
Appendix
1. Experiments on A Subset of COCO

In order to verify the performance of the proposed method on datasets other than the proposed SIRST
dataset, we also conduct a semantic segmentation experiment on StopSign, a subset of the well-known
COCO dataset [10] as illustrated in Fig. 1. We choose the mean intersection over union (mIoU) as the
evaluation metric and the cross entropy as the loss function. The rest hyper-parameters are the same as
the settings for the experiments on the SIRST dataset.

Figure 1: The representative images from the StopSign dataset.

The results are provided in Table 1, from which it can be seen that the proposed network performs
best given the same network depth. Considering that the difference between GAU-FPN and ACM-FPN
is that the proposed ACM-FPN has an additional bottom-up pathway based on the proposed point-
wise channel attentional modulation, we believe that this performance boost stems from the proposed
bottom-up modulation. In addition, it can be seen that a deeper network does not necessarily lead to
better performance. For example, in both SK-FPN and ACM-FPN, when the block number b in each
stage increases, the mIoU decreases a bit. Therefore, instead of blindly increasing the network depth,
designing sophisticated attention modules for the cross-layer feature fusion holds great potential for better
performance.

2. Accelerated Implementations
Besides faithfully re-producing these state-of-the-arts models in the toolkit of SIRST, for many non-

learning based models, we also implement them with some accelerating schemes without harming the
final performance. To elucidate how these schemes help, here are some examples:



Table 1: The mIoU comparison of four networks in various network depths

Network b = 1 b = 2 b = 3 b = 4

FPN [9] 0.894 0.920 0.925 0.928
SK-FPN [8] 0.901 0.932 0.931 /

GAU-FPN [7] 0.918 0.933 0.940 0.944
ACM-FPN (ours) 0.947 0.959 0.957 0.954

1. For the local contrast-based methods, given central and neighborhood feature maps, the local
contrast map is generally calculated pixel-wisely [2, 14]. However, it can be replaced with a cyclic
shift on the whole feature maps to save time. For instance, with this exchanging trick, MPCM can
be 15% faster, increasing from 2.67 FPS to 3.07 FPS.

2. For many low-rank based methods [6], the target-background separation is achieved via accelerated
proximal gradient (APG) method [1], which is slow. To speed them up, for all low-rank based
methods, we implement them with the Inexact Alternating Direction Method (IALM).

3. Again, for low-rank based methods, we add the stopping criteria proposed in [4] as a choice, which
can save up to 50 times of the computational time.

3. Implementation details
We implemented all the learning-based methods in MXNet [3] and non-learning based methods in

MATLAB. For all learning-based methods, we choose to minimize the Soft-IoU loss function [12] over
the training set. To stack images of different sizes into a batch, each image is resized to 512× 512 and
randomly cropped to 480×480 during training. The detailed hyper-parameter settings of the non-learning
methods are listed in Table 2.

Table 2: Detailed hyper-parameter settings of non-learning methods for comparison.

Methods Hyper-parameter settings

MPCM [14] N = 1, 3, ..., 9
FKRW [11] K = 4, p = 6, β = 200, window size:11× 11

SMSL [13] Patch size: 50×50, λ = 2×L√
min (m,n)

, L = 2.0, threshold factor: k = 1

IPI [6] Patch size: 50×50, stride: 10, λ=L/min(m,n)
1/2,L = 4.5, threshold factor: k = 10, ε= 10−7

NIPPS [5] Patch size: 50×50, stride: 10, λ = L√
min (m,n)

, L = 2.0, energy constraint ratio: r = 0.11, threshold factor: k = 10

RIPT [4] Patch size: 50×50, stride: 10, λ = L√
min (I,J,P )

, L = 0.001, h = 0.1, ε=0.01, ε = 10−7, threshold factor:k = 10
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