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1. Supplement Contents
In this supplementary document, we add the following -

• Section 2 : Details the quantized depth prediction net-
work architecture from section 3.2 of main paper.

• Section 3 : Provides SPL and success curves for ana-
lyzing performance of agents as an extension to Table
1 of main paper.

• Section 4 : Provides SPL curves for a comprehensive
comparison between DD-PPO agents and our task-
equipped agents.

• Section 5 : Provides the SPL curves for comparison
with existing auxiliary techniques in addition to main
results presented in Table 3 of main paper.

• Section 6 : Provides table showing how far are the pre-
dictions of position encoders from the actual position.

• Section 7 : Discusses how well do the task-equipped
agents perform on auxiliary objectives.

2. Quantized Depth Prediction
The original depth map produced by Habitat simulator has
dimensions 256 × 256 with depth being a floating point
value in range 0 and 1 i.e ∈ (0, 1)256×256. In order to obtain
central field of view of agents, we center-crop this map to
128 × 128. Earlier, we had experimented with full sized
depth map and did not find any serious drop in agent perfor-
mance on account of cropping. This makes sense intuitively
as predicting the depth of floor and ceiling might not very
useful from navigation perspective. As we only care about
the general structure of scene geometry, we avoid pixel-
wise predictions. Rather, we aggregate non-overlapping,
neighbouring patches of pixels to obtain a depth target
map. These aggregated values are further quantized into

Figure 1. A schematic of auxiliary depth prediction network. It
consumes tiled block (Ot ++ ht) to predict distribution over pixel
classes.

8 bins - {0, 0.05, 0.175, 0.3, 0.425, 0.55, 0.675, 0.8, 1}
where 0 − 0.05 is class 0, 0.05-0.175 is class 1 and so on.
The smaller depths are emphasized to better differentiate
between close-by and nearly-colliding objects. We carry
out an average pooling with kernel size 32 of the cropped
map followed by quantization to produce the output target
map Dt ∈ [0, . . . , 7]4×4.

The auxiliary network shown in Fig. 1 consumes the tiled
convolutional block Ot++ht. Here CONV block represents
series of operations - {Conv 2d 3× 3, GroupNorm, ReLU}
in order. We have used GroupNorm consistently with group
size of 32 following [4] in order to exploit the correlation
among layer channels. GAP is global average pooling layer.
The layer FC is a fully connected layer which maps vector
of size 1024 to that of size 128. This is reshaped to 8 × 16



Figure 2. Table 2 in main paper compares the baseline with agents
equipped with auxiliary tasks from [2, 1] over the intervals 5, 10,
15, 20, 25 million steps. Here we provide complete SPL curves
for the same over the entire training cycle.

to calculate cross-entropy loss.

3. Learning Curves
Table 1 in main paper discusses agent performance on two
navigation metrics - SPL and success for RGB and Depth
agents. Fig. 3 and Fig. 4 show the corresponding SPL and
success curves respectively on Gibson validation split. We
find that our auxiliary tasks contribute more towards im-
proving agent’s path efficiency rather than increasing the
number of successful episodes. They also are more effec-
tive for RGB agents than Depth.

4. Comparison with state-of-the-art
For presentational clarity in introduction section of main pa-
per, Figure 1 only compares our best task-equipped agents
with state of the art DD-PPO agents for RGB input. Fig. 5
shows a more comprehensive comparison between our task-
equipped agents and DD-PPO agents for RGB and Depth
inputs. Our best auxiliary tasks for RGB and depth achieves
a > 4× speed up in terms of sample efficiency. For RGB
input, all our agents outperform DD-PPO agents by a good
margin while gains for depth input are a bit lower. As dis-
cussed in main paper, DD-PPO agents employ much com-
plex models and are trained using a distributed RL frame-
work. Our simpler task-equipped depth agents still perform
as well as DD-PPO agents which makes this an interesting
result.

5. Existing work on auxiliary tasks
The main paper compares agents equipped with tasks from
[1, 2] with Habitat baseline agents in Table 2. We have pro-
vided the complete SPL validation curves over the entire

% of predictions within range (↑)
< 4m < 2m < 1m

Baseline agent 57.2 51.0 48.4
+ Depth Pred. 71.3 66.9 62.5
+ Inv. Dyn 59.1 52.3 50.6
+ Remain. Path. 80.1 76.6 74.5

Table 1. Percent of samples for which the decoder predictions fall
within a radius of 4m, 2m and 1m. The decoder is most accu-
rately able to extract the localization information using the encoder
trained with remaining path length prediction task.

training cycle in Fig. 2. This provides a fine-grained un-
derstanding of how learning is affected by including these
auxiliary tasks.

6. Decoding Position from Agent Representa-
tions

Tab. 1 shows the performance of position decoders uti-
lizing the state representation ht of various frozen encoders
to predict the current coordinates.

7. Performance on Auxiliary Objectives

So far, we have seen the improvement in navigation skill,
in terms of SPL and success metrics, due to additional aux-
iliary tasks. Further, we analyze how well the agents per-
formed on these objectives themselves(see Fig. 6). We note
that learning curves for inverse dynamics and auxiliary path
length prediction share a common shape where loss drops
quickly before increasing, then reducing again over time.
As both these losses depend on the actions the agent takes,
this reflects a shift in agent behavior over training – initially
performing random actions and eventually navigating com-
petently. For example, when the agent does not make signif-
icant progress to the goal early in training, path length pre-
diction is a somewhat easy task (low loss) based on dataset
priors about path complexity. Later when the agent is better
able to move around the world and towards the goal, this
task becomes significantly harder.

We compare reduction in these auxiliary objectives for
task-equipped RGB and Depth agents. Perhaps unsurpris-
ingly, we find that Depth agents are better at solving these
objectives than RGB agents. Depth agents obviously have
an advantage at depth prediction, but also perform better
at inverse dynamics and path length prediction. Given that
both these tasks build on navigational skills, this result is in
line with depth agents’ higher baseline performance. De-
spite performing worse on the auxiliary losses themselves,
we do find that RGB agents get more improvement from
optimizing them (as in Fig. 3).



(a) Validation SPL over training for RGB agent (b) Validation SPL over training for Depth agent

Figure 3. SPL on Gibson validation set for RGB (left) and Depth (right) agents as a function of number of training steps. We compare
baseline agents with our auxiliary task-equipped agents. For RGB input, our agents consistently outperform the baseline from the start of
training. Our depth agents have a slower start but outpace the baseline model after 20 million steps.

(a) Validation Success over training for RGB agent (b) Validation Success over training for Depth agent

Figure 4. Success on Gibson validation set for RGB (left) and Depth (right) agents as a function of number of training steps. We compare
baseline agents with our auxiliary task-equipped agents. For RGB input, our agents consistently outperform the baseline from the start of
training but not necessarily with a very large margin. For depth input, the success curves seem to eventually converge to same value for all
the agents.
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(a) Validation SPL over training for RGB agent (b) Validation SPL over training for Depth agent

Figure 5. SPL on Gibson validation set for RGB (left) and Depth (right) agents as a function of number of training steps. We compare state-
of-the-art DD-PPO[3] agents with our auxiliary task-equipped agents. For RGB input, our agents outperform DD-PPO agents convincingly.
Our depth agents are on par with DD-PPO agent which uses complex model and is trained with distributed RL framework.

(a) Training loss for depth prediction (b) Training loss for inverse dynamics (c) Training loss for path length prediction

Figure 6. Training loss (y-axis) of task-equipped RGB and Depth agents as a function of training time. We examine how well are the RGB
and Depth agents able to minimize the error on all three auxiliary tasks. It can be seen that Depth agent is a better learner of auxiliary tasks
than its RGB counterpart.


