
Self-supervised training for blind multi-frame video denoising
Supplementary material

This document contains supplementary material for our
paper “Self-supervised training for blind multi-frame video
denoising”. It is not intended to be self-contained. It fol-
lows the notation introduced in the main paper.

A. Pseudocodes

The pseudocodes of the online and offline versions of our
method are shown in Algorithms 1 and 2. In both cases, the
input video is made of frames {ft}t∈{1,...,T}. For the online
method, the weights are updated by N iterations of Adam
optimization.

The offline method uses mini-batches of Nb frames. The
weights are updated for NA steps of Adam optimizer.

The source code of the proposed method will be made
available.

B. Convergence of the offline fine-tuning

In the offline fine-tuning we estimate the gradient using
mini-batches corresponding to 20 frames randomly sampled
throughout the video. For each sampled frame the denoised
frame is computed using the corresponding training stack.
The weights are updated using the Adam update. This is
repeated for NA = 200 iterations.

In Fig. 1 we show the evolution of the average PSNR
over the complete sequence with respect to the number of
weight updates. The PSNR grows fast during the first 100
iterations. After that it continues to grow at a slower rate or
plateaus. Based on this evolution, we set NA = 200 iter-
ations which is a reasonable trade-off between fine-tuning
time and denoising performance.

C. Computation of the mask

The proposed MF2F loss penalizes the difference be-
tween the network output at t with the previous noisy frame
ft−1. The network output is aligned to frame t − 1 by the
warping operatorWt,t−1 which results from the optical flow
computed between t−1 and t. Alignment errors have a neg-
ative impact in the training and are removed with a mask κt.
This mask is the product (or logical AND) of two binary
masks: κt(x) = κOCC

t (x)κW
t (x). The first factor estimates

occlusions by looking at collisions in the optical flow, simi-
lar in spirit to [1]. The second factor is explained below.

The mask κW
t is zero in areas where the warping residue

is larger than a threshold and one elsewhere. For a pixel x
at time t, the warping residue is computed as

rt,t−1(x) = g1(x)∗|g2(x)∗ft−1(x)−g2(x)∗Wt,t−1ft(x)|1,
(1)

where g1 and g2 are two Gaussian convolution kernels and
the 1-norm | · |1 means the sum of the errors (in absolute
value) for each channel at pixel x. We smooth the images
with the kernel g2 to remove some of the noise. Then, this
pixelwise norm is smoothed again by the kernel g1. In prac-
tice, we used a Gaussian kernel with σ = 2 for both g1 and
g2. In order to further reduce noise, we downsample ft−1
and ft by a factor 2. The final warping residue rt,t−1 is then
upsampled to the original resolution.

The distribution of the warping residuals can be consid-
ered as a mixture of two components. One due to the resid-
uals caused by the noise, and the other due to registration
errors. We compute a threshold such that values above that
threshold are likely to be registration errors and not just dif-
ferences caused by the noise. Computing such a threshold
is difficult without making any assumption on the noise dis-
tribution. We will assume that the distribution of residual
caused by the noise is unimodal. We compute the threshold
automatically for each frame as

τt = mt + stf,

where mt is the mode of the histogram of residuals rt,t−1
and st = mt − pt, the difference between the mode and
the 10% percentile pt (thus we are also assuming that the
mode is larger than the 10%). The mode of the histogram
serves as a robust estimation of the position of the distribu-
tion, whereas s is a measure of the spread of the distribution.
We use the distance between the mode and a low percentile,
since we expect warping errors to affect the tail of the dis-
tribution (values larger than the mode). The histogram is
smoothed by a Gaussian kernel.

In Figure 2 we show an example of warping mask com-
puted with this strategy. In this example, the motion is very
fast between two consecutive frames ft−1 and ft. The arms,

Algorithm 1: Online fine-tuning

input : Noisy video {ft}t∈{1,...,T}, initial weights θ0, number of Adam step NS

output: Denoised video û
for t = 2, . . . , T do

vt−1,t ← optical-flow(ft−1, ft)
Wt,t−1 ← warping-operator(vt−1,t)
κt ← alignment-error-mask(vt−1,t,Wt,t−1ft, ft−1)
S ′t ← [ft−4, ft−2, ft, ft+2, ft+4] // training input stack
St ← [ft−2, ft−1, ft, ft+1, ft+2] // inference input stack
// update the network
for i = 1, . . . , NS do

θt ← adam-step(`MF2F
1 (Fθ(S ′t), ft−1,Wt,t−1, κt))

// denoise the frame t
ût ← Fθt(St)

Algorithm 2: Offline fine-tuning
input : Noisy video f , initial weights θ0, number of Adam updates NA, mini-batch size Nb
output: Denoised video û
for i = 1, . . . , NA do

loss← 0
for j = 1, . . . , Nb do

t← randint(1, T) // choose a random frame
vt−1,t ← optical-flow(ft−1, ft)
Wt,t−1 ← warping-operator(vt−1,t)
κt ← alignment-error-mask(vt−1,t,Wt,t−1ft, ft−1)
S ′t ← [ft−4, ft−2, ft, ft+2, ft+4] // training input stack
St ← [ft−2, ft−1, ft, ft+1, ft+2] // inference input stack
// accumulate gradients
loss← loss+ (`MF2F

1 (Fθ(S ′t), ft−1,Wt,t−1, κt))

// update student network with Adam step
θt ← adam-step(loss)

// Process the denoising of the entire video
for t = 1, . . . , T do

ût ← Fθt(St) // denoise the frame t

the knee of the skater and the skate itself moves quickly.
This fast motion is not tracked well by the optical flow and
leads to inconsistent warping for those regions. The mask
κt removes these pixels from the loss. Figures 2e and 2f
illustrate mask overlaid on the target frame (ft−1) and the
warped central frame of the stack (ft) .

D. Experiment on the stack and target position
configurations

The position of the target frame and the choice of the
stack have already been discussed in the main paper. The
table 1 extends the table 1 from the main paper by show-
ing in addition the gain obtained by switching to the nat-
ural stack at inference compared with keeping the train-

ing one. Note that for the first row, the training stack
S ′t = [ft−2, ft−1, ft, ft+1, ft+2] is precisely the natural
stack (St). Thus both results for St and S ′t are equal. In the
same way, for comparison, a row with the noise-specific su-
pervised FastDVDnet was added. FastDVDnet was trained
on the natural stack, The evalutation of FastDVDnet on our
training stack does not make sense as it absurdly degrades
its performance. We omitted them in the table.

E. Impact of pre-trained network

The proposed fine-tuning scheme can be applied to any
denoising network and any pre-trained weights can be used
as a starting point. Here we evaluate the impact of the
choice of the pre-trained weights. This issue is related

50 100 150 200 250 300 350 400 450

33.40

33.45

33.50

33.55

33.60

33.65

(a) Gaussian σ = 20

50 100 150 200 250 300 350 400 450
29.9

30.0

30.1

30.2

30.3

30.4

30.5

(b) Gaussian σ = 40

50 100 150 200 250 300 350 400 450

35.4

35.6

35.8

36.0

36.2

36.4

36.6

36.8

(c) Poisson p = 1

50 100 150 200 250 300 350 400 450

31.5

31.6

31.7

31.8

31.9

32.0

32.1

32.2

(d) Poisson p = 8

50 100 150 200 250 300 350 400 450

32.5

32.6

32.7

32.8

32.9

33.0

(e) Box noise 3× 3

50 100 150 200 250 300 350 400 450

31.6

31.8

32.0

32.2

32.4

(f) Box noise 5× 5

Figure 1: Justification of the number of iterations in the offline framework: average PSNR on the whole sequence as a function of the
number of Adam updates done during the fine-tuning.

Box 3× 3, 40 Gaussian 20 Poisson 8
Training stack S ′t ref. Inference stack Inference stack Inference stack

St S ′t St S ′t St S ′t
ft−2, ft−1, ft, ft+1, ft+2 ft−3 28.93 28.78 28.13
ft−3, ft−1, ft, ft+1, ft+2 ft−2 32.02 31.90 32.25 32.12 31.18 31.03
ft−3, ft−2, ft, ft+1, ft+2 ft−1 36.23 35.98 37.25 37.10 35.20 35.02
ft−4, ft−2, ft, ft+2, ft+4 ft−1 36.22 35.78 37.32 36.94 35.21 34.86
FastDVDnet superv. n/a 36.58 n/a 37.29 n/a 35.82 n/a

Table 1: PSNR results for different reference frames and training stacks S ′t. St denotes the natural input stack. This test was carried out on
the datasets Derf [4] and Vid30C-10 [2] using the online MF2F fine-tuning. The reported PSNRs are the average on all the sequences, but
excluding the first 10 frames (to avoid perturbations due to the adaptation time).

to transfer learning and domain adaptation, where a pre-
trained network is re-targeted for a different task or input

data distribution. In [7] it is shown that effectiveness of the
transference depends on the similarity between the source

(a) Frame t− 1 (b) Frame t

(c) Mask κt (d) Flow vt−1,t

(e) Masked target frame κt ◦ ft−1 (f) Masked warped frame κt ◦Wt,t−1ft

Figure 2: Example of mask, flow and warping in case of a very fast motion. The notations are those of section A.

and target tasks.

In the same spirit as [7], we tested our fine-tuning start-
ing from weights pre-trained for four types of noise: AWGN
with σ = 15, 25, 35 and box noise with with kernel size
3 × 3 and σ = 40. For the AWGN noise we used the pre-
trained network provided by [5]. We fine-tuned those pre-
trained networks for three different target noises: AWGN
with small σ = 10, a stronger AWGN with σ = 40 and box
noise with kernel size 5× 5 and σ = 65.

Fig. 3 shows three plots, one per target noise. We con-
sider the online version of our fine-tuning to evaluate the
convergence speed. The fine-tunings were performed in-
dependently on sequences of 100 frames. For each frame,
we average the PSNR obtained at that frame for the seven
sequences of the Derf dataset. We plot the evolution of
the difference between the average per-frame PSNR for our

fine-tuned network and a network which was trained with
supervision specifically for each target noise type.

As expected, the similarity between the source and tar-
get noise distributions impacts the convergence speed of
the online fine-tuning. For both AWGN noise targets the
weights pre-trained for AWGN with the closest σ show the
fastest convergence. Similarly, the weights pre-trained for
box noise work better when the target noise is also box
noise. In all cases the fine-tuned network achieves a per-
formance comparable to the supervised network (within a
0.4dB range), and even surpasses it in the case of AWGN.
It seems to be easier for the weights pre-trained for AWGN
to adapt to the box noise than the other way around. For
this reason, all our experiments were done starting our
fine-tunings from the weights pre-trained for AWGN with
σ = 25.

0 20 40 60 80
Number of frames

1.0

0.5

0.0

0.5

PS
NR

 (d
B)

Pretrained Gaussian 15
Pretrained Gaussian 25
Pretrained Gaussian 35
Pretrained box noise 3

(a) Target noise AWGN with σ = 10

0 20 40 60 80
Number of frames

1.5

1.0

0.5

0.0

PS
NR

 (d
B)

Pretrained Gaussian 15
Pretrained Gaussian 25
Pretrained Gaussian 35
Pretrained box noise 3

(b) Target noise AWGN with σ = 40

0 20 40 60 80
Number of frames

1.0

0.8

0.6

0.4

0.2

0.0

PS
NR

 (d
B)

Pretrained Gaussian 15
Pretrained Gaussian 25
Pretrained Gaussian 35
Pretrained box noise 3

(c) Target noise 5× 5 box noise with σ = 65

Figure 3: Online MF2F fine-tuning starting from different pre-trained weights for different target noise types. For each frame, we plot the
difference in PSNR with respect to the result of a noise-specific network trained with supervision. The per-frame PSNRs are averaged over
the seven videos of the Derf dataset.

F. Fine-tuning only the variance map
Figure 5 shows results obtained for Poisson noise by

fine-tuning the variance map. We compare the results ob-
tained for the constant variance map and the per-level vari-
ance map (with K = 8 levels). Figure 6 shows an example
of the per-level variance map. We recall this variance map
is built by first segmenting the image in K regions based on
the pixel intensity of the noisy image. To each region we
assign a variance σ2

i , and the fine-tuning is applied to these
K = 8 variances.

The results with constant variance map clearly contain
remaining noise and also over-smoothed areas, whereas the
results with our variance map are uniformly denoised.

In Fig. 10, we compare some results of the MF2F fine-
tuning using the per-level noise map and the spatially vari-
ant noise map on Poisson noise. The spatially variant noise
map is particularly suitable for Heteroscedastic AWGN. Al-
though in principle, the same strategy as for the space vary-
ing noise case could be also used to estimate a time-varying
variance map Σt(t), the results with the per-level noise map
are more accurate. This is because the spatially variant
noise map requires more iterations per frame (due to the
slower convergence) to adapt to a temporally varying noise
pattern (leading to a higher computational cost per-frame).

In Fig 4, we show an example frame of the noisy video,
contaminated with the spatial Gaussian noise from the spa-
tial noise map in figure 6 of the main paper. In the same
figure, we show the corresponding denoised frame.

G. Fine-tuning half of the weights
The FastDVDnet architecture [5] consists of two cas-

caded blocs of U-net. In the previous section, we showed
that fine-tuning the parameters of the noise map while leav-
ing the weights fixed can achieve good results for certain
types of noise. While, in the main article, we have seen that
fine-tuning all the weights of the network permits to adapt
to a wider range of noise types. In this section we investi-
gate if we can update a smaller part of the network in order
to attain the same adaptation capacity.

We will fine-tune half of the network weights. For that
we consider four ways of splitting the weights. We can fine-
tune the weights corresponding to the first Unet (denoted
first bloc), or the second one (second bloc), while leaving
the other fixed. But also we can fine-tune the weights of
the encoder parts of both Unets (denoted “encoder”) or the
decoder parts (“decoder”).

The average PSNR obtained with this fine-tuning exper-
iments are reported in Table 2. The averages are computed
over seven video sequences of the Derf dataset and ten video
sequences of the Vid3oC-10 dataset. Surprisingly, one of
the configuration for half fine-tuning competes with the full
training. Indeed training only the encoder parts of both Unet
consistently attains the performance obtained by fine-tuning
the full weights. This is true for all the tested noises. This
seems to indicate that most of the ”noise-specific” work is
being done in the encoders.

We can also observe that the other half-fine-tuning con-
figurations reach a good performance and sometimes over-
taking the noise-specific FastDVDnet trained with supervi-
sion.

Furthermore, in case of fine-tuning the end of the net-
work (decoder of both Unet or encoder & decoder of the
last Unet), fine-tuning half of the network does not require
to back-propagate through the whole network . Thus, this
allows to reduce the computational memory needed (how-
ever, the table 2 shows it slightly affects the performance
compared with a full-weights training).

H. Additional results

In this section we present more results obtained with the
proposed methods for different noise types. All the fine-
tuned networks are obtained from the same pre-trained Fast-
DVDnet network, trained in a supervised setting for Gaus-
sian noise with noise level σ = 25. This network is fine-
tuned blindly with the proposed method and we show that it
behaves as the supervised one for many types and levels of
noise.

The MF2F method was tried on two AWGN, two corre-

Noisy frame Denoised frame

Figure 4: A noisy frame with spatial noise map from figure 6 in the main paper and the corresponding denoised by the self-supervised
online MF2F, when fine-tuning the noise map input and keeping the network weights fixed.

Dataset & noise Encoder Decoder Bloc1 Bloc2 Full weights

D
er

f

Gaussian 20 37.28 37.28 37.03 37.21 37.42
Gaussian 40 34.19 33.89 33.94 33.27 34.24

Poisson 1 40.32 40.07 39.92 38.55 40.39
Poisson 8 35.56 35.49 35.34 35.48 35.57
Box 40 3 35.47 35.39 35.18 35.12 35.50
Box 65 5 33.85 33.64 33.43 32.96 34.29

Demosaicked 4 34.70 34.60 34.46 34.49 34.75

V
id

3o
C

-1
0

Gaussian 20 37.35 37.33 37.26 37.09 37.32
Gaussian 40 34.19 33.90 34.10 33.12 34.17

Poisson 1 40.05 39.70 39.79 38.00 40.01
Poisson 8 35.00 34.76 34.90 34.44 34.99
Box 40 3 36.65 36.56 36.47 35.72 36.65
Box 65 5 35.65 35.46 35.42 34.32 35.65

Demosaicked4 33.96 33.66 33.83 33.26 33.95

Table 2: Comparison of average PSNR over all the sequences for a given dataset and type of noise when fine-tuning the all weights or only
half of them. The best PSNR is in bold. The second blind is in gray.

lated noise that we call “box noise” consisting of AWGN
and filtered with a box filter. Finally we also tested on
two scaled Poisson noise as well as on demosaicking noise
(Poisson noise follows by a demosaicking algorithm).

Figures 7 and 8 illustrate the results for all the synthetic
noise types used in the table 2 in the main paper, for two
video sequences. In all the cases the starting point were the
weights pre-trained for AWGN25. The results of our offline
MF2F attains the performance of the noise-specific FastD-
VDnet trained in a supervised settings. We also display the
results when fine-tuning the per-level variance map. From
the PSNR and SSIM tables (see the main paper) we can see
that for the AWGN and Poisson noise this fine-tuning yields
results similar to the noise-specific FastDVDnet trained in a
supervised settings. For the box noise and the demosaicked
noise, the performance of MF2F is slightly below the result

of the noise-specific FastDVDnet. Yet, we can see from this
figure that qualitatively the results are comparable.

Additional results obtained with the proposed fine-
tuning for both online and offline versions are shown in Fig-
ure 9. Those results are compared with the ones obtained by
evaluation of the noise-specific FastDVDnet trained in a su-
pervised settings in case of AWGN20. It shows that both
the online and offline method achieve the performance of
the supervised network and surpasses it.

Figure 11 shows results on videos with real noise from
the FLIR ADAS thermal infra-red dataset, both online and
offline methods are compared. Results of the last row were
displayed using a jet color map.

Figure 12 shows the results on real noise from the CRVD
dataset. In this figure we compare the results on a same
scene but with different ISO levels: 1600, 3200, 6400,

(a) Noisy (b) FastDVDnet scalar variance map (c) FastDVDnet per-level variance map

(a) Noisy (b) FastDVDnet scalar variance map (c) FastDVDnet per-level variance map

(a) Noisy (b) FastDVDnet scalar variance map (c) FastDVDnet 8 sigmas variance map

(a) Noisy (b) FastDVDnet scalar variance map (c) FastDVDnet per-level variance map

Figure 5: Comparison between a constant variance map and per-level variance map for an image with Poisson noise of p = 1. Results with
the constant variance map still contain remaining noise for bright areas. Contrast has been linearly scaled for visualization. Notice that no
color variance was applied (it is not within the scope of this work to reproduce a complete image pipeline)

12800, 25600. The visual quality of denoising is not af-
fected by the ISO level since the method quickly adapts to
those different noise level. We display the results obtained
both by the online MF2F and the offline MF2F. For com-
parison, we also added the results of online F2F and RVi-
DeNet [6]. MF2F extends the performance of F2F and can
adapt specifically to the noise of the video. As a results, it
gives sharper results and with more details than RViDeNet.
To illustrate that, more crops are shown in Fig. 13). RVi-
Denet poorly reconstructs the texture of the trees, the side-
walk and even the folds in the coat. On the crops show-
ing the legs, we see that RViDeNet has also ghosting effect
which is not present on the results of MF2F. An illustration
of this ghosting effect is also shown in Fig. 14 (see in front
of the motorbike)

I. Running time

Table 3 reports the running time needed to process one
color frame of 800 × 540 pixels (including file IO) for all
the proposed online methods. The times were measured on
a multi-core server with a NVIDIA RTX 2080 TI GPU. The
online methods compute 20 Adam weight updates of the
network (FastDVDnet) for each frame of the sequence. The
offline method, on the other hand, performs a fixed number
of Adam update steps regardless of the length of the video.
A comparison with the inference time of the FastDVDnet
network is also provided.

Note that fine-tuning the variance map or all the weights
of the network requires roughly the same amount of time.
This is because in both cases we need to back-propagate
through the entire network and we perform the same num-

Figure 6: Obtained variance map for Poisson noise p = 1 (we display the square root of the variance map, i.e. the standard deviation). The
σ found by fine-tuning the constant variance map was 10.41.

Method time (in s)
MF2F (Online fine-tuning) 6.78
MF2F fine-tuning the 8 levels variance map 4.45
FastDVDnet (inference) 0.56

Table 3: Running time needed to process one color frame (800 ×
540) with the online algorithm. The fine-tunings are all on the
FastDVDnet network.

ber of weight update steps.

Gaussian 20

Gaussian 40

Poisson 1

Poisson 8

Box 40 3

Box 65 5

Demosaicked 4

Figure 7: Comparison on all synthetic noise types. From left to right: the noisy image, the result of the noise-specific FastDVDnet
(supervised), the result of our offline MF2F fine-tuning (self-supervised) and the per-level variance map MF2F (self-supervised). From the
top to the bottom: AWGN20, AWGN40, Poisson1, Poisson8, box noise 3 × 3, σ = 40, box noise 5 × 5, σ = 65 and the demosaicking
noise.

Gaussian 20

Gaussian 40

Poisson 1

Poisson 8

Box 40 3

Box 65 5

Demosaicked 4

Figure 8: Comparison on synthetic noise types. From left to right: the noisy image, the result of the noise-specific FastDVDnet (supervised),
the result of our offline MF2F fine-tuning (self-supervised) and the per-level variance map MF2F (self-supervised). From the top to the
bottom: AWGN20, AWGN40, Poisson1, Poisson8, box noise 3× 3, σ = 40, box noise 5× 5, σ = 65 and the demosaicking noise.

37.69dB 37.91dB 38.02dB

37.63dB 37.92dB 37.92dB

36.93dB 37.22dB 37.18dB

Figure 9: Comparison of results obtained with the online and offline MF2F (both self-supervised) on Gaussian 20. From left to right:
noise-specific FastDVDnet (supervised), online MF2F (self-supervised) and offline MF2F (self-supervised)

28.67dB 38.37dB 37.71dB

19.13dB 31.91dB 30.96dB

Figure 10: Comparison of results obtained with the per-level and the spatially variant variance map on poisson noise p = 1 (first row) and
p = 8 (second row). From left to right: noisy, per-level variance map and spatially variant variance map.

Figure 11: Results on real noise from a thermal camera (FLIR ADAS dataset). From left to right: noisy, online MF2F and offline MF2F.

(a) ISO1600 (b) ISO3200 (c) ISO6400 (d) ISO12800 (e) ISO25600

Figure 12: Real noise sequence: comparison of the same scene with different ISO levels. From top to bottom: noisy, online MF2F, offline
MF2F, RViDeNet and online F2F.

(a) RViDeNet (b) Offline MF2F

(a) RViDeNet (b) Offline MF2F (a) RViDeNet (b) Offline MF2F

Figure 13: Comparison between RViDeNet and MF2F on real noisy images [3]. The texture of trees, the coat, and the legs are poorly
reconstructed by RViDeNet. On the contrary, MF2F produces results with more details. Furthermore, on the legs, we can see a ghosting
effect on the result of RViDenet.

noisy raw (demosaicked) online F2F

offline MF2F RViDeNet

Figure 14: A frame from a denoised raw video (ISO 12800) processed by F2F, offline MF2F, and RViDeNet. The contrast was changed for
display purposes. All images are demosaicked and gamma corrected. The result of RViDeNet suffers from a strong ghosting effect and the
people are poorly reconstructed. On the contrary the proposed MF2F gives better results.

References
[1] Thibaud Ehret, Axel Davy, Jean-Michel Morel, Gabriele

Facciolo, and Pablo Arias. Model-blind video denoising
via frame-to-frame training. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2019.

[2] Sohyeong Kim, Guanju Li, Dario Fuoli, Martin Danelljan,
Zhiwu Huang, Shuhang Gu, and Radu Timofte. The vid3oc
and intvid datasets for video super resolution and quality map-
ping. In The International Conference on Computer Vision
Workshop (ICCVW), pages 3609–3616. IEEE, 2019.

[3] Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik
Cho. Transfer Learning From Synthetic to Real-Noise De-
noising With Adaptive Instance Normalization. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3479–3489. IEEE, jun 2020.

[4] Chris Montgomery et al. Xiph. org video test media (derf’s
collection), the xiph open source community, 1994. Online,
https://media.xiph.org/video/derf.

[5] Matias Tassano, Julie Delon, and Thomas Veit. Fastdvdnet:
Towards real-time deep video denoising without flow estima-
tion. In The IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1354–1363,
June 2020.

[6] Huanjing Yue, Cong Cao, Lei Liao, Ronghe Chu, and Jingyu
Yang. Supervised raw video denoising with a benchmark
dataset on dynamic scenes. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2301–2310, June 2020.

[7] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy: Dis-
entangling task transfer learning. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3712–3722, June 2018.

