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Abstract

In this supplementary material, we provide additional
information of our proposed hierarchical generative ad-
versarial networks for single image super-resolution (HSR-
GAN) and discuss architecture, training, further implemen-
tation details and discussions with other multi-scale SR
methods. Furthermore, we provide complexity analysis and
additional visual experimental results compared with the
state-of-the-art CNN-based single image super-resolution
(SISR) methods.

1. HSRGAN details
In this section, we show the architecture and training de-

tails of our HSRGAN.

1.1. Upsample

There are a lot of ways to increase the resolution of fea-
ture maps. While deconvolution (or convolution transpose)
may cause checherboard artifacts [9], more recent works
use nearest neighbor interpolation followed by a convolu-
tion layer or pixel shuffle (or sub-pixel convolution) [11]
layer for upsampling. In our HSRGAN, We employ pixel
shuffle to amplify the resolution, which is more suitable
for SISR problem compared to the deconvolution layer [1].
Pixel shuffle layer has a more flexible way to model the
mapping between LR space and HR space, which aggre-
gates feature maps in low dimensional space and a separate
upscaling kernel is used to map each feature map to high
dimensional space to reconstruct the HR image. In order to
guarantee the performance stability of network and generate
more realistic SR images, we adopt two pixel shuffle layers
to enlarge the feature map by a factor of 2 for each. The
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Upsample PI / PSNR
deconvolution 3.171 / 26.433
conv(nearest) 2.958 / 26.182
pixel shuffle 2.897 / 26.239

Table 1. Comparison among the three upsampling ways on Set14.

comparison among the three upsampling method shown as
Table 1 demonstrates that pixel shuffle outperforms others
in perceptual quality in our model.

1.2. Discriminator

According to [2], DRa denoted in our main paper can be
represented by

DRa (xr, xf ) = σ (C (xr)− E [C (xf )]) , (1)

where σ is the sigmoid function, C (x) is the non-
transformed discriminator output and E [·] is the operation
of taking average for all fake data in the mini-batch. In our
HSRGAN, xr is the groundtruth image IHR and xf is the
synthetic super-resolved image ISR.

In our experiment, VGG13 [12] was deployed as the
backbone of our discriminator, as other works [6, 17] did.
Since max pooling operation may lose some information
during feed-forward process, we instead use the convolu-
tion kernel with stride set to 2 to downsample the feature
maps.

1.3. Training details

Our model was implemented on the PyTorch framework
and trained on an NVIDIA GeForce RTX 2080Ti GPU. We
empirically chose the hyper-parameters λ = 5 × 10−3 and
η = 1 × 10−2, the the initial learning rate was 10−4. The
models were trained with a batch size of 16 with the learn-
ing rate reducing to half every 200k iterations.

To accelerate the training process, we first trained a
distortion-oriented with the L1 loss and then finetuned the
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Methods Parameters
Bicubic -

EDSR [8] 43.0M
RCAN [19] 16.0M
SRFBN [7] 3.6M
SRGAN [6] 1.5M

SFTGAN [16] 1.7M
NatSR [13] 4.8M

ESRGAN [17] 15.9M
HSRGAN (Ours) 8.3M

Table 2. Model complexity comparison of our HSRGAN and state-
of-the-art methods.

pre-trained model with the overall loss defined in our main
paper. Pre-training with pixel-wise loss helps GAN-based
methods to obtain more visually pleasing results [17].

1.4. Discussion

Although many of the previous SISR papers leverage
the idea of multi-scale [3, 14, 15, 4, 5], they usually use
a single-path or recursive network as backbone and pass
the shallow feature map directly to the upsampling layer
through skip connections to realize multi-scale feature ex-
traction. However, we get rid of complicated convolution
blocks and utilize three independent path to extract multi-
scale features, which is simple and effective. In addition,
we employ HGRM, which amplifies the feature map step by
step to stablize the reconstruction procedure and the whole
network is trained jointly.

2. Experiments
2.1. Complexity analysis

In this section, we discuss the complexity of our pro-
posed model. In general, for the model without recur-
sive connection, the number of parameters of the model
is positively correlated with operations [18, 10] and infer-
ence time. As shown in Table 2 and Table 2 in main pa-
per, in comparison with other state-of-the-art networks, es-
pecially those with a large number of parameters, such as
ESRGAN and EDSR, our proposed HSRGAN can achieve
competitive visual results, while only needs the 52% and
19% parameters of ESRGAN and EDSR, respectively. This
demonstrates our method can well balance the number of
parameters and the reconstruction performance.

2.2. Comparison with the state-of-the-art

In this section, we employ Bicubic, EDSR [8], RCAN
[19], SRFBN [7], SRGAN [6], SFTGAN [16], NatSR [13],
ESRGAN [8] as our comparison methods. We retrained
these models with their published codes and run them on
the test datasets. The methods can be divided into 3 cate-
gories, where Bicubic is a baseline for the others. Compared

to distortion-oriented methods, such as EDSR, RCAN and
SRFBN, GAN-based or perception-oriented methods gen-
erate clear edges of images to some extent. Among all the
GAN-based methods, our HSRGAN outperforms the other
methods on denoising, details recovery and texture reality,
as shown in Figure 1 to Figure 4.
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76053 from BSDS100
PI / PSNR

HR
2.16 / ∞

bicubic
6.97 / 28.17

EDSR
5.68 / 29.25

RCAN
5.63 / 29.22

SRFBN
5.74 / 29.26

SRGAN
2.14 / 26.46

SFTGAN
2.17 / 26.60

ESRGAN
2.19 / 26.21

NatSR
2.62 / 27.65

HSRGAN
1.79 / 27.04

baboon from Set14
PI / PSNR

HR
3.60 / ∞

bicubic
6.67 / 31.83

EDSR
4.22 / 33.94

RCAN
4.16 / 33.96

SRFBN
4.74 / 33.88

SRGAN
1.82 / 30.43

SFTGAN
2.07 / 31.58

ESRGAN
2.00 / 31.52

NatSR
2.03 / 31.61

HSRGAN
1.69 / 30.95

YumeNoKayoiji
PI / PSNR

HR
2.94 / ∞

bicubic
6.76 / 27.82

EDSR
4.50 / 31.85

RCAN
4.55 / 31.84

SRFBN
4.60 / 31.77

SRGAN
2.57 / 28.67

SFTGAN
2.56 / 28.07

ESRGAN
2.68 / 28.66

NatSR
2.70 / 29.59

HSRGAN
2.46 / 28.18

Figure 1. Qualitative results of our HSRGAN and state-of-the-art methods. HSRGAN generates more realistic textures and less artifacts.
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BurariTessenTorimonocho
PI / PSNR

HR
2.93 / ∞

bicubic
6.61 / 23.16

EDSR
4.50 / 28.45

RCAN
4.55 / 28.36

SRFBN
4.67 / 28.51

SRGAN
2.63 / 24.63

SFTGAN
2.99 / 24.53

ESRGAN
2.90 / 25.94

NatSR
3.13 / 26.78

HSRGAN
2.86 / 24.53

DollGun
PI / PSNR

HR
3.43 / ∞

bicubic
6.68 / 24.11

EDSR
4.73 / 29.81

RCAN
4.64 / 30.06

SRFBN
4.87 / 29.32

SRGAN
3.40 / 26.74

SFTGAN
3.36 / 26.18

ESRGAN
3.24 / 27.66

NatSR
3.43 / 28.00

HSRGAN
3.37 / 26.13

TennenSenshiG
PI / PSNR

HR
2.68 / ∞

bicubic
6.46 / 20.15

EDSR
4.55 / 26.22

RCAN
4.56 / 26.32

SRFBN
4.72 / 26.17

SRGAN
3.11 / 23.66

SFTGAN
3.12 / 23.13

ESRGAN
2.94 / 24.05

NatSR
3.27 / 24.95

HSRGAN
2.90 / 22.62

Figure 2. Qualitative results of our HSRGAN and state-of-the-art methods. HSRGAN generates more realistic textures and less artifacts.
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YoumaKourin
PI / PSNR

HR
3.01 / ∞

bicubic
6.75 / 24.79

EDSR
4.47 / 29.95

RCAN
4.53 / 30.15

SRFBN
4.72 / 30.05

SRGAN
3.06 / 27.37

SFTGAN
2.98 / 26.81

ESRGAN
2.91 / 27.82

NatSR
3.08 / 28.57

HSRGAN
2.90 / 26.65

img_007 from Urban100
PI / PSNR

HR
2.94 / ∞

bicubic
7.18 / 26.14

EDSR
5.55 / 29.94

RCAN
5.60 / 30.01

SRFBN
5.65 / 29.88

SRGAN
3.01 / 27.34

SFTGAN
2.76 / 26.67

ESRGAN
3.02 / 27.94

NatSR
3.26 / 28.53

HSRGAN
2.99 / 26.90

img_014 from Urban100
PI / PSNR

HR
3.34 / ∞

bicubic
6.85 / 21.37

EDSR
4.22 / 22.67

RCAN
4.20 / 22.71

SRFBN
4.42 / 22.64

SRGAN
3.03 / 21.32

SFTGAN
3.10 / 21.15

ESRGAN
3.20 / 21.05

NatSR
3.04 / 22.15

HSRGAN
2.83 / 21.15

Figure 3. Qualitative results of our HSRGAN and state-of-the-art methods. HSRGAN generates more realistic textures and less artifacts.
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img_064 from Urban100
PI / PSNR

HR
3.41 / ∞

bicubic
6.91 / 24.93

EDSR
5.10 / 26.79

RCAN
5.07 / 27.19

SRFBN
5.37 / 26.87

SRGAN
3.28 / 24.10

SFTGAN
3.67 / 23.29

ESRGAN
3.52 / 23.27

NatSR
3.34 / 25.24

HSRGAN
3.75 / 24.77

img_051 from Urban100
PI / PSNR

HR
2.86 / ∞

bicubic
6.84 / 24.87

EDSR
5.14 / 28.01

RCAN
4.71 / 27.98

SRFBN
5.21 / 27.97

SRGAN
2.96 / 25.30

SFTGAN
2.90 / 24.89

ESRGAN
3.02 / 25.43

NatSR
3.38 / 28.53

HSRGAN
3.03 / 24.83

img_044 from Urban100
PI / PSNR

HR
5.37 / ∞

bicubic
6.94 / 26.92

EDSR
5.22 / 33.16

RCAN
5.06 / 33.35

SRFBN
5.44 / 32.94

SRGAN
4.70 / 29.81

SFTGAN
4.05 / 26.98

ESRGAN
4.95 / 30.25

NatSR
4.70 / 30.25

HSRGAN
3.70 / 25.98

Figure 4. Qualitative results of our HSRGAN and state-of-the-art methods. HSRGAN generates more realistic textures and less artifacts.
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