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A. Supplementary
A.1. Benchmarks details

CamVid [2] is a road scene dataset, which contains 367
training and 233 testing images at 360x480. The database
provides ground truth labels associating each pixel with one
semantic class. Eleven semantic classes are of common in-
terest, including pavement, pedestrian, tree, building, sky,
etc.

Cityscapes [3] is a large-scale urban scene dataset in
driving view. There are 2,975 well-annotated and high-
resolution images in the train set, 500 images in the val-
idation set, and 1,525 images in the test set. For semantic
segmentation, 19 common classes are trained and evaluated,
including humans, vehicles, constructions, objects, nature,
sky, etc.

A.2. Per-Class quantitative results comparison

In Table 6, we provide a detailed comparison of differ-
ent pruning methods on the segmentation performance of
each class. The results show our method’s advantage that
can preserve the closest accuracy from the original model
in general and reduce the redundancy efficiently. Note
that some baselines like NS may suffer from unrecover-
able performance loss on uncommon classes for pruning
lightweight models, while our pruned models can still main-
tain the discriminative ability in different classes.

A.3. Additional qualitative results comparison

In Figure 9, we show the visualization of predicting dif-
ferent images in Cityscapes. The unpruned model in Fig-
ure 9 is PSPNetl01, and the pruned models are FPGM,
NS-60%, BN-Scale-60% and Ours-60% in Table 1, respec-
tively. As shown from the comparison, our method can ob-
tain efficient compact models that perform better than other
baseline pruning methods. Note that, in addition to bet-
ter preserving the representation ability of unpruned model

with much lesser parameters, our compact models can gen-
erate a more consistent prediction on various classes, while
other baselines may suffer from the prediction loss due to
misclassification or inconsistency.

A.4. Runtime acceleration results comparison

Dataset ‘ Methods mloU(%) Time(ms)  Speed(fps)(%7)
7>9 SegNet(Unpruned) 55.60 18 54.79
g SegNet(Ours-20%) 57.12 12 81.34(48.46%71)
S SegNet(Ours-30%) 56.37 9 105.97(93.41%71)
PSPNet101(Unpruned) 78.40 885 1.13
PSPNet101(Ours-60%) 77.82 658 1.52(34.51%7)
- PSPNet101(Ours-70%) 75.27 595 1.68(48.67%7)
§ PSPNet50(Unpruned) 76.99 735 1.36
§ PSPNet50(Ours-70%) 73.94 485 2.06(51.47%7)
6‘ ICNet(Unpruned) 64.59 14 69.91
ICNet(Ours-60%) 62.38 13 76.27(9.10%71)
SegNet(Unpruned) 56.10 83 12.02
SegNet(Ours-20%) 61.16 59 17.04(41.76%1)

Table 4. Runtime acceleration per image inference in Cityscapes
(1024 x2048) and CamVid (360x480) test set. All inference
speeds are measured by a single Tesla V100 GPU.

A.5. Comparison with other baselines

In Table 6, we compare our methods with the FPGM [5]
variants in an automatic pruning manner. Due to the space
limit in the main paper body, we discuss more details of
FPGM [5] and CCGN [1] in this section.

A.5.1 Baselines details

Filter Pruning via Geometric Median for Deep Convo-
lutional Neural Networks Acceleration [5] (denoted as
FPGM) indicates filter importance via its Euclidean dis-
tances to other filters in the same layer. As FPGM was orig-
inally implemented in the image classification task only, we
re-implemented it for semantic segmentation. In Table 1,
we showed the performance of FPGM with the setting re-
ported in the original paper, where the filter pruning ratio in



Method Average road swalk build. wall fence pole light sign veg. terrain  sky  person rider car truck  bus train  mbike.  bike
Unpruned 78.40 98.60 86.20 9290 50.80 58.80 64.00 75.60 79.00 93.40 7230 9540 86.50 7130 9590 6820 79.50 73.80 69.50 77.20
> FPGM 74.84 98.34 8436 92.16 53.15 5694 6044 69.28 7458 93.04 7038 9474 8374 6573 9535 5897 7512 5989 62.80 7291
T NS-60% 7570 9821 83.09 9199 5185 56.00 6045 6923 7382 9284 69.04 9502 8351 6494 9505 6355 8045 7421 6249 7262
% | BN-Scale-60% | 74.88 98.15 83.06 91.83 49.09 5450 60.62 6891 73.56 9293 7120 9473 8337 6479 9509 6504 81.07 6196 6075 72.08
g Ours-60% 7782 9840 84.78 92.65 56.74 5779 63.58 7205 76.57 9322 71.60 95.04 8491 6791 95.60 68.81 83.82 75.66 6523 74.18
Ours-70% 7527 9824 83.65 9208 5553 5393 6093 69.95 7386 9294 7125 9482 8358 65.64 9516 6438 77.62 6433 6021 72.03
‘ Unpruned ‘ 76.99 98.41 8452 92.64 51.01 5653 64.13 73.19 77.18 9327 7045 9521 8543 69.80 9572 69.55 79.52 6586 66.14 7433
=4 FPGM 7459  98.17 8327 9200 5496 5408 5920 7006 7280 9296 7091 9476 83.82 65.61 9522 6271 7529 5624 6243 7276
g NS-50% 7357  98.15 8320 9146 50.19 5416 5948 6891 73.09 9265 69.77 9426 8231 63.63 9475 6254 71.84 5795 58.05 71.40
& BN-Scale-50% 73.85 98.19 8350 91.54 51.64 5285 5884 69.02 7296 9273 7031 9433 8215 6327 9486 6320 7454 61.54 57.14 70.64
a Ours-60% 7559 9838 84.71 9258 56.14 56.64 63.14 7250 7623 9323 71.19 9490 8446 66.09 9538 60.05 73.80 6127 6235 73.27
Ours-70% 73.94 9821 8355 91.95 50.88 54.67 6134 7090 7481 9289 70.86 9476 8373 6479 9495 63.06 71.55 51.13 5890 71.87
| Unpruned | 6459 9771 79.95 88.87 37.52 4078 43.87 5112 57.80 90.71 67.13 93.83 72.65 5247 9208 50.65 60.16 48.17 4333 5845
B FPGM 62.00 9739 7772 87.63 3595 3851 39.66 44.13 5336 90.04 064.84 93.05 70.02 4732 9122 4945 5648 47.74 38.89 54.62
E NS-60% 60.02 9720 76.73 87.08 40.95 36.56 37.27 40.28 49.25 89.44 63.56 92.68 67.79 46.05 90.18 3996 53.68 4249 3564 53.59
= | BN-Scale-60% | 59.68 97.21 7683 87.10 3556 3446 37.66 40.84 49.13 8949 6443 9270 6771 4569 9021 4398 50.07 39.56 36.55 54.73
Ours-60% 6238 9736 78.00 87.88 41.32 3793 4083 4393 5229 8998 6558 9275 6991 4846 90.79 46.17 59.01 47.19 4027 55.51
| Unpruned | 5609 9565 70.10 8281 29.87 31.88 38.06 43.05 44.58 8732 6230 9168 67.28 5075 87.89 21.70 29.03 3473 4047 56.63
b FPGM 51.60 9620 71.11 84.02 26.19 2667 3326 3217 4378 8824 6192 91.10 57.16 3250 8828 21.68 2831 2941 2125 47.17
%n NS-20% 56.85 9632 77.51 8843 3500 37.18 4941 5327 6057 9118 67.07 9391 7157 4632 9142 27.67 0.00 0.00 3552 57.89
@ | BN-Scale-20% 59.95 97.12 77.03 88.17 3331 3638 4880 5034 59.19 90.80 6630 93.68 7051 4478 9130 2946 4120 2936 33.68 57.66
Ours-20% 61.16 97.19 7732 8837 3268 37.15 4988 53.64 61.80 9095 6623 93.74 71.69 4526 9131 30.39 42.66 37.59 3495 59.21
Table 5. Per-class results after pruning on Cityscapes test set.
Methods mloU(%) #Params(M)(%])  #FLOPs(G)(%))
— Unpruned 77.48 70.44 557.04
)
—= | FPGM-A-20% 70.94 53.10(24.62%))  397.22(28.69%.)
()
Ve S (%) . . . (4 . . (g
FPGM-A-30% 67.20 46.81(33.54% 346.25(37.84%
[a ™
% Ours-60% 78.23 47.84(32.08%)) 363.21(34.80%.,)
Ours-70% 75.40 39.74(43.58%|) 296.25(46.82%.)
Unpruned 76.57 51.45 403.0
S | FPGM-A-30%  60.14  35.17(31.63%])  273.53(32.13%))
pit]
2 FPGM-A-40% 61.36 23.56(54.21%))  185.69(53.92%.)
& Ours-60% 75.65 27.31(46.92%))  233.67(42.02%.)
A~ Ours-70% 74.31 23.78(53.78%))  203.19(49.58%.)
Ours-80% 70.83 21.16(58.87%.) 179.79(55.39%.)
Unpruned 64.59 12.21 40.13
-
2 | FPGM-A-20% 49.20 10.47(14.30%) 27.03(32.64%.)
C | FPGM-A-30%  43.01 8.86(46.57%))  24.62(38.65%))
Ours-60% 63.26 5.56(54.46 %) 21.16(47.27%.)
- Unpruned 56.10 29.45 326.59
o
Z. | FPGM-A-10% 4491 27.41(6.93%.) 178.09(45.46%.)
=10]
& | FPGM-A-40% 37.17 10.85(63.18%))  43.74(86.61%)
Ours-20% 60.98 10.76(63.46% ) 178.23(45.43%)

Table 6. Quantitative pruning results on Cityscapes validation set.

each layer is predefined. The pruned architectures of FPGM
in Table 1 are shown in Figure 5 and Figure 6. In Table 6,
we show the results of FPGM using the automatic pruning
method like ours, where we only set a global pruning ratio
and prune filters in a global and greedy manner. We de-
note this method as FPGM-A. Same as other reported base-
lines in Table 1, the x in FPGM-A-x% stands for the global
threshold ratio, and we also reserve 10% filters to prevent
pruning out the whole layer.

Batch-Shaping for Learning Conditional Channel Gated
Networks [1] (denoted as CCGN in Table 3) is the state-
of-the-art conditional computing method, which estimates
channel saliency by introducing a gated module similar to

Dynamic Channel Pruning [4], but provides a better trade-
off between simple and complex examples inference. Al-
though it is not strictly a network pruning method, it is
the latest work to provide comprehensive network accel-
eration results on the large-scale semantic segmentation
benchmarks. Hence, we provide a comparison with this
method as well. As stated in their paper, CCGN(Without
pretrain) stands for the model that undertakes training with-
out ImageNet-pretrained, while CCGN-1(With pretrain)
and CCGN-2(With pretrain) are with pretrained and reduce
FLOPs in different percentage to balance the performance.



A.5.2 Analysis

Table 6 shows that our method outperforms the above-
mentioned state-of-the-art pruning methods. It can also be
observed that when FPGM is implemented in an automatic
pruning manner (i.e., FPGM-A-x%), the performance be-
comes worse (compared to FPGM in Table 1). From the
observation, it is evident that our method serves as a bet-
ter global indicator to identify the importance of channels,
while some pruning criteria in image classification task may
not be effective for semantic segmentation.

A.6. Pruned structures comparison

In Figure 5 to Figure 8, we visualize the pruned archi-
tectures using our framework, i.e., CAP, and the original
FPGM.
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Pruned Structure Comparison(SegNet)
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Figure 5. Pruned structure comparison (SegNet)

Pruned Structure Comparison(ICNet)
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Figure 6. Pruned structure comparison (ICNet)



Pruned Structure Comparison (PSPNet50)
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Figure 7. Pruned structure comparison (PSPNet50)

Pruned Structure Comparison (PSPnet101)
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Figure 8. Pruned structure comparison (PSPNet101)



(a) Input Image (b) GT (c) FPGM (d) NS (e) BN-Scale (f) Unpruned (g) Ours

Figure 9. Extra qualitative comparison on different images on Cityscapes validation set.



