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1 Introduction

This supplementary material contains elements that were withheld from the main paper due to space constraints. The
first is a brief discussion on the hyper-parameter search used to determine the SWAGI+G hyper-parameters, this can be
found in Section 4. Secondly we provide many more qualitative examples for explanations generated with both VGG16
and ResNet50 for ImageNet, Stanford Dogs, CUB Birds, and Oxford Flowers. These can be found in Sections 6.1, 6.2,
6.3, and 6.4 respectively. As with the main paper we recommend viewing these images in colour.

2 SWAG Pooling Method

In this section we quantitatively justify the method chosen for pooling the gradients into superpixels. In the main paper
we proposed taking the mean of the gradients within a superpixel as the importance score for that region. However there
are multiple other methods that could have been chosen. We therefore run the local accuracy experiment with a number of
substitutions for scoring using the mean value. These alternatives are: minimum, maximum, ℓ1-norm, ℓ2-norm, variance,
standard deviation, and the sum. The results from the local accuracy experiment can be found in Table 1. Here we confirm
our initial intuition that taking the mean of the gradients within a superpixel gives the best local accuracy performance
for both networks.

3 Alternative View of Local Accuracy Charts

Additional views of the local accuracy charts can be seen in Figure 1. These allow a clearer view of how the different
methods for generating explanations compare to each other.



4 SWAGI+G HYPER-PARAMETER GRID SEARCH

Method VGG16 ResNet50
ℓ1-norm 0.099 0.124
ℓ2-norm 0.096 0.122
Maximum 0.100 0.125
Mean 0.092 0.119

Minimum 0.095 0.119

Standard Deviation 0.097 0.124
Sum 0.099 0.124
Variance 0.097 0.124

Table 1: AUC results for the local accuracy experiment. Lower is better. Here we see that of the pooling methods tried,
taking the mean works the best.

4 SWAGI+G Hyper-parameter Grid Search

With the introduction of SWAGI+G there are now 3 weights, ws, wc, and wg that allow control over the spatial, colour and
gradient components respectively. The values assigned to these control the amount of influence each component exerts on
the formation of the superpixels. In the original method, ws is fixed in such a way as to try keep each superpixel with
a set distance of a superpixel centre. Here ws =

√

N/K, where N is the number of pixels in the image, and K is the
desired number of superpixels. We do not change this for SWAGI+G. The authors of the SLIC found that setting wc to
10 gave them the best results for segmenting an image into superpixels. This involved tests such as seeing how well the
superpixel boundary aligns with a human annotated image. As we have scaled our gradient to produce values within a
similar range as the colour components, we initially set wg to 10 as well.

We perform a grid search over the wg and wc values from 4 to 20 in steps of 4. Assuming a centre point of 10,
approaching a value of 20 will diminish that element, whilst approaching 4 will increase the prominence in the superpixel
generation method. We chose to cap the search at a maximum value of 20 so as to still maintain a link between the
superpixels and the underlying image. An example of the effect on superpixels that varying these values has is shown in
Figure 2. To evaluate how a chosen set of hyper-parameters is performing we run the local accuracy experiment from
RISE. We perform our grid search on the Stanford Dogs dataset using a trained ResNet50 model. We found that a wc

value of 20 and a wg value of 8 gave best results, suggesting that a superpixel better explains a region when it can escape
the constraints of the RGB image and extend over the natural image boundaries. In Figure 3 we show the interplay
between the two values when the other is fixed. It is interesting to note that the local accuracy continues to improve as
the influence of the colour space component is diminished, however we felt that reducing it too much would ‘detach’ the
explanation from the underlying image. However, it would be interesting to explore this further in future work.

5 Weak-Localisation Details

We produce a bounding box by thresholding the explanation heatmap (sweeping through a range of thresholds). As per [2]
we report results using three simple thresholding methods. First we threshold the pixel value (scaled to between 0 and
1) in steps [0 : 0.05 : 0.95]. Second, we threshold using the mean intensity of the heatmap (µI) by taking our threshold
α ∈ [0 : 0.5 : 10] and multiplying by the mean to form αµI . Finally, we threshold using the energy of the heatmap in such
a way that the most salient region of the heatmap covers a defined percentage of the energy, where α ∈ [0 : 5 : 95].



6 ADDITIONAL QUALITATIVE RESULTS - IMAGES
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Figure 1: Zoomed in local accuracy AUC charts. Best viewed in a PDF viewer with zoom ability.

6 Additional Qualitative Results - Images

Over the following pages we present additional examples of our proposed methods compared to Grad-CAM [5], Grad-
CAM++ [1], LIME [4], and RISE [3]. We separate each dataset into their own section. Every image has been classified
correctly by the networks.

6.1 ImageNet

In Figure 4 and Figure 5 we show examples taken from the ImageNet validation set. There are a number of features that
make SWAG, SWAGI+G, and SWAGG desirable compared to the other methods tested. In particular we note how fine
our explanations are compared to much coarser CAM based methods, This is presrumably one of the core reasons we
achieve better local accuracy. For example, in the Black Grouse class in Figure 4, note how much of the area surrounding
the object is highlighted in the CAM methods, and RISE. Compared to these we see the precision with which our method
can highlight the areas really important to the network. We also note the similarities between RISE and our method. For
example, both methods highlight small regions of the image in the Chainsaw and Washbasin classes in Figure 5 despite
only requiring a single pass through the network compared to RISE’s 4,000 – 8,000. A possible downside to our technique
is that in some cases it can produce an explanation that is noisy. This can be seen in the Barbershop class, in particular for
the VGG16 network. Although our explanation seems to accurately locate the barber pole and sign, there are a number
of additional superpixels that are highlighted which could lead to confusion.
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Figure 2: Comparison showing how altering the balance of wg and wc effects the generation of superpixels. For ease of
viewing we have reduced the number of superpixels generated to 150
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Figure 3: Grid Search results showing the interplay between each parameter when we fix each at their best values.
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6.2 Stanford Dogs

Figure 6 contains five examples from the Stanford Dogs dataset. In this fine-grained dataset we see that our method is
able to accurately identify small regions on the dogs body that the networks find important. In particular this seems to
be the face region of the dog. This is corroborated by the other explanations, however, note the coarseness of the CAM
methods, particularly for those using the ResNet50 network. Again we see similar small regions identified by RISE despite
taking a much longer time to generate.

6.3 CUB Birds 200

Figure 7 contains five examples from the CUB Birds dataset. This dataset contains a number of birds that are small in
the image compared to ImageNet objects. In this context our methods ability to explain small regions within an image is
very useful. For example in Figure 7c for the ResNet50 network, we can see the varying granularity stages of explanation
the different methods can produce. The CAM methods produce a heatmap that covers the entire bird, whilst RISE is
able to reduce this to only covering the head of the bird. In contrast, our method is able to identify regions within the
birds head that are important to the networks predictions.

6.4 Oxford Flowers 102

Figure 8 contains five examples from the Oxford Flowers dataset. The flowers dataset is the opposite of CUB Birds with
large objects dominating the frame. In images where there is a single distinctive feature (e.g. the centre of the flower
in Figure 8d and e) we see that our method produces a small, compact heatmap around these regions. As with the
barbershop image in Figure 5, we see that images such as Figure 8a can produce noisy explanations. However, we also
note that a number of the alternative explanations for this image are also noisy.
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Figure 4: Examples taken from the ImageNet validation set
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Figure 5: Further examples taken from the ImageNet validation set
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Figure 6: Examples taken from the Stanford Dogs validation set
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Figure 7: Examples taken from the CUB Birds validation set
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Figure 8: Examples taken from the Oxford Flowers validation set
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