ee.iitb.ac.in

Indian Institute of Technology Bombay, India

1. Introduction

In this supplementary document for ADA-AT/DT, we re-
port the following:

• Additional experiments on the architecture of the do-
main classifier along with a detailed quantitative com-
parison in terms of standard evaluation metrics for both
depth estimation and semantic segmentation.

• Visualisation of features extracted by the encoder of
NA∪B

1 with and without adversarial domain domain
adaptation at the deepest spatial level of the encoder.

• Experiments for the symmetric scenario where for ev-
ery pair of domains (A, B), we also report the perfor-
mance on (B, A)

2. Experiments with NA∪B
1

For the task-specific base models NA∪B
1 and NA

2 , we
employ the model architecture proposed in [2]. The model
utilized in [2] consists of significantly fewer trainable pa-
rameters as compared to [1]. Moreover, the model used
in [2] is used for unpaired image-to-image translation en-
suring that it extracts superior higher dimensional abstract
representations. However, this model faces the problem of
domain shift when trained on a real and synthetic domains
concurrently. We have shown that integration of adversarial
domain adaptation with the model architecture introduced
in [2] has outperformed [1] for both semantic segmenta-
tion and depth estimation. The major merit of our proposed
method is superior performance for both tasks with notably
less number of parameters.

We have performed experiments with the architecture of
the domain classifier CA∪B to select the best performing
model. We consider three types of architectures:

• Firstly, we consider a discriminator with convolution
layers followed by fully connected layers which output
the probability that the input image belongs to either of
the domains. The combination of fully connected and

convolutional layers are known to provide greater sta-
bility in a min-max optimisation setup. We denote this
model by “conv + fc” (Convolution + Fully Connected)
in Table1 and 2.

• We experiment with a domain classifier consisting
only of only convolutional layers. A fully convolu-
tional discriminator without the use of max-pooling
layers has been shown to provide greater training sta-
bility and significantly accurate results. We denote this
model by “fcn” (Fully Convolutional Network) in Ta-
ble 1 and 2.

• The binary domain classifier identifies the class la-
bel of the features provided by the encoder while
the decoder outputs the task-specific output. The do-
main classifier extracts domain-specific information
and promotes the normalization of this information in
these features promoting domain-invariance. There-
fore, convolution layers in the domain classifier propa-
gate domain-specific information. Since two domains
are involved domain-specific information may prove
beneficial for task-specific predictions due to sheer dif-
ference in the sources of data. We experiment with a
model in which the parameters of convolutional layers
of the domain classifier are decoder are shared. This
implies that feature maps are shared between the do-
main classifier and decoder. This network is denoted
by “shared” in Table 1 and 2.

2.1. Semantic Segmentation

We have performed experiments on four combinations
of domains for A and B for which labeled data for seman-
tic segmentation is available. From Table 1-(a), where we
train NA∪B on two synthetic domains (Synthia and Carla),
we observe that the fully convolution domain classifier sur-
passes the other two models in terms of both mIoU and
pixel wise accuracy. It is observed that a domain classi-
fier with convolutional layers and fully connected layers
performs significantly better in the case Table 1-(b) and 1-
(d). In case of Table 1-(c), we observe that the model with



shared convolutional layers among the decoder and the do-
main classifier provides better mIoU and accuracy. How-
ever, this model performs poorly in case of Table 1-(d) for
classes like Person, Poles, and Traffic Signs. To perform ex-
periments on task transfer across domains using the transfer
function GA

1→2, we employ the domain classifier with both
convolutional and fully connected layers to train the base
models as it provides more accurate results in most cases
especially for combinations of real and synthetic datasets.

2.2. Depth Estimation

Experiments are performed on three combinations of do-
mains A and B for which annotated data for depth estima-
tion is available. As observed in Table 2-(a), domain classi-
fier with only convolutional layers performs marginally bet-
ter than the other two cases in terms of relative losses and
accuracies. In case of Table 2-(b), it is observed that the do-
main classifier consisting of a fully convolutional network
outperforms the other models in terms of all evaluation met-
rics. The domain classifier with both convolutional layers
and fully connected layers provides more accurate results in
the case reported in Table 2-(c). However, we can note that
in all cases, all the three proposed models provide equally
good results, proving that all the models are proficient for
depth estimation. To maintain consistency in the models
used across tasks, we employ both convolutional layers and
fully connected layers for the domain classifier similar to
similar to semantic segmentation.

3. Visualising features with ADA-AT/DT
Given that our problem deals with two domains, domain-

invariance is a critical property for corresponding abstract
representations. We argue that the deep features extracted
from the two domains are disjoint when the model is trained
concurrently on the two domains without adversarial do-
main adaptation at an intermediate level. We demonstrate
the above with t-SNE visualisation of the abstract features
before and after the task transformation mapping GA

1→2 is
applied. We visualise the intermediate features generated
by our proposed method before and after the task transfor-
mation mapping is applied and prove that the features are
indeed domain-invariant. To prove the concreteness of our
method, we choose to perform visualizations with one syn-
thetic and one real dataset. Figure 1 shows four t-SNE vi-
sualization plots in which we consider two datasets: Carla
(red) and CityScapes (green) datasets. Figure 1-(a) shows
that the t-SNE plots for the encoder of the model which is
trained on A ∪ B without Adversarial Domain Adaptation
(ADA) are disjoint. Consequently, the transformed features
in this case are also disjoint as shown in Figure 1-(c). This
hinders the generalisation ability of the transformation map-
ping on the target domain. As seen in Figure 1-(b), the fea-
ture space provided by our proposed method involving do-

main adaptation in an adversarial setup is significantly less
disjoint. Accordingly, the transformed features obtained by
GA

1→2 with adversarial domain adaptation are less disjoint
as seen in Figure 1-(d). The indistinguishability of these
intermediate deep features promotes superior results on the
target domain for which supervision is unavailable for T2.

4. Symmetric Scenario
The cross task cross domain transfer is designed to lever-

age information from synthetic domains to real domains due
to the abundance of labeled data which is often tedious to
obtain for real life data. We deel that it is helpful to per-
form experiments on the symmetric scenario, where for ev-
ery pair A, B, we also report results for the pair B, A. The
results are stated in Table 3 and 4.
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(a)
Synthia Carla conv + fc 77.68 45.84 3.334 3.782 1.085 1.869 37.63 44.59 3.566 62.88 86.09 33.486 77.43
Synthia Carla fcn 87.56 64.21 29.11 12.6 24.31 8.164 56.12 58.35 14.92 74.18 92.64 47.46 81.96
Synthia Carla shared 84.56 56.73 16.14 4.182 0.3861 25.04 46.01 52.11 6.84 69.51 89.22 40.97 81.26

(b)
Synthia CityScapes conv + fc 80.36 49.16 33.31 5.905 8.711 11.94 60.84 59.96 20.17 70.09 81.17 43.78 77.41
Synthia CityScapes fcn 76.85 47.97 24.61 13.77 8.036 10.45 58.69 62.92 15.42 71.99 83.34 43.09 70.03
Synthia CityScapes shared 74.21 41.61 18.47 8.05 3.732 6.96 49.73 49.33 20.05 62.08 75.36 37.23 75.31

(c)
Carla CityScapes conv + fc 77.3 52.21 45.93 21.83 13.95 16.08 68.7 59.02 11.45 61.37 87.89 46.88 78.99
Carla CityScapes fcn 69.54 40.43 30.81 9.981 3.435 5.145 55.37 43.41 11.38 46.43 82.5 36.22 69.52
Carla CityScapes shared 76.65 54.61 51.21 23.2 12.47 12.7 70.35 66.15 20.26 67.27 91.34 49.65 76.55

(d)
Carla KITTI conv + fc 87.07 73.67 64.01 35.71 25.63 28.23 76.18 74.83 14.72 78.57 96.31 59.53 88.51
Carla KITTI fcn 84.39 61.74 45.59 14.63 2.901 10.07 64.31 59.16 10.49 65.71 93.06 46.55 80.45
Carla KITTI shared 79.65 54.45 22.11 7.52 0.3521 1.44 50.07 42.94 0.1124 54.97 88.34 36.54 79.82

Table 1: Quantitative experiments of experiments performed with domain classifier for semantic segmentation

Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(a)
Synthia Carla conv + fc 0.1432 0.459 0.714 0.2621 0.8539 0.9517 0.9763
Synthia Carla fcn 0.136 1.045 0.4754 0.2247 0.8904 0.9521 0.9751
Synthia Carla shared 0.3087 2.5729 2.0145 0.3917 0.7831 0.9122 0.9488

(b)
Synthia CityScapes conv + fc 0.5367 4.4732 4.8909 0.6735 0.3741 0.6156 0.71223
Synthia CityScapes fcn 0.221 0.8119 0.5653 0.3095 0.6358 0.7633 0.8145
Synthia CityScapes shared 0.9064 10.92 7.2573 0.854 0.3567 0.5319 0.6474

(c)
Carla CityScapes conv + fc 0.3296 1.8972 2.4429 0.4578 0.5691 0.7414 0.8043
Carla CityScapes fcn 0.4409 3.2385 2.6137 0.5098 0.541 0.6871 0.7603
Carla CityScapes shared 0.5654 4.5161 3.5725 0.6138 0.4335 0.6308 0.7374

Table 2: Quantitative experiments of experiments performed with domain classifier for depth estimation

Figure 1: t-SNE visualization of features before and after the transformation for base models. (a) and (c) denote the features
before and after the transformation mapping is applied on features obtained on a model trained without ADA. (b) and (d)
show the features before and after the transformation mapping is applied on features obtained from our proposed method.
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(b)
CityScapes Synthia conv 83.66 33.57 0.00 3.01 6.21 5.71 26.16 39.07 0.00 11.11 74.56 25.73 77.91
CityScapes Synthia U-Net 83.89 37.69 5.62 4.62 8.48 9.21 33.41 42.62 0.00 15.32 76.56 28.85 78.93
CityScapes Synthia U-Net + att. 85.58 41.81 1.75 6.81 4.11 3.85 46.74 41.65 0.00 14.19 79.39 29.62 81.68

(c)

CityScapes Carla conv 67.03 22.22 0.708 0.8322 0.00 0.1246 39.36 16.48 0.00 14.84 64.54 20.55 65.02
CityScapes Carla U-Net 73.64 38.47 6.04 6.72 0.00 5.293 48.51 28.47 0.00 23.99 71.59 27.52 72.56
CityScapes Carla U-Net + att. 72.86 44.64 1.306 1.744 0.00 2.188 55.22 26.78 0.00 23.34 71.86 27.26 73.99

Table 3: Quantitative results obtained from depth estimation to semantic segmentation for symmetric scenario

Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(a)
Carla Synthia conv 1.5194 25.3 7.293 0.7835 0.5691 0.7539 0.8366
Carla Synthia U-Net 0.543 5.783 3.621 0.5321 0.6072 0.8356 0.8968
Carla Synthia U-Net + att. 0.6594 7.596 3.264 0.5599 0.6609 0.8281 0.8933

(b)
CityScapes Carla conv 0.3095 2.685 12.67 0.9444 0.5939 0.7259 0.8101
CityScapes Carla U-Net 0.2083 1.212 3.723 0.513 0.7091 0.8418 0.9083
CityScapes Carla (U-Net + att. 0.5396 1.351 1.5045 0.3256 0.7999 0.9151 0.9565

Table 4: Quantitative results obtained from semantic segmentation to depth estimation for symmetric scenario


