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1. Implementation Details
1.1. Depth

Depth estimation can be realised by using a left-right im-
age pair attempting to reconstruct one from the other. When
frames are rectified, images can be mapped to another image
using a disparity map. The resulting disparity map can be
used to estimate depth by means of the camera parameters.
In their work [9] propose to estimate depth without explicit
depth ground truth supervision, but purely using reconstruc-
tion. A model receives the left image I l as an input, and is
tasked with predicting left-to-right disparity dr and right-to-
left disparity dl, which are used to generate reconstructed
right image Îr and reconstructed left image Î l respectively.

The quality of the reconstructed images is evaluated by
means of a number of loss functions which form the full
training objective. Each loss function has distinct optimiza-
tion properties. The following loss functions are combined
in line with [5]:

• The L1 loss that minimises the per-pixel distance:
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• The Structural Similarity Index Measure (SSIM) that
measures the perceived quality of the reconstruc-
tion [15]:

Ll
S =

1

N

∑
i,j

(1− SSIM(Ilij , Î
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where illumination µ and signal contrast σ are com-
puted around centre pixels x and y. Parameters c1, c2
are set close to zero for numerical stability.

• The Left-Right Consistency Loss (LR) that enforces the
predicted left and right disparity maps to be consistent:
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• The Disparity Smoothness Loss (DISP) that allows
changes in disparities only at image edges:
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This loss is scaled by 1

2s at loss scale s, because dispar-
ity values are related to image width.

An encoder-decoder architecture is used to compress the
image representation and upsample from it. In total disparity
maps are regressed at four scales. At each scale all loss
functions are evaluated for left and right disparity maps. The
full objective combines losses from all scales s:

Lfull =

3∑
s=0

∑
d∈{dleft,dright}

L(s,d) (6)

L(s,d) = αL1 LL1 + αS LS + αlr Llr + αdisp
1

2s
Ldisp,

(7)

where each of the αs are the loss weights that should be auto-
matically weighted using one of the loss weighting schemes.

The full pipeline is implemented in PyTorch [13]1. For
all implemented methods and datasets, images are down-
sampled to a resolution of 256x512 and fed to an encoder-
decoder network that uses using batch normalisation [8]
and Exponential Linear Units (ELUs) [3]. The encoder is a
ResNet50 [7]; the decoder alternates bilinear interpolation
up-sampling and convolutional layers [5] and outputs dispar-
ities at a single scale following the ablation study of [6]. For
consistency with the multi-task methods [9, 2], the decoder
is extended with two more convolutional layers. Models are
trained for 30 epochs on KITTI with a batch size of 8 using
an Adam optimiser with a constant learning rate of 1e-4, un-
less otherwise stated. Models are trained for 100 epochs on
CityScapes with a batch size of 8 using an Adam optimiser
with a plateau scheduling learning rate that starts at of 1e-4,
and is halved twice at epochs 30 and 40 respectively [5].

1Code is made publicly available at https://github.com/
rickgroen/cov-weighting



For KITTI, 8 losses are used, in line with the conclusions
of [6]. For CityScapes, we use 8 losses at 4 scales, for a
total of 32 losses. Data augmentation is performed in online
fashion throughout the training procedure in line with [6].
Like [5] disparities are post-processed during inference and
warped to depth estimates which are used for evaluation. For
CityScapes evaluation is done directly on disparities, as in
[14, 9, 10].

1.2. Semantics

For semantic segmentation the implementation by the
authors of EncNet2 [16] is adapted and augmented with
all loss weighing methods. The full network follows an
encoder-decoder scheme with dilated convolutions [1] to
make predictions at 1/8 resolution. The predictions are then
up-sampled to their original resolution. The encoder network
is a ResNet50 [7] network with dilated convolutions [1] at the
third and fourth network layers. The full network uses batch
normalisation [8] and Rectified Linear Units (ReLUs) [12].
For the decoders, there is one Encoding Context Module
that is attached to the final layer of the encoder, and one
FCN head attached to the penultimate layer of the decoder.
For optimisation, an SGD optimiser is used with polynomial
learning rate scheduling with a starting learning rate of 1e-4
[16]. During training, images are cropped to 384x384 image
patches and used as input to the network. Using a batch
size of 8, the network can be trained on a single NVIDIA
Titan GTX. Unless otherwise stated the method outlined by
[16] is closely followed. The full network is pre-trained on
ImageNet [4] and then trained for 40 epochs on PASCAL
Context [11]. For quantitative evaluation, Pixel Accuracy
(pACC) and Mean Intersection over Union (mIoU) are used,
as in [16]. Background pixels are ignored during evaluation.
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