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A. Supplementary
A.1. Benchmarks details

CamVid [2] is a road scene dataset, which contains 367
training and 233 testing images at 360×480. The database
provides ground truth labels associating each pixel with one
semantic class. Eleven semantic classes are of common in-
terest, including pavement, pedestrian, tree, building, sky,
etc.

Cityscapes [3] is a large-scale urban scene dataset in
driving view. There are 2,975 well-annotated and high-
resolution images in the train set, 500 images in the val-
idation set, and 1,525 images in the test set. For semantic
segmentation, 19 common classes are trained and evaluated,
including humans, vehicles, constructions, objects, nature,
sky, etc.

A.2. Per-Class quantitative results comparison

In Table 6, we provide a detailed comparison of differ-
ent pruning methods on the segmentation performance of
each class. The results show our method’s advantage that
can preserve the closest accuracy from the original model
in general and reduce the redundancy efficiently. Note
that some baselines like NS may suffer from unrecover-
able performance loss on uncommon classes for pruning
lightweight models, while our pruned models can still main-
tain the discriminative ability in different classes.

A.3. Additional qualitative results comparison

In Figure 9, we show the visualization of predicting dif-
ferent images in Cityscapes. The unpruned model in Fig-
ure 9 is PSPNet101, and the pruned models are FPGM,
NS-60%, BN-Scale-60% and Ours-60% in Table 1, respec-
tively. As shown from the comparison, our method can ob-
tain efficient compact models that perform better than other
baseline pruning methods. Note that, in addition to bet-
ter preserving the representation ability of unpruned model

with much lesser parameters, our compact models can gen-
erate a more consistent prediction on various classes, while
other baselines may suffer from the prediction loss due to
misclassification or inconsistency.

A.4. Runtime acceleration results comparison

Dataset Methods mIoU(%) Time(ms) Speed(fps)(%↑)

C
am

V
id SegNet(Unpruned) 55.60 18 54.79

SegNet(Ours-20%) 57.12 12 81.34(48.46%↑)
SegNet(Ours-30%) 56.37 9 105.97(93.41%↑)

C
ity

sc
ap

es

PSPNet101(Unpruned) 78.40 885 1.13
PSPNet101(Ours-60%) 77.82 658 1.52(34.51%↑)
PSPNet101(Ours-70%) 75.27 595 1.68(48.67%↑)
PSPNet50(Unpruned) 76.99 735 1.36
PSPNet50(Ours-70%) 73.94 485 2.06(51.47%↑)
ICNet(Unpruned) 64.59 14 69.91
ICNet(Ours-60%) 62.38 13 76.27(9.10%↑)
SegNet(Unpruned) 56.10 83 12.02
SegNet(Ours-20%) 61.16 59 17.04(41.76%↑)

Table 4. Runtime acceleration per image inference in Cityscapes
(1024×2048) and CamVid (360×480) test set. All inference
speeds are measured by a single Tesla V100 GPU.

A.5. Comparison with other baselines

In Table 6, we compare our methods with the FPGM [5]
variants in an automatic pruning manner. Due to the space
limit in the main paper body, we discuss more details of
FPGM [5] and CCGN [1] in this section.

A.5.1 Baselines details

Filter Pruning via Geometric Median for Deep Convo-
lutional Neural Networks Acceleration [5] (denoted as
FPGM) indicates filter importance via its Euclidean dis-
tances to other filters in the same layer. As FPGM was orig-
inally implemented in the image classification task only, we
re-implemented it for semantic segmentation. In Table 1,
we showed the performance of FPGM with the setting re-
ported in the original paper, where the filter pruning ratio in



Method Average road swalk build. wall fence pole light sign veg. terrain sky person rider car truck bus train mbike. bike

PS
PN

et
10

1

Unpruned 78.40 98.60 86.20 92.90 50.80 58.80 64.00 75.60 79.00 93.40 72.30 95.40 86.50 71.30 95.90 68.20 79.50 73.80 69.50 77.20

FPGM 74.84 98.34 84.36 92.16 53.15 56.94 60.44 69.28 74.58 93.04 70.38 94.74 83.74 65.73 95.35 58.97 75.12 59.89 62.80 72.91
NS-60% 75.70 98.21 83.09 91.99 51.85 56.00 60.45 69.23 73.82 92.84 69.04 95.02 83.51 64.94 95.05 63.55 80.45 74.21 62.49 72.62

BN-Scale-60% 74.88 98.15 83.06 91.83 49.09 54.50 60.62 68.91 73.56 92.93 71.20 94.73 83.37 64.79 95.09 65.04 81.07 61.96 60.75 72.08
Ours-60% 77.82 98.40 84.78 92.65 56.74 57.79 63.58 72.05 76.57 93.22 71.60 95.04 84.91 67.91 95.60 68.81 83.82 75.66 65.23 74.18
Ours-70% 75.27 98.24 83.65 92.08 55.53 53.93 60.93 69.95 73.86 92.94 71.25 94.82 83.58 65.64 95.16 64.38 77.62 64.33 60.21 72.03

PS
PN

et
50

Unpruned 76.99 98.41 84.52 92.64 51.01 56.53 64.13 73.19 77.18 93.27 70.45 95.21 85.43 69.80 95.72 69.55 79.52 65.86 66.14 74.33

FPGM 74.59 98.17 83.27 92.00 54.96 54.08 59.20 70.06 72.80 92.96 70.91 94.76 83.82 65.61 95.22 62.71 75.29 56.24 62.43 72.76
NS-50% 73.57 98.15 83.20 91.46 50.19 54.16 59.48 68.91 73.09 92.65 69.77 94.26 82.31 63.63 94.75 62.54 71.84 57.95 58.05 71.40

BN-Scale-50% 73.85 98.19 83.50 91.54 51.64 52.85 58.84 69.02 72.96 92.73 70.31 94.33 82.15 63.27 94.86 63.20 74.54 61.54 57.14 70.64
Ours-60% 75.59 98.38 84.71 92.58 56.14 56.64 63.14 72.50 76.23 93.23 71.19 94.90 84.46 66.09 95.38 60.05 73.80 61.27 62.35 73.27
Ours-70% 73.94 98.21 83.55 91.95 50.88 54.67 61.34 70.90 74.81 92.89 70.86 94.76 83.73 64.79 94.95 63.06 71.55 51.13 58.90 71.87

IC
N

et

Unpruned 64.59 97.71 79.95 88.87 37.52 40.78 43.87 51.12 57.80 90.71 67.13 93.83 72.65 52.47 92.08 50.65 60.16 48.17 43.33 58.45

FPGM 62.00 97.39 77.72 87.63 35.95 38.51 39.66 44.13 53.36 90.04 64.84 93.05 70.02 47.32 91.22 49.45 56.48 47.74 38.89 54.62
NS-60% 60.02 97.20 76.73 87.08 40.95 36.56 37.27 40.28 49.25 89.44 63.56 92.68 67.79 46.05 90.18 39.96 53.68 42.49 35.64 53.59

BN-Scale-60% 59.68 97.21 76.83 87.10 35.56 34.46 37.66 40.84 49.13 89.49 64.43 92.70 67.71 45.69 90.21 43.98 50.07 39.56 36.55 54.73
Ours-60% 62.38 97.36 78.00 87.88 41.32 37.93 40.83 43.93 52.29 89.98 65.58 92.75 69.91 48.46 90.79 46.17 59.01 47.19 40.27 55.51

Se
gN

et

Unpruned 56.09 95.65 70.10 82.81 29.87 31.88 38.06 43.05 44.58 87.32 62.30 91.68 67.28 50.75 87.89 21.70 29.03 34.73 40.47 56.63

FPGM 51.60 96.20 71.11 84.02 26.19 26.67 33.26 32.17 43.78 88.24 61.92 91.10 57.16 32.50 88.28 21.68 28.31 29.41 21.25 47.17
NS-20% 56.85 96.32 77.51 88.43 35.00 37.18 49.41 53.27 60.57 91.18 67.07 93.91 71.57 46.32 91.42 27.67 0.00 0.00 35.52 57.89

BN-Scale-20% 59.95 97.12 77.03 88.17 33.31 36.38 48.80 50.34 59.19 90.80 66.30 93.68 70.51 44.78 91.30 29.46 41.20 29.36 33.68 57.66
Ours-20% 61.16 97.19 77.32 88.37 32.68 37.15 49.88 53.64 61.80 90.95 66.23 93.74 71.69 45.26 91.31 30.39 42.66 37.59 34.95 59.21

Table 5. Per-class results after pruning on Cityscapes test set.

Methods mIoU(%) #Params(M)(%↓) #FLOPs(G)(%↓)

PS
PN

et
10

1 Unpruned 77.48 70.44 557.04
FPGM-A-20% 70.94 53.10(24.62%↓) 397.22(28.69%↓)
FPGM-A-30% 67.20 46.81(33.54%↓) 346.25(37.84%↓)

Ours-60% 78.23 47.84(32.08%↓) 363.21(34.80%↓)
Ours-70% 75.40 39.74(43.58%↓) 296.25(46.82%↓)

PS
PN

et
50

Unpruned 76.57 51.45 403.0
FPGM-A-30% 60.14 35.17(31.63%↓) 273.53(32.13%↓)
FPGM-A-40% 61.36 23.56(54.21%↓) 185.69(53.92%↓)

Ours-60% 75.65 27.31(46.92%↓) 233.67(42.02%↓)
Ours-70% 74.31 23.78(53.78%↓) 203.19(49.58%↓)
Ours-80% 70.83 21.16(58.87%↓) 179.79(55.39%↓)

IC
N

et

Unpruned 64.59 12.21 40.13
FPGM-A-20% 49.20 10.47(14.30%↓) 27.03(32.64%↓)
FPGM-A-30% 43.01 8.86(46.57%↓) 24.62(38.65%↓)

Ours-60% 63.26 5.56(54.46%↓) 21.16(47.27%↓)

Se
gN

et

Unpruned 56.10 29.45 326.59
FPGM-A-10% 44.91 27.41(6.93%↓) 178.09(45.46%↓)
FPGM-A-40% 37.17 10.85(63.18%↓) 43.74(86.61%↓)

Ours-20% 60.98 10.76(63.46%↓) 178.23(45.43%↓)
Table 6. Quantitative pruning results on Cityscapes validation set.

each layer is predefined. The pruned architectures of FPGM
in Table 1 are shown in Figure 5 and Figure 6. In Table 6,
we show the results of FPGM using the automatic pruning
method like ours, where we only set a global pruning ratio
and prune filters in a global and greedy manner. We de-
note this method as FPGM-A. Same as other reported base-
lines in Table 1, the x in FPGM-A-x% stands for the global
threshold ratio, and we also reserve 10% filters to prevent
pruning out the whole layer.

Batch-Shaping for Learning Conditional Channel Gated
Networks [1] (denoted as CCGN in Table 3) is the state-
of-the-art conditional computing method, which estimates
channel saliency by introducing a gated module similar to

Dynamic Channel Pruning [4], but provides a better trade-
off between simple and complex examples inference. Al-
though it is not strictly a network pruning method, it is
the latest work to provide comprehensive network accel-
eration results on the large-scale semantic segmentation
benchmarks. Hence, we provide a comparison with this
method as well. As stated in their paper, CCGN(Without
pretrain) stands for the model that undertakes training with-
out ImageNet-pretrained, while CCGN-1(With pretrain)
and CCGN-2(With pretrain) are with pretrained and reduce
FLOPs in different percentage to balance the performance.



A.5.2 Analysis

Table 6 shows that our method outperforms the above-
mentioned state-of-the-art pruning methods. It can also be
observed that when FPGM is implemented in an automatic
pruning manner (i.e., FPGM-A-x%), the performance be-
comes worse (compared to FPGM in Table 1). From the
observation, it is evident that our method serves as a bet-
ter global indicator to identify the importance of channels,
while some pruning criteria in image classification task may
not be effective for semantic segmentation.

A.6. Pruned structures comparison

In Figure 5 to Figure 8, we visualize the pruned archi-
tectures using our framework, i.e., CAP, and the original
FPGM.
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Figure 5. Pruned structure comparison (SegNet)

Figure 6. Pruned structure comparison (ICNet)



Figure 7. Pruned structure comparison (PSPNet50)

Figure 8. Pruned structure comparison (PSPNet101)



(a) Input Image (b) GT (c) FPGM (d) NS (e) BN-Scale (f) Unpruned (g) Ours

Figure 9. Extra qualitative comparison on different images on Cityscapes validation set.


